

Guidelines for MOSFET Device Optimization accounting for L-dependent Mobility Degradation

G. Bidal^{1,2}, D. Fleury^{1,2}, G. Ghibaudo², F. Boeuf¹ and T. Skotnicki¹.

¹STMicroelectronics, 850 rue Jean Monnet, 38920 Crolles Cedex, France; ²IMEP, 3 parvis Louis Néel, BP 257, 38016 Grenoble Cedex 1, France;

Silicon Nano Workshop June 2009, Kyoto (Japan)

- Introduction
- Methodology used in this work
 - Low field apparent mobility
 - µ-degradation modeling
- Experimental results
 - Impact of technological modules
- Guidelines for transport enhancement
 - How close to ballistic ?
 - Benchmark of studied technological modules
- Conclusion

- Introduction
- Methodology used in this work
 - Low field apparent mobility
 - µ-degradation modeling
- Experimental results
 - Impact of technological modules
- Guidelines for transport enhancement
 - How close to ballistic ?
 - Benchmark of studied technological modules
- Conclusion

Mobility crisis in highly scaled devices

Motivation

• If mobility is high enough and only in this case, the mobility term $1/(\mu_0 E_{lateral})$ can become negligible and the transport will be mainly driven by the limiting velocity

$$I_{dsat} = WC_{ox}V_{gt} \times \frac{1}{1/v_{lim} + 1/(\mu_0 E_{lateral})}$$

From T.Skotnicki et al., IEEE TED'08

 Any mobility enhancement will get us closer to the limiting velocity

Purpose of this work

 Purpose of this work is not to diagnose the mechanisms of this mobility degradation, but to identify key technological modules that may help to reach a higher short channel mobility

How to ?

 By fitting experimental results by an empirical model in order to provide a simple benchmarking tool between the different technologies

[2]: F.Andrieu et al., VLSI 05 [2]: A.Cros et al., IEDM 06

- Introduction
- Methodology used in this work
 - Low field apparent mobility
 - µ-degradation modeling
- Experimental results
 - Impact of technological modules
- Guidelines for transport enhancement
 - How close to ballistic ?
 - Benchmark of studied technological modules
- Conclusion

Low field mobility

Y-function: $\mu_{eff} = \frac{\mu_0}{1 + \theta_1 N_{gt} + \theta_2 N_{gt}^2}$

Split C(V): [J. Koomen et al., SSE, 1973] [K.Romanjek et al., EDL, 2004]

 $\mu_{eff} = \frac{I_d . L_{eff}}{Q_{inv} . V_d . W_{eff}}$

• Y function and split C(V) methods give similar results, except under V_{th}

• L_{eff} shrink implies μ_0 degradation and μ_{eff} degradation

Empirical Model

• Zero degradation corresponding to $\alpha_{\mu} = 0$ does not exist: α_{μ} cannot be lower than $\alpha_{\mu,bal}$ given by the apparent mobility reduction due to ballistic transport

Fitting or not fitting ?

G.Bidal et al., SNW 2009, June 2009, Kyoto (Japan)

11

- Introduction
- Methodology used in this work
 - Low field apparent mobility
 - µ-degradation modeling
- Experimental results
 - Impact of technological modules
- Guidelines for transport enhancement
 - How close to ballistic ?
 - Benchmark of studied technological modules
- Conclusion

Impact of SiON thickness

Impact of metal gate material

Impact of UTB doping

15

Impact of junction formation

+ activation anneal

Impact of strain

Impact of crystal orientation

- Introduction
- Methodology used in this work
 - Low field apparent mobility
 - µ-degradation modeling
- Experimental results
 - Impact of technological modules
- Guidelines for transport enhancement
 - How close to ballistic ?
 - Benchmark of studied technological modules
- Conclusion

How close to the ballistic ?

• Boosting μ_{max} and reducing α_{μ} is mandatory to reach high BR

Final benchmark & Guidelines

Techno. module	impact on µ _{max}	impact on α _μ	Merit factor η=μ _{max} /α _μ
Gate stack	+	++	x2 to x4
Junctions	+	+	x2
Channel doping	++	=	x2
Process Strain	++	+	х3
Crystal orientation	++	=	X2

• Influence of each studied technological module is quantified

- Introduction
- Methodology used in this work
 - Low field apparent mobility
 - µ-degradation modeling
- Experimental results
 - Impact of technological modules
- Guidelines for transport enhancement
 - How close to ballistic ?
 - Benchmark of studied technological modules
- Conclusion

Conclusion

- Easy monitoring method based on simple empirical model
- Can be used to evaluate how close to ballistic limit a transistor is
- Quantification of impact on the mobility of each technological module
- Final practical guidelines for short channel mobility improvement are given
- This research is supported by the European IST PULL-NANO project (contract No. IST-026828).