A New Jechnigue to Exitract the S/D Series Resistance of Sub-100nm MOSFEI's

Dominique FLEURY

Ph.D. Student
STMicroelectronics / IMEP=LABC lab.

VLSI

Introduction: some definitions

- Series resistance: $\boldsymbol{R}_{s d}=R_{s}+R_{d}$ (from the testing pad to the beginning of the channel)
- Channel resistance: $\boldsymbol{R}_{c h}$
- Total resistance: $\boldsymbol{R}_{\text {tot }}=\boldsymbol{R}_{\boldsymbol{c h}}+\boldsymbol{R}_{s d}$

VLESI

Intiroduction: the $I_{d}\left(V_{g s}\right)$ model

current factor

returns how many current flows in the channel

$$
I_{D}=\frac{\beta V_{D} V_{G t}}{1+\underbrace{\Theta_{1} V_{G t}+\Theta_{2} V_{G t}^{2}}}
$$

Mobility reduction factors

- model the mobility reduction due to phonon and surface roughness scatterings

gate overdrive

bias above the threshold
voltage: $V_{g t}=V_{g s}-V_{t h}$

Introductions the $I_{d}\left(V_{g s}\right)$ model

- The current gain factor can be extracted (ς function ${ }^{[1]} / Y$-function ${ }^{[2]} /$ Hamer $\left.{ }^{[3]}\right)$.
- It contains $L_{\text {eff }}$ and μ_{0} so it may be used to make an extraction insensitive to these parameters.

Intioduction: why measuring $R_{\text {sd }}$?

- Essential parameter for performance improvement:
- A lower $R_{s d}$ improves the MOSFET performances
- To extract transport parameters:
- Effective mobility (ex: split $C-V$ technique)
- Drift carrier velocity
- Ballistic rate

VLSI

How to extract $R_{\text {sdd }}$?

- The $R_{t o t}(L)$ technique ${ }^{[4]}$

- Provides erroneous values when mobility changes from a long to a short channel.

Mobility changes may be due to:

- pocket implants ${ }^{[5]}$
- strain [6]
- implantation defects close to S/D junctions ${ }^{[7]}$

How to extract $R_{\text {sdd }}$?

- The Y-function technique ${ }^{[2]}$

- Insensitive to mobility variations
- High dispersion on $\boldsymbol{R}_{s d}$ due to the Θ_{1}-parameter

$$
\Theta_{1}^{a p p}=\Theta_{1}+R_{s d} \cdot \beta
$$

How to extract $R_{\text {sad }}$?

- What can we expect from an extraction methodology in an industrial context?

The new technique: $R_{\text {tot }}-\beta$

- $R_{\text {tot }}$ can be computed as a function of $1 / \beta$

$$
R_{t o t}=\frac{V_{d s}}{I_{d}}=\frac{1}{\beta}(\underbrace{\left.\frac{1+\Theta_{1} V_{g t}+\Theta_{2} V_{g t}^{2}}{V_{g t}}\right)}_{\text {parameter }}+R_{s}\left(V_{g s}\right)
$$

- When $R_{\text {tot }}$ is plotted versus $1 / \beta, R_{s d}$ can be read at the intercept with the y-axis.

VESI

The new technique: $R_{\text {tot }} \beta$

- $R_{t o t}(1 / \beta)$ linear regression returns $R_{s d}$ for the technology (at a given $V_{g t}$)

The new technique: $R_{\text {tot }}-\beta$

- $R_{s d}$ can be extracted as a function of $V_{g s}$
- approximation: $V_{g s} \approx V_{g t}+<V_{t h}>$
- consistent with $R_{o v}$ variations of the literature ${ }^{[8]}$

The new technique: $R_{\text {tot }}-\beta$

- Mobility attenuation is extracted from the slope, for the given technology

VLSSI

The new technique: robustness

- Results are consistent with the Y-fuction extraction
- Accuracy is improved!

$\mathbf{R}_{\text {sd }}(\Omega . \mu \mathrm{m})$	$\mathbf{R}_{\text {tot }}(\mathbf{1} / \boldsymbol{\beta})$	$\Theta(\beta)$
nMOS bulk	110 ± 3	119 ± 10
pMOS bulk	170 ± 5	155 ± 15
nMOS FDSOI	97 ± 5	126 ± 34
pMOS FDSOI	156 ± 5	208 ± 50

High dispersion using the Y -
function technique

VLSI

The new technique: accuracy

- Extracted values of $R_{s d}$ follow the change if an additional resistance $\Delta R_{s d}$ is added

The new technique: discussion

- $V_{t h}$ may change as a function of L
- short channel effects (SCE) and S/D halos (RSCE)

$$
R_{t o t}=R_{c h}\left(V_{g t}\right)+R_{s d}\left(V_{g s}\right)
$$

$\mathrm{V}_{\mathrm{gs}}(\mathrm{V})$

VLSI

The new technique: discussion

- Is the $V_{g s}=V_{g t}+\left\langle V_{t h}>\right.$ approximation still valid for bulk devices? YES

- < $V_{t h}(L)>$ approximation still enable extraction within a 3\% accuracy

Conclusion

- Is the $R_{\text {tot }}-\beta$ suitable to an industrial context ?

\checkmark Robustness
good agreements on various technologies (bulk, FDSOI, SON)
\checkmark Fast measurement capability
require only $I_{d}\left(V_{g s}\right)$ measurements, can be deployed in automatic testing

$R_{\text {sd }}$ extraction

VLSI

References

${ }^{[1]}$ D. Fleury et al., ICMTS, 2008
${ }^{[2]}$ G. Ghibaudo et al., Electronics Letters, 24, 9, 1988
${ }^{[3]}$ M. F. Hamer, IEE Proceedings, 133, 2, 1986
${ }^{[4]}$ Y. Taur et al., EDL, 13, 5, 1992
${ }^{\text {[5] K. M. Cao et al., IEDM, } 1999}$
${ }^{[6]}$ F. Andrieu et al., EDL, 26, 10, 2005
${ }^{[7]}$ A. Cros et al., IEDM, 2006
${ }^{[8]}$ S.-D. Kim et al., TED, 49, 3, 2002

Thank you for your attention!

