

A New Technique to Extract the S/D Series Resistance of Sub-100nm MOSFETs

Dominique FLEURY Ph.D. Student STMicroelectronics / IMEP-LAHC lab.

Tuesday, April 28

Introduction: some definitions

- Series resistance: $R_{sd} = R_s + R_d$ (from the testing pad to the beginning of the channel)
- Channel resistance: R_{ch}
- Total resistance: $R_{tot} = R_{ch} + R_{sd}$

Introduction: the $I_d(V_{gs})$ model

Introduction: the $I_d(V_{gs})$ model

- The current gain factor can be extracted (ξfunction^[1] / Y-function^[2] / Hamer^[3]).
- It contains L_{eff} and μ_0 so it may be used to make an extraction insensitive to these parameters.

Introduction: why measuring R_{sd}?

- **Essential parameter for performance improvement:**
 - A lower *R_{sd}* improves the MOSFET performances
- To extract transport parameters:
 - Effective mobility (ex: split C-V technique)
 - **Drift carrier velocity**
 - **Ballistic rate**

40

How to extract R_{sd} ?

• The R_{tot}(L) technique^[4]

• Provides erroneous values when mobility changes from a long to a short channel.

How to extract R_{sd} ?

- The *Y*-function technique^[2]
 - Insensitive to mobility variations
 - High dispersion on R_{sd} due to the Θ_1 -parameter

How to extract R_{sd} ?

• What can we expect from an extraction methodology in an industrial context ?

✓ Robustness

Insensitivity towards μ_{eff}/L_{eff} variations, no technology dependence

Fast measurement capability

Only requires $I_d(V_{gs})$ measurements

Accuracy ×

Accuracy is limited by dispersion in the Θ_1 parameter \Rightarrow **Can be improved**

Easy portability ✓

No computation algorithms simple test setup

 R_{sd} extraction

• R_{tot} can be computed as a function of $1/\beta$

• When R_{tot} is plotted versus 1/ β , R_{sd} can be read at the intercept with the *y*-axis.

• $R_{tot}(1/\beta)$ linear regression returns R_{sd} for the technology (at a given V_{gt})

• R_{sd} is read at the intercept (at the given V_{gt})

• The mobility attenuation at the given V_{gt} is read from the slope

 dispersion is very low and accuracy is improved.

- *R_{sd}* can be extracted as a function of *V_{gs}* approximation: *V_{gs}* ≈ *V_{gt}* + <*V_{th}*>
 - consistent with R_{ov} variations of the literature^[8]

Mobility attenuation is extracted from the slope, for the given technology

The new technique: robustness

Results are consistent with the *Y*-fuction extraction

• Accuracy is improved !

R _{sd} (Ω.μm)	$R_{tot}(1/\beta)$	Θ(β)
nMOS bulk	110 ± 3	119 ± 10
pMOS bulk	170 ± 5	155 <u>± 15</u>
nMOS FDSOI	97 ± 5	126 <mark>± 34</mark>
pMOS FDSOI	156 ± 5	208 ± 50

High dispersion using the Yfunction technique

The new technique: accuracy

• Extracted values of R_{sd} follow the change if an additional resistance ΔR_{sd} is added

The new technique: discussion

V_{th} may change as a function of *L* short channel effects (SCE) and S/D halos (RSCE)

$$R_{tot} = R_{ch}(V_{gt}) + R_{sd}(V_{gs})$$

The new technique: discussion

Is the V_{gs} = V_{gt} + <V_{th}> approximation still valid for bulk devices ? <u>YES</u>

• $<V_{th}(L)>$ approximation still enable extraction within a 3% accuracy

2009 VLSI-TSA Symposium

Conclusion

• Is the R_{tot} - β suitable to an industrial context ?

✓ Robustness

good agreements on various technologies (bulk, FDSOI, SON)

✓ Fast measurement capability

require only $I_d(V_{gs})$ measurements, can be deployed in automatic testing

Accuracy

improved compare to the other methodologies (*Y*-function, R_{tot} -*L*). Up to 3%.

Easy portability

No specific computation algorithms. No specific test

 R_{sd} extraction

setup.

References

^[1] D. Fleury *et al.*, *ICMTS*, 2008
^[2] G. Ghibaudo *et al.*, *Electronics Letters*, 24, 9, 1988
^[3] M. F. Hamer, *IEE Proceedings*, 133, 2, 1986
^[4] Y. Taur *et al.*, *EDL*, 13, 5, 1992
^[5] K. M. Cao *et al.*, *IEDM*, 1999
^[6] F. Andrieu *et al.*, *EDL*, 26, 10, 2005
^[7] A. Cros *et al.*, *IEDM*, 2006
^[8] S.-D. Kim *et al.*, *TED*, 49, 3, 2002

Thank you for your attention !