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ABSTRACT 
In this study, a new technique to extract the S/D series resistance 

(Rsd) from the total resistance versus transconductance gain plot 
Rtot(1/β) is proposed. The technique only requires the measurement of 
Id(Vgs)|Vgt and β, allowing fast and statistical analysis in an industrial 
context. Unlike the usual Rtot(L)-based techniques, it has the advantage 
of being insensitive to the channel length and mobility variations and 
finally enables to extract very accurate values for Rsd(Vgs) and the ef-
fective mobility reduction factor µeff(Vgt)/µeff(0). 

INTRODUCTION 
The S/D resistance (Rsd) is a major concern for the MOSFET scal-

ing as it plays a key role in device performance and power consumption 
[1]. Since the channel length is scaled down, the Rsd/Rtot ratio becomes 
higher and Rsd requires improved accuracy in extraction techniques to 
be assessed within a reasonable error. As described on Fig.1, a transis-
tor can be modeled in linear regime by a channel resistance Rch con-
nected to the S/D series resistance Rsd = Rs + Rd through which the 
drain current Id flows (Rtot = Rsd + Rch). Due to pockets implants, strain 
booster and neutral defects, the effective mobility (µeff) changes as a 
function of channel length (Leff) [2]-[4] (Fig.2). As a consequence, Rch 
is no more strictly proportional to the geometrical dimensions of the 
channel and all Rtot(L)-based techniques [5-7] fail when µeff(L) varia-
tions are not properly compensated for [8] (cf. Fig.3). To solve this 
issue, a new extraction technique based on the relationship between Rtot 
and the transconductance gain β of the transistor in linear regime is 
proposed. The technique is insensitive to the µeff(L), Leff(L) variations 
(which generally make the other techniques inaccurate) and provides a 
straightforward way to extract Rsd statistically. 

THE RTOT(1/β) TECHNIQUE 
The Rtot(1/β) technique relies on the BSIM3v3 model (1) which re-

produces the drain current behavior in linear regime. In (1), Vgt = (Vgs 
− Vth) is the gate overdrive, β=µeff(0).Cox.Weff/Leff is the transconduc-
tance gain (where µeff(0) is the effective mobility extrapolated to Vgt = 
0V) and (Θ1, Θ2) are the first and second order mobility attenuation 
factors, respectively.  
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The channel resistance is defined as Rch = Vd,0/Id,0 (where the “0” 
subscript refers to the intrinsic value of the parameter, for Rsd=0 
Ω.µm). From (1), Rtot can be expressed as (2).  
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When Vgt is fixed once for a full set of devices with several channel 
lengths, the Rtot = f(1/β) plot shows a linear behavior which returns the 
mobility reduction from the slope (3) and the Rsd|Vgt from the y-axis 
intercept (2). By repeating the same extraction for several gate over-
drives, Rsd(Vgs) and µeff(Vgt)/µeff(0) can be extracted  
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RESULTS 
The following results were obtained by measurements on our 45nm 

node technology platform on the low stand-by power devices, featuring 

1.7nm-EOT SiON gate dielectric with polysilicon gate and tensile con-
tact etch stop layer for nMOS mobility optimization [9] (Fig.1). Extrac-
tion also been performed on FDSOI devices featuring metal gate (WN) 
with 2.5nm EOT HfSixOyNz dielectric, 12nm thinned Si film and ele-
vated S/D [10]. Statistical Id(Vgs) measurements (72 dices) have been 
performed for lengths ranging from 35nm to 240nm and W=1µm. 
Strong pockets implants have been used in the process to increase the 
channel doping and limit the short channel effect in the smallest de-
vices. Vth and β can be extracted from the McLarty’s function [11] (4) 
or from the ξ-function [12] which have both the advantage of being 
insensitive to (Θ1, Θ2) when Rsd has a linear variation with Vgs. 
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Note that, as displayed in the inset of Fig.4, Vth deduced from 
McLarty’s functions and ξ-function corresponds to the charge threshold 
voltage at strong inversion i.e. where Qinv = Cox.Vgt. Vth(Leff) and 
β(Leff) behavior are displayed on Fig.4 and Fig.5, where Leff has been 
extracted from C-V measurements [13]. Rtot has been measured for 
each device at several gate overdrive ranging from 0.1 to 1.1V (the 
nominal voltage for this technology is Vgs = 1.1 V, i.e. Vgt ≈ 0.4V). 
Rsd(Vgt) has been extracted from the Rtot=f(1/β) plot, as described pre-
viously (2). The linear regression is displayed on Fig.5, where data has 
been filtered with a recursive normal filter within a ±3σ-tolerance (99% 
confidence). The points show a very good alignment which results in a 
very small error on the final result: R²>0.99, Rsd = (110 ± 3) Ω.µm. 
Fig.7 shows Rsd(Vgs), where Vgs has been approximated to 
Vgs ≈ Vgt + <Vth(L)>, <Vth(L)> being the average Vth for the set of 
devices: Vgs ≈ Vgt + 0.69 ± 0.05 V (cf. Fig.4). The behavior of Rsd(Vg) 
is consistent with previous studies [14]. Results extracted for small gate 
overdrive (Vgt≤0.2V) show a slight deviation, which might be due to 
the limited accuracy in the Vth-extraction technique and/or non validity 
of strong inversion approximation close to Vth. Intrinsic mobility reduc-
tion factors have been extracted from (3) to be compared with the Θ(β) 
technique [15],[16]. As shown on Fig.8 and Fig.9, both techniques 
provide very close Θ1,0 values but Rsd extracted from Θ(β) shows a 
larger dispersion mainly induced by uncertainties on the Θ1 parameter 
extraction. Finally, error resulting from the <Vth(L)> approximation has 
also been quantified (Fig10) and Rsd has been estimated for the two 
extraction techniques. Results for bulk and FDSOI MOSFETs are 
summarized in Tab.1. As expected, FDSOI devices benefit from a low-
ered Rsd thanks to the elevated epitaxial S/D and an improved accuracy 
is confirmed for the Rtot(1/β) technique compared to the Θ(β) one. 

CONCLUSION AND PERSPECTIVES 
This study demonstrates the ability of a new Rtot(1/β) technique to 

provide Rsd(Vg) and µeff(Vgt)/µeff(0) values with an improved accuracy 
thanks to statistical results. Unlike the Rtot(L)-based technique, the use 
of 1/β for the x-axis allows to correct any µeff or Leff variations. The 
technique only requires to measure Id(Vgs)|Vgt and β on several channel 
lengths. The results match with the Θ(β) technique which suffers from 
a larger dispersion and requires full Id(Vgs)-curves measurements to 
extract Rsd. this technique is fully compatible with fast measurement 
techniques, offering new perspectives towards Rsd monitoring and large 
scale analysis in industrial environment. 
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Fig.1 – Typical bulk nMOSFET with tensile con-
tact etch stop layer (CESL). 
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Fig.2 – decrease of the low field mobility for 
short channel length nMOSFETs 
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Fig.3 – uncertainty on the Rtot(L) technique 
due to µ(L) degradation on short channels  
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Fig.4 – Vth(Leff) plot for nMOSFETs in linear 
regime, in inset: definition of Vth. 
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Fig.5 – β(Leff) measurements. Continuous line: 
ideal behaviour w/o mobility reduction 
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Fig.6 – Rtot(1/β) plot for nMOSFETs. Rsd is 
extracted from the intercept with the y-axis. 
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Fig.7 – Rsd(Vg) behaviour extracted from the 
Rtot(1/β) technique. 
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Fig.8 – Mobility decrease (as a function of 
Vgs) from the Rtot(1/β) technique. 
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Fig.9 – Rsd .and Θ1,0 extracted from the Θ1(β) 
technique. In inset: error distribution 
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Fig.10 – Comparison between exact model (�) 
and approximation (�) using <Vth(L)> 

Rsd  (Ω.µm) Rtot (1/ββββ) Θ(β)Θ(β)Θ(β)Θ(β)

nMOS bulk 110 ± 3 119 ± 10

pMOS bulk 170 ± 5 155 ± 15

nMOS FDSOI 97 ± 5 126 ± 34

pMOS FDSOI 156 ± 5 208 ± 50
 

 
Tab.1 –Rsd|Vgs=1.1V values extracted for 
bulk and FDSOI MOSFETs and com-
pared to results obtained from the Θ(β) 
technique. As expected, the Rtot(1/β) 
method gives more accurate results which 
remain in line with Θ(β). 
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