Crolles2 Alliance

Automatic extraction methodology for accurate measurement of effective channel length on 65nm MOSFET technology and below

Dominique Fleury^{1,2}, Antoine Cros¹, Krunoslav Romanjek³, David Roy¹, Franck Perrier³, Benjamin Dumont³, Hugues Brut¹

> Extensive Electrical Characterization group Email : <u>dominique.fleury@st.com</u> Phone : +33 (0) 438 923 314

¹ STMicroelectronics, 850 rue Jean Monnet, Crolles France
 ² IMEP, Minatec, 3 Parvis Louis Néel, Grenoble, France
 ³ NXP Semiconductors, 860 rue Jean Monnet, Crolles, France

Outline

- \bullet **Problematic of accurate** L_{eff} **extraction**
- State-of-the-art
- Methodology for automatic extraction
- Test structure design for automatic extraction
 - Results and validation
 - Conclusion

Outline

 \bullet Problematic of accurate L_{eff} extraction State-of-the-art Methodology for automatic extraction Test structure design for automatic extraction Results and validation Conclusion

Problematic of accurate L_{eff} extraction

The mask length (L_{mask}): gate definition from lithography mask
 The effective channel length (L_{eff}): defined by the inversion layer length
 $\Delta L = L_{mask} - L_{eff}$ is the channel length reduction

Nowadays, L_{eff} hardly reaches 50% of L_{mask}

A few nanometer change can induce bad results interpretation !

Outline

Problematic of accurate L_{eff} extraction
 State-of-the-art
 Methodology for automatic extraction
 Test structure design for automatic extraction
 Results and validation
 Conclusion

State-of-the-art

• Most of $I_D(V_G)$ -based methods assume invariance of the mobility with the length of transistors.

Mistaken approach due to low field mobility degradation observed on short devices ^{[1], [2]}

Capacitive method provides L_{eff} extraction without any assumption towards the mobility.

 [1] K.Romanjek, Solid State Elec., vol. 49, pp. 721-726, 2005
 [2] A.Cros, IEDM'06, San Francisco USA, dec. 2006, pp. 663-666

Dominique Fleury *et al.* International Conference on Microelectronic Test Structures (ICMTS) – 21 March 2007

Solution avoiding a

mistaken extraction

Outline

 $igodole{}$ Problematic of accurate L_{eff} extraction State-of-the-art Methodology for automatic extraction Test structure design for automatic extraction Results and validation Conclusion

Methodology: experimental setup

Capacitance measurements are performed:

- On fully automatic prober with probecard (Accretech UF3000)
- Using high precision LCR-meter (HP4984 LCR-meter)
- Using a connection matrix (Agilent 4073B)
- Extractions are performed thanks to a homedeveloped software (Scilab™)

Test of several pad combinations
Large samplings (>20 dice/wafer)
Batch extractions

Methodology: capacitive method

• L_{eff} is extracted from gate-to-channel measurements $C_{qc}(V_G)$

Proportional to the channel area

 $C_{gc} \propto W imes L_{eff}$

 max(C_{gc}) is set as a reference point for each curve.

No de-embedding structure needed to get rid of parasitic capacitances

Dominique Fleury *et al.* International Conference on Microelectronic

Test Structures (ICMTS) – 21 March 2007

Two ways of extraction are possible:

Methodology: constant ΔL method

$$C_{gc} = W.C_{ox}(L_{mask} - \Delta L)$$

• ΔL is extracted from the linear regression: max $(C_{gc})=f(L_{mask})$

 L_{eff} error strongly depends on ΔL linearity assumption. (lithography and gate etch processes optimization) $\underline{\land}$

Methodology: individual ΔL method

- Extraction of individual ΔL^* (for each transistor)
 - ΔL are extracted from a proportionality rule:

$$\Delta L^* = L^*_{mask} - \underbrace{L^{ref}_{eff}}_{= ff} \times \frac{\max(C^*_{gc})}{\max(C^{ref}_{gc})}_{=L^*_{eff}}$$

- The longest transistor is set as the reference $(L_{eff} \cong L_{mask})$
- The constant ΔL is almost the average value of $\Delta L(L_{mask})$

Methodology: individual ΔL method

• Extraction of individual ΔL^* (for each transistor)

ΔL are extracted from a proportionality rule:

$$\Delta L^* = L^*_{mask} - \underbrace{L^{ref}_{eff} \times \frac{\max(C^*_{gc})}{\max(C^{ref}_{gc})}}_{=L^*_{eff}}$$

Allows studying $\Delta L(L_{mask})$ behavior Needs a long transistor as reference

Dominique Fleury *et al.*

Methodology: parasiti<mark>c capacitance</mark>

C_{ac} measurements are impacted by parasitic capacitance

- From cabling, probes and connection pads (constant term)
- Inherent to the MOSFET architecture
 - Overlap capacitance C_{ov} (V_G -dependent)
 - Inner fringe capacitance $C_{if}(V_G$ -dependent)
 - Outer fringe capacitance C_{of}
- C^{min} is chosen to have the same value than parasitic capacitances include into $max(C_{gc})$ [3].

Dominique Fleury *et al.*

L4

Methodology: parasiti<mark>c capacitance</mark>

C_{qc} measurements are impacted by parasitic capacitance

- From cabling, probes and connection pads (constant term)
- Inherent to the MOSFET architecture
 - Overlap capacitance C_{ov} (V_G -dependent)
 - Inner fringe capacitance $C_{if}(V_G$ -dependent)
 - Outer fringe capacitance C_{of}

Use of $\Delta C = \max(C_{gc}) - C^{min}$ instead of $\max(C_{gc})$ \Rightarrow cancel parasitic capacitances

approximation on C^{min} \Rightarrow error less than 3% on L_{eff}

Dominique Fleury *et al.*

Outline

 $igodolaright Problematic of accurate L_{eff}$ extraction ◆ State-of-the-art Methodology for automatic extraction Test structure design for automatic extraction Results and validation Conclusion

Test structures

Requierements of the measurement setup

- Connection matrix: areas above 50µm² to provide enough signal-tonoise ratio
- Use of array test structures composed by N identical transistors wired together (area ≈ 100µm²)

Such large areas can not be measured on leaky devices $(T_{ox} < 15 \text{\AA})$!

Test structures

Results & valida

Conclusion

Test structures: leaky devices

Dominique Fleury *et al.*

Outline

 $igodolmom{O}$ Problematic of accurate L_{eff} extraction State-of-the-art Methodology for automatic extraction Test structure design for automatic extraction **Results and validation** Conclusion

Results and validation: HCI lifetime

Hot Carrier Injection mechanism:

Bulk current I_b and I_b/I_d ratio are increased

• HCI strongly depends on L_{eff} :

- When L_{eff} decreases the lateral electric field increases ($E \propto 1/L_{eff}$)
- Carriers get high kinetic energy thanks to the high field ⇒ hot carriers

 L_{eff} must be measured with accuracy to identify the origin of HCI lifetime degradation

Results and validation: HCI lifetime

L_{eff} measurements to understand HCI lifetime results:

Thick oxide $(T_{ox} \cong 18.5\text{\AA})$ \Rightarrow array test structures

Statistical measurements 20 dies

HCI-lifetime study predicts 4nm-shift on L_{eff} between 'A' and 'B'

L_{eff} measurements give 3.5±1 nm

RESULT

Dominique Fleury *et al.* International Conference on Microelectronic

Test Structures (ICMTS) – 21 March 2007

Outline

igodolaright Problematic of accurate L_{eff} extraction◆ State-of-the-art Methodology for automatic extraction Test structure design for automatic extraction Results and validation Conclusion

Conclusion

 \bullet High capabilities of our industrially-adapted L_{eff} extraction

- Outstanding accuracy (± 1nm)
- Unequal benefits toward HCI lifetime and mobility studies

Test structure improvement

- Systematic measurements thanks to new array test structures
- Reduction of the measurement time (20min ⇒ 2min)

Expected method improvements: – Extend L_{eff} meas. to in line monitoring – In-depth study of parasitic capacitances

Crolles2 Alliance

