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Abstract—Constant downscaling of transistors leads to increase
the relative difference betweenLmask and Leff . Effective length
(Leff ) extractions are now crucial to avoid calculations errors
on parameters such as the mobility, which can exceed 100% for
shorter devices. We propose an industrially-adapted method to
extract Leff by using an enhanced ”split C-V” method. Accurate
and consistent values have been extracted (±1nm) and then
correlated to mobility and HCI lifetime studies, as a function
of Leff .

Index Terms—Effective channel length, split C-V, parasitic
capacitances, gate-to-channel capacitance measurements

I. I NTRODUCTION

Transistor downscaling has been so fast in recent years
that effective channel length (Leff ) – defined by the inver-
sion layer length – hardly reaches 50% of the mask length
(Lmask) on sub-65nm technologies. At such scales, a few
nanometers shift can induce a misleading results interpretation,
justifying necessity to estimate the channel length reduction
(∆L = Lmask−Leff ) with enough accuracy, as a function of
Lmask. The latter dependency results from deep sub-micron
lithography limits (Lmask − Lpoly shift) and diffusion of
Source-Drain Extensions (SDE) (Fig. 1).

As previously exposed, current-based extraction methods
fail because of the mobility variations with the gate length[1],
[2]. We developed an industrially-adapted method providing
large scale extraction and so, statistical results thanks to fully-
automatic probers. Technique has been improved to reach an
unequaled 1nm-accuracy onLeff (in relative) through a better
understanding of parasitic capacitances.Leff is a critical
parameter, useful for Physics modeling and for a better under-
standing of the MOSFET. We will highlight this usefulness
by examples of applications on mobility and HCI lifetime
extrapolation as a function ofLeff , for 65nm-technologies
and below.

II. STATE-OF-THE-ART

ID(VG)-based methods have been previously proposed for
Leff extraction, assuming invariance of the mobility with the
length of the transistor [3]–[6]. This approach is now mistaken
because of the low-field mobility degradation observed on
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short devices [2], [7]. Capacitive method provides aLeff

extraction without any assumption regarding the mobility,but
strongly depends on parasitic capacitances issues rising on
modern technologies [2], [8]. As a consequence, we recently
adapted the latter to sub-65nm technology devices, in an
industrial context.

III. M ETHODOLOGY

A. Experimental setup

We performed 1MHz-frequency capacitance measure-
ments on a fully-automatic 300mm-wafer prober (Accretech
UF3000) equipped with a HP4284 LCR meter and an Agilent
4073B connection matrix. The latter is required for automatic
measurements, allowing probing of several pad combinations.
Specific home-developed software was used to perform batch
extractions on large samples (20 dies per wafer) to improve
accuracy and provide statistical results.

B. Capacitive method

Leff is extracted using gate-to-channel capacitance
measurementCgc(VG) (Fig. 2) which is proportional to the
channel area (Cgc ∝ W×Leff ). Furthermore, we will see that
this method does not need any de-embedding structure to get
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Fig. 2. Cgc(VG) curves measured for several transistor lengths and plotted
using logarithm scale (45nm-technology,Tox

∼= 12Å). In insert: measurement
setup.

rid of parasitic capacitance as forCgb(VG) measurements [1],
[9]. Maximum of capacitancemax (Cgc) is set as a reference
point for each curve. Two ways of extraction are thus possible:

1) Constant ∆L method: We can assume∆L is invariant
with Lmask (1) and extract its value from the linear regression
on the plot ofmax(Cgc) = f (Lmask) (Fig. 3) [2]. Thus,∆L
is the value read at the intercept between the linear regression
and theLmask-axis. In this case, error onLeff will be strongly
linked to the relevance of the∆L(Lmask) linearity assumption
in the regression window. The latter is mainly influenced by
lithography and gate-etch process optimization.

Cgc = W · Cox × (Lmask − ∆L) (1)

2) Individual ∆L method: We can extract an individual
∆L for each transistor from a proportionality rule (2), using
the longest transistor as reference (Fig. 4). Thus, the latter
must satisfy to the relation Lref

mask ≥ 1µm in order to assume
Lref

eff
∼= Lref

mask with enough accuracy. Error due to this
assumption is not greater than 2% for a 1µm-length reference
transistor (0.2% for a 10µm-length).

∆L∗ = L∗

mask − Lref
eff ×

max(C∗

gc)

max(Cref
gc )

︸ ︷︷ ︸

=L∗

eff

(2)

Use of ”individual∆L” method allows extracting∆L for
each mask length and studying the∆L(Lmask) behavior due
to photo-lithography and gate etch processes. Unlikely, the
other method does not require a long transistor as referencebut
can only provide a constant∆L which is almost the average
value〈∆L∗〉 (dotted line on Fig. 4).

C. Parasitic capacitance

Gate-to-channel measurement is impacted by parasitic ca-
pacitances: 1. a constant term comes from cabling, probes and
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Fig. 3. Extraction of a constant∆L from a linear regression on the plot of
max(Cgc) = f(Lmask). In insert: zoom on the specific part of the graph
where∆L is extracted
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connection pads; 2. aVG-dependent component is inherent to
the MOSFET architecture (Fig. 5). Total MOSFETs parasitic
capacitance is composed by:

• the outer fringing capacitance (Cof ) between the gate and
source/drain through the spacers (this component does not
depend onVG);

• the inner fringing capacitance (Cif ) between the gate and
SDE through the channel;

• the overlap capacitance (Cov) between the gate and SDE
through the gate oxide.

In accumulation and inversion regime,Cif is screened by
holes and electrons filling the channel. Its maximum value is
thus expected near the flat-band voltageVG ∼ Vfb, when there
is no screening possible. In strong accumulation, depletion
region in SDE is created and acts as if the oxide thickness
would have been increased in these regions, reducingCov.

Parasitic capacitance can not be measured directly in in-
version regime. The latter has to be extrapolated to allow
estimation of the parasitic capacitance behavior in inversion
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Fig. 5. Measured gate-to-channel capacitance and extrapolated parasitic
capacitance for 65nm technology NMOS transistors (Tox

∼= 18.5Å, W =
10µm). In insert: schematic of intrinsic parasitic component of the MOSFET
(from [10]).

regime (Fig. 5). Thus, we measure aCmin
gc parameter which

has the same value (extrapolation) as the parasitic capacitance
included in themax(Cgc) measurement. Practically,Cmin

gc =
Cgc (Vth − ∆V ) whereVth is the threshold voltage and∆V
is a constant adjusted from results in [10]. Typically,∆L error
generated by this procedure is not higher than 3% on nominal
length transistors.

IV. T EST STRUCTURES

Capacitance measurements through the connection matrix
require gate areas above 50µm2 to provide a large enough
Signal-to-Noise Ratio. Matrix test structures composed byN
identical transistors wired together allow increasing thetotal
area for a givenLmask. Thus, we used matrix test structures
(Fig. 6) with constant widthW and variableN to keep a near
constant area (A ∼= 100µm2) whatever the length, providing to
us the ability to perform automatic measurements in optimal
conditions (2-3 min perCgc(VG) curve). This test setup is
fully-adapted and scalable to any Low Standby Power (LSTP)
technology (gate oxide thicknessTox≥ 15Å).

If Tox < 15Å, the total area needs to be reduced further
to get rid of the gate leakage effect which affectsmax(Cgc)
extraction [11]. Use of a connection matrix is no more possible
but automatic measurements are still feasible by connecting
the probes directly to the LCR meter. The measurement
precision – and so the measurement time – have to be raised to
keep the same accuracy. In all case, capacitance measurements
on isolated MOSFETs are still possible ifW ∼ 10µm,
considering the equipment detection limit (Amin ∼ 0.2µm2)
which is reached for the shortest transistors.
For instance, a 45nm-LSTP nominal length transistor has an
area about 0.4µm2 (W = 10µm) and provides a signal ampli-
tude of a few fF. For this critical case, the entireCgc(VG) curve
needs about 20min to be measured with enough accuracy.

active

poly-Si

LLLLmaskmaskmaskmask

Fig. 6. Layout of matrix structures used for automatic measurements in
optimal condition.Lmask = 0.38µm, W = 0.15µm, N = 1980. Total
area:A = 112.86µm2

V. RESULTS AND VALIDATION

A. HCI lifetime extrapolation

Aggressive downscaling concerning channel length,
junction depth and oxide thickness leads to increase the
lateral electric field in the transistor (E ∝ 1/Leff ). In
such devices, carriers get a high kinetic energy, reason for
which they are called ”hot carriers”. Due to this high energy,
hot carriers can either pass the dielectric energy barrier
or generate an electron/hole pair by impact ionization. In
both cases a charge may be injected into the dielectric (Hot
Carrier Injection), degrading the device reliability (lifetime
reduction) and shifting the threshold voltage. HCI lifetime
strongly depends onLeff . The latter has to be measured
with accuracy in order to distinguish itself from other factors
which may affect the lifetime too.

We performedLeff measurements on two devices from
65nm-LPST technology (Tox

∼= 18.5Å), allowing the use
of matrix test structures described in IV. HCI lifetime is
expected to be the same because devices come from similar
process flows (’A’ and ’B’), in whichLeff is the only
HCI-relevant factor which could change. Indeed reliability
measurements show a lifetime-shift which can be explained
by a Leff -shift of 4nm between ’A’- and ’B’-processed
devices.
Leff measurements have been done using methods described
into III-B on more than 20 dies. Accurate and consistent
results were obtained:∆Leff = LA

eff −LB
eff

∼= (3.5± 1)nm,
validating the assumption that HCI lifetime shift is exclusively
due to aLeff shift between the two devices.

This example clearly shows the relevance of aLeff mea-
surements towards reliability studies and usefulness ofLeff

extraction for physical understanding of the transistor.

B. Mobility measurements

We performedID(VG) measurements further toLeff ex-
traction in order to extract the mobility and study its behavior
toward Leff . We focused on low field mobility (µ0 ≈
µeff (Qinv ∼ 0)) instead of the whole curveµeff (Eeff )
obtained by Split C-V method [2]. Thus we need accurate
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Leff extractions in order to extractµ0 with accuracy too.
Isolated transistors are used forID(VG) measurements, instead
of matrix structures which exceed the current-compliance
of the measurement setup.µ0 is extracted by couplingβ
parameter extraction using the Y-function method [12] with
Leff extraction described in this paper. Finally,µ0 is deduced
from (4) whereβ is defined by current equation in linear
regime (3).

ID = β · VDS

VG − Vth − 0.5VDS

1 + θ1(VG − Vth) + θ2(VG − Vth)2
(3)

β = µ0COx

W

Leff

⇒ µ0 (Leff) =
βLeff

WCOx

(4)

We performedµ0(Leff ) extractions on advanced technol-
ogy (45nm-like,Tox

∼= 12Å) processed with two different
Rapid Thermal Annealing (RTA) temperatures (1050◦C and
1080◦C). Fig. 8 compareµ0(Leff ) andµ0(Lmask) plots for
both devices to highlight the usefulness of ourLeff extraction
method in this kind of study. Actually,µ0(Leff ) results show
an 8nmLeff -shift in addition to a 20% mobility improvement
on short devices between both RTA temperatures. This would
have been imperceptible on aµ0(Lmask) plot even by knowing
the rightµ0 values (insert Fig. 8).
Mobility-shift induced by annealing temperature disclosed a
new physical mechanism which confirmed existence of neutral
defects in the channel, near the junctions [7].

VI. CONCLUSION

We demonstrate high capabilities of our newly industrially-
adaptedLeff extraction. Results with outstanding accuracy
were obtained (± 1nm) and offer unequaled benefits towards
mobility extraction and HCI lifetime predictions. Systematic
and statistical measurements as been done thanks to new ma-
trix test structures, reducing measurement time. This method
could be extended to in line monitoring in a near future, to
facilitate development of new generation devices.
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