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ON THE MONODROMY OF THE HITCHIN CONNECTION

YVES LASZLO, CHRISTIAN PAULY, AND CHRISTOPH SORGER

Abstract. We show that the image of the monodromy representation of the Hitchin con-
nection on the sheaf of generalized SL(2)-theta functions over a family of complex smooth
projective curves of genus g ≥ 3 contains an element of infinite order.

1. Introduction

Let π : C → B be a family of smooth connected complex projective curves of genus1 g ≥ 3. For
any positive integer l, we denote Zl the vector bundle over B having fibers H0(MCb(SL(2)),L

⊗l),
where MCb(SL(2)) is the moduli space of semistable rank-2 vector bundles with trivial deter-
minant over the curve Cb = π−1(b) for b ∈ B and L is the ample generator of the Picard group.
Following Hitchin [H], the bundle Zl is equipped with a projectively flat connection called the
Hitchin connection.

Theorem. Assume that the level l 6= 1, 2, 4, 8 and that the genus g ≥ 3. Then there exists
a family π : C → B of smooth connected projective curves of genus g such that the monodromy
representation of the Hitchin connection

ρl : π1(B, b) −→ PGL(Zl,b)

has an element of infinite order in its image.

Remark 1.1. An analagous statement is true for more general simple groups, at least for
SL(n), n ≥ 2 (see remark 4.3 below).We will discuss this question in a future paper.

In the context of Topological Quantum Field Theory as defined by Blanchet-Habegger-
Masbaum-Vogel [BHMV], the analogue of the above theorem is well known due to work of
Funar [F] for the infiniteness of the image and of Masbaum [Ma] for the exhibition of an
explicit element in the mapping class group with image of infinite order.

It is enough to show the above theorem in the context of Conformal Field Theory as defined
by Tsuchiya-Ueno-Yamada [TUY]: following a result of the first author [L], the monodromy
representation associated to Hitchin’s connection coincides with the monodromy representation
of the WZW connection. As both, the above Conformal Field Theory and the above Topological
Quantum Field Theory are predicted to be equivalent by work in progress of Andersen and
Ueno ([AU1], [AU2] and [AU3]), the above theorem should follow from the work of Funar and
Masbaum.

In this short note, we give a direct algebraic proof, avoiding the above identification: we first
recall Masbaum’s initial argument applied to Tsuchiya-Kanie’s description of the monodromy
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representation for the WZW connection in the case of the projective line with 4 points labeled
with the standard 2-dimensional representation (see also [AMU]), then we observe that the
sewing procedure induces a projectively flat map, enabling us to make an induction on the
genus.

A couple of words about the exceptional levels l = 1, 2, 4, 8 are in order. For l = 1 the mon-
odromy representation ρ1 is finite for any g. This follows from the fact that Beauville’s [B1]

strange duality isomorphism PH0(MCb(SL(2)),L)
∗ ∼
→ PH0(Picg−1(Cb), 2Θ) is projectively flat

over B for any family π : C → B (see e.g. [Bel1]) and that ρ1 thus identifies with the monodromy
representation on a space of abelian theta functions, which is known to have finite image (see
e.g. [W]). For l = 2 there is a canonical morphism H0(MCb(SL(2)),L

⊗2)→H0(Picg−1(Cb), 4Θ)+,
which is an isomorphism if and only if Cb has no vanishing theta-null [B2]. But this map is
not projectively flat having not constant rank. So the question about finiteness of ρ2 remains
open — see also [Bel2]. For l = 4 there is a canonical isomorphism [OP] between the dual
H0(MCb(SL(2)),L

⊗4)∗ and a space of abelian theta functions of order 3. We expect this isomor-
phism to be projectively flat. For l = 8 no isomorphism with spaces of abelian theta functions
seems to be known.

Our motivation to study the monodromy representation of the Hitchin connection comes from
the Grothendieck-Katz conjectures on the p-curvatures of a local system [K]. In a forthcoming
paper we will discuss the consequences of the above theorem in this set-up.

Acknowledgements: We would like to thank Jean-Benôıt Bost, Louis Funar and Gregor
Masbaum for helpful conversations.

2. Review of mapping class groups, moduli spaces of pointed curves and braid

groups

2.1. Mapping class groups. In this section we recall the basic definitions and properties of
the mapping class groups. We refer the reader e.g. to [I] or [HL].

2.1.1. Definitions. Let S be a compact oriented surface of genus g without boundary and with
n marked points x1, . . . , xn ∈ S. Associated to the n-pointed surface S are the mapping
class groups Γn

g and Γg,n defined as the groups of isotopy classes of orientation-preserving
diffeomorphisms φ : S → S such that φ(xi) = xi for each i, respectively such that φ(xi) = xi
and the differential dφxi

: Txi
S → Txi

S at the point xi is the identity map for each i.

An alternative definition of the mapping class groups Γn
g and Γg,n can be given in terms of

surfaces with boundary. We consider the surface R obtained from S by removing a small disc
around each marked point xi. The boundary ∂R consists of n circles. Equivalently, the groups
Γn
g and Γg,n coincide with the groups of isotopy classes of orientation-preserving diffeomorphisms
φ : R → R such that φ preserves each boundary component of R, respectively such that φ is
the identity on ∂R.

The mapping class group Γg is defined to be Γ0
g = Γg,0.
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2.1.2. Dehn twists. Given an (unparametrized) oriented, embedded circle γ in R ⊂ S we can
associate to it a diffeomorphism Tγ up to isotopy, i.e., an element Tγ in the mapping class groups
Γn
g and Γg,n, the so-called Dehn twist along the curve γ. It is known that the mapping class

groups Γn
g and Γg,n are generated by a finite number of Dehn twists. We recall the following

exact sequence
1 −→ Zn −→ Γg,n −→ Γn

g −→ 1.

The n generators of the abelian kernel Zn are given by the Dehn twists Tγi , where γi is a loop
going around the boundary circle associated to xi for each i.

2.1.3. The mapping class groups Γ4
0 and Γ0,4. Because of their importance in this paper we recall

the presentation of the mapping class groups Γ4
0 and Γ0,4 by generators and relations. Keeping

the notation of the previous section, we denote by R the 4-holed sphere and by γ1, γ2, γ3, γ4 the
circles in R around the four boundary circles. We denote by γij the circle dividing R into two
parts containing two holes each and such that the two circles γi and γj are in the same part.
It is known (see e.g. [I] section 4) that Γ0,4 is generated by the Dehn twists Tγi for 1 ≤ i ≤ 4
and Tγij for 1 ≤ i, j ≤ 3 and that, given a suitable orientation of the circles γi and γij , there is
a relation (the lantern relation)

Tγ1Tγ2Tγ3Tγ4 = Tγ12Tγ13Tγ23 .

Note that the images of the Dehn twists Tγi under the natural homomorphism

Γ0,4 −→ Γ4
0, Tγ 7→ T γ ,

are trivial. Thus the group Γ4
0 is generated by the three Dehn twists T ij for 1 ≤ i, j ≤ 3 with

the relation T γ12T γ13T γ23 = 1.

For each 4-holed sphere being contained in a closed genus g surface without boundary one
can consider the Dehn twists Tij as elements in the mapping class group Γg.

2.2. Moduli spaces of curves. Let Mg,n denote the moduli space parameterizing n-pointed
smooth projective curves of genus g. The moduli space Mg,n is a (possibly singular) algebraic
variety. It can also be thought as an orbifold (or Deligne-Mumford stack) and one has an
isomorphism

(1) j : π1(Mg,n, x)
∼

−→ Γn
g ,

where π1(Mg,n, x) stands for the orbifold fundamental group ofMg,n. In case the spaceMg,n is a
smooth algebraic variety, the orbifold fundamental group coincides with the usual fundamental
group.

2.3. The isomorphism between π1(M0,4, x) and Γ4
0. The moduli space M0,4 parametrizes

ordered sets of 4 points on the complex projective line P1
C

up to the diagonal action of
PGL(2,C). The double ratio induces an isomorphism with the projective line P1

C
with 3

punctures at 0, 1 and ∞
M0,4

∼
−→ P1

C
\ {0, 1,∞}.

We deduce that the fundamental group of M0,4 is the group with three generators

π1(M0,4, x) = 〈σ1, σ2, σ3 | σ3σ2σ1 = 1〉,

where σ1, σ2 and σ3 are the loops starting at x ∈ P1
C
\ {0, 1,∞} and going once around the

points 0, 1 and∞ with the same orientation. We choose the orientation such that the generators
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σi satisfy the relation σ3σ2σ1 = 1. Clearly π1(M0,4, x) coincides with the fundamental group
π1(Q, x) of the 3-holed sphere Q.

In this particular case the isomorphism j : π1(M0,4, x)
∼

−→ Γ4
0 can be explicitly described as

follows (see e.g. [I] Theorem 2.8.C): we may view the 3-holed sphere Q as the union of the
4-holed sphere R with a disc D glued on the boundary corresponding to the point x4. Given
a loop σ ∈ π1(Q, x) we may find an isotopy {ft : Q → Q}0≤t≤1 such that the map t 7→ ft(x)
coincides with the loop σ, f0 = idQ and f1(D) = D. Then the isotopy class of f1 resticted to
R ⊂ Q determines an element j(σ) = [f1] ∈ Γ4

0. Moreover, with the previous notation, we have
the equalities (see e.g. [I] Lemma 4.1.I)

j(σ1) = T γ23 , j(σ2) = T γ13 , j(σ3) = T γ12 .

Remark 2.1. At this stage we observe that under the isomorphism j the two elements σ−1
1 σ2 ∈

π1(M0,4, x) and T
−1

γ23T γ13 ∈ Γ4
0 coincide. It was shown by G. Masbaum in [Ma] that the latter

element has infinite order in the TQFT-representation of the mapping class group Γg — note
that T−1

γ23
Tγ13 also makes sense in Γg. We will show in Proposition 5.1 that the loop σ−1

1 σ2 has
infinite order in the monodromy representation of the WZW connection.

2.4. Braid groups and configuration spaces. We recall some basic results about braid
groups and configuration spaces. We refer the reader e.g. to [KT] Chapter 1. For our purposes
it will be sufficient to deal with braid groups on 3 braids.

2.4.1. Definitions. The braid group B3 is the group generated by two generators g1 and g2 and
one relation

g1g2g1 = g2g1g2.

The pure braid group is the kernel P3 = ker(B3 → Σ3) of the group homomorphism which
associates to the generator gi the transposition (i, i+1) in the symmetric group Σ3. The braid
groups B3 and P3 can be identified with the fundamental groups

P3 = π1(X3, p3), B3 = π1(X3, p3),

where X3 and X3 are the complex manifolds parametrizing ordered respectively unordered
triples of distinct points in the complex plane

X3 = {(z1, z2, z3) ∈ C3 | zi 6= zj} and X3 = X3/Σ3.

The points p3 and p3 are base points in X3 and X3.

2.4.2. Relation between P3 and π1(M0,4, x). The natural map

M0,4 = P1
C
\ {0, 1,∞} −→ X3, z 7→ (0, 1, z)

induces a group homomorphism at the level of fundamental groups

Ψ : π1(M0,4, x) = 〈σ1, σ2〉 −→ P3 = π1(X3, p3),

with p3 = (0, 1, x). Then Ψ is a monomorphism by [KT] Theorem 1.16. Moreover, the image
of Ψ coincides with the kernel of the natural group homomorphism

im Ψ = ker (P3 = π1(X3, p3) −→ P2 = π1(X2, p2))

induced by the projection onto the first two factors X3 → X2, (z1, z2, z3) 7→ (z1, z2) and
p2 = (0, 1). One computes explicitly (see [KT] section 1.4.2) that

Ψ(σ1) = g2g
2
1g

−1
2 , and Ψ(σ2) = g22.
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For later use we introduce the element

(2) σ = σ−1
1 σ2 ∈ π1(M0,4, x).

3. Conformal blocks and the projective WZW connection

3.1. General set-up. We consider the simple Lie algebra g = sl2. The set of irreducible sl2-
modules, i.e. the set of dominant weights of sl2, is in bijection with the set of positive integers
N. We fix an integer l ≥ 1, called the level, and introduce the set Pl = {λ ∈ N | λ ≤ l}. Given

an integer n ≥ 1, a collection ~λ = (λ1, . . . , λn) ∈ (Pl)
n of dominants weights of sl2 and a family

F = (π : C → B; s1, . . . , sn; ξ1, . . . , ξn)

of n-pointed stable curves of arithmetic genus g parameterized by a base variety B with sections
si : B → C and formal coordinates ξi at the divisor si(B) ⊂ C, one constructs (see [TUY] section
4.1) a locally free sheaf

V†

l,~λ
(F)

over the base variety B, called the sheaf of conformal blocks or the sheaf of vacua. We recall
that V†

l,~λ
(F) is a subsheaf of OB ⊗ H†

~λ
, where H†

~λ
denotes the dual of the tensor product

H~λ = Hλ1
⊗· · ·⊗Hλn of the integrable highest weight representations Hλi

of level l and weight

λi of the affine Lie algebra ŝl2. The formation of the sheaf of conformal blocks commutes with
base change. In particular, we have for any point b ∈ B

V†

l,~λ
(F)⊗OB

Ob
∼= V†

l,~λ
(Fb),

where Fb denotes the data (Cb = π−1(b); s1(b), . . . , sn(b); ξ1|Cb, . . . , ξn|Cb) consisting of a stable
curve Cb with n-marked points s1(b), . . . , sn(b) and formal coordinates ξi|Cb at the points si(b).

We recall that the sheaf of conformal blocks V†

l,~λ
(F) does not depend (up to a canonical

isomorphism) on the formal coordinates ξi (see e.g. [U] Theorem 4.1.7). We therefore omit the
formal coordinates in the notation.

We will denote
~1n = (1, 1, . . . , 1) ∈ (Pl)

n

the collection having all dominants weights equal to 1, i.e., corresponding to the standard
2-dimensional representation of sl2.

3.2. The projective WZW connection. We now outline the definition of the projective
WZW connection on the sheaf V†

l,~λ
(F) over the smooth locus Bs ⊂ B parameterizing smooth

curves and refer to [TUY] or [U] for a detailed account. Let D ⊂ B be the discriminant locus
and let S =

∐n
i=1 si(B) be the union of the images of the n sections. We recall the exact

sequence

0 −→ π∗ΘC/B(∗S) −→ π∗Θ
′
C(∗S)π

θ
−→ ΘB(−log D) −→ 0,

where ΘC/B(∗S) denotes the sheaf of vertical rational vector fields on C with poles only along
the divisor S, and Θ′

C(∗S)π the sheaf of rational vector fields on C with poles only along the
divisor S and with constant horizontal components along the fibers of π. There is an OB-linear
map

p : π∗Θ
′
C(∗S)π −→

n⊕

i=1

OB((ξi))
d

dξi
,
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which associates to a vector field ~l in Θ′
C(∗S)π the n Laurent expansions li

d
dξi

around the divisor

si(B). Abusing notation we also write ~l for its image under p

~l = (l1
d

dξ1
, · · · , ln

d

dξn
) ∈

n⊕

i=1

OB((ξi))
d

dξi
.

We then define for any vector field ~l in Θ′
C(∗S)π the endomorphism D(~l) of OB ⊗H†

~λ
by

D(~l)(f ⊗ u) = θ(~l).f ⊗ u+
n∑

i=1

f ⊗ (T [li].u)

for f a local section of OB and u ∈ H†
~λ
. Here T [li] denotes the action of the energy-momentum

tensor on the i-th component H†
λi
. It is shown in [TUY] that D(~l) preserves V†

l,~λ
(F) and that

D(~l) only depends on the image θ(~l) up to homothety. One therefore obtains a projective

connection ∇ on the sheaf V†

l,~λ
(F) given by

∇θ(~l) = θ(~l) + T [~l].

Remark 3.1. For a family of smooth n-pointed curves of genus 0 the projective WZW con-
nection is actually a connection.

4. Monodromy of the WZW connection for a family of 4-pointed rational

curves

In this section we review the results by Tsuchiya and Kanie [TK] on the monodromy of the
WZW connection for a family of rational curves with 4 marked points. We take B = X3 =
{(z1, z2, z3) ∈ C3 | zi 6= zj} (see section 2.4.1) and consider the universal family

F = (π : C = B ×P1 → B; s1, s2, s3, s∞),

where the section si is given by the natural projection X3 → C on the i-th component followed
by the inclusion C ⊂ P1

C
= C∪{∞} and s∞ is the constant section corresponding to ∞ ∈ P1

C
.

We will denote

(3) Funiv
4 = (π : C = M0,4 ×P1 → M0,4; t0, t1, t, t∞)

the pull-back of the family F under the natural embedding M0,4 → X3 (see section 2.4.2). We

consider for l ≥ 1 and for ~λ = ~14 ∈ (Pl)
4 the sheaf of conformal blocks V†

l,~14
(F). The rank of

this locally free sheaf equals 2 for any l ≥ 1(see e.g. [TK] Theorem 3.3). Moreover V†

l,~14
(F) is

equipped with a flat actual connection ∇ (not only projective) (see section 3.2).

Remark 4.1. It is known [TK] that the differential equations satisfied by the flat sections of

(V†

l,~14
(F),∇) coincide with the Knizhnik-Zamolodchikov equations (see e.g. [EFK]). Moreover,

we will show in a forthcoming paper that the local system (V†

l,~14
(F),∇) also coincides with a

certain Gauss-Manin local system.

We observe that the symmetric group Σ3 acts naturally on the base variety X3. The local sys-
tem (V†

l,~14
(F),∇) is invariant under this Σ3-action and admits a natural Σ3-linearization. Thus

by descent we obtain a local system (V†

l,~14
(F),∇) over X3. Therefore, we obtain a monodromy

representation
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ρ̃l : B3 = π1(X3, p3) −→ GL(V†

l,~14
(F)

p3
) = GL(2,C)

Proposition 4.2 ([TK] Theorem 5.2). We put q = exp( 2iπ
l+2

). There exists a basis B of the

vector space V†

l,~14
(F)

p3
= V†

l,~14
(F)p3 such that

MatB(ρ̃l(g1)) = q−
3

4

(
q 0
0 −1

)
, MatB(ρ̃l(g2)) =

q−
3

4

q + 1

(
−1 t
t q2

)
,

with t =
√
q(1 + q + q2). Note that both matrices have eigenvalues q

1

4 and −q−
3

4 .

Remark 4.3. We would like to mention that the above theorem has been generalized to the
Lie algebra sln in [Ka].

5. Infinite monodromy over M0,4

We denote by ρl the restriction of the monodromy representation ρ̃l to the subgroup π1(M0,4, x)

ρl : π1(M0,4, x) → GL(2,C).

Proposition 5.1. Let σ ∈ π1(M0,4, x) be the element introduced in (2). If the level l 6= 1, 2, 4
and 8, then the element ρl(σ) has infinite order in both PGL(2,C) and GL(2,C)

Proof. Using the explicit form of the monodromy representation ρl given in Proposition 4.2 we
compute the matrix associated to Ψ(σ) = Ψ(σ−1

1 σ2) = g2g
−2
1 g2

MatB(ρ̃l(Ψ(σ))) =
1

(q + 1)2

(
q−2 + t2 t(q2 − q−2)
t(q2 − q−2) t2q−2 + q4

)
.

This matrix has determinant 1 and trace 2 − q − q−1 + q2 + q−2. Hence the matrix has finite
order if and only if there exists a primitive root of unity λ such that

λ+ λ−1 = 2− q − q−1 + q2 + q−2.

In [Ma] it is shown that this can only happen if l = 1, 2, 4 or 8: using the transitive action of
Gal(Q̄/Q) on primitive roots of unity, one gets that for any primitive (l + 2)-th root q̃ there

exists a primitive root λ̃ such that

λ̃+ λ̃−1 = 2− q̃ − q̃−1 + q̃2 + q̃−2.

In particular, we have the inequality |1 − Re(q̃) + Re(q̃2)| ≤ 1 for any primitive (l + 2)-th
root q̃. But for l 6= 1, 2, 4 and 8, one can always find a primitive (l + 2)-th root q̃ such that
Re(q̃2) > Re(q̃) — for the explicit root q̃ see [Ma].

Finally, since ρl(σ) has trivial determinant, its class in PGL(2,C) will also have infinite
order. �

Remark 5.2. The same computation shows that the element ρl(σ1σ
−1
2 ) ∈ GL(2,C) also has

infinite order if l 6= 1, 2, 4 and 8. This implies that the orientation chosen for both loops σ1 and
σ2 around 0 and 1 is irrelevant. On the other hand, it is immediately seen that the elements
ρl(σ1), ρl(σ2) and ρl(σ1σ2) have finite order for any level l.
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Proposition 5.3. In the four cases l = 1, 2, 4 and 8, the image ρl(π1(M0,4, x)) in the projective
linear group PGL(2,C) is finite and isomorphic to the groups given in table

l 1 2 4 8
ρl(π1(M0,4, x)) µ3 µ2 × µ2 A4 A5

Here An denotes the alternating group on n letters.

Proof. We denote by m1, m2 ∈ PGL(2,C) the elements defined by the matrices MatB(ρl(σ1))
and MatB(ρl(σ2)) and denote by ord(mi) their order in the group PGL(2,C). In the first two
cases one immediately checks the relations m1 = m2, ord(m1) = ord(m2) = 3 (for l = 1) and
ord(m1) = ord(m2) = ord(m1m2) = 2 (for l = 2).

In the case l = 4 we recall that the alternating group A4 has the following presentation by
generators and relations

A4 = 〈a, b | a3 = b2 = (ab)3 = 1〉.

Using the formulae of Proposition 4.2 and 5.1 we check that ord(m1) = ord(m2) = 3 and
ord(m−1

1 m2) = 2, so that a = m1 and b = m−1
1 m2 generate the group A4.

In the case l = 8 we recall that the alternating group A5 has the following presentation by
generators and relations

A5 = 〈a, b | a2 = b3 = (ab)5 = 1〉.

Using the formulae of Proposition 4.2 and 5.1 we check that ord(m1) = ord(m2) = 5 and
ord(m−1

1 m2) = 3. Moreover a straightforward computation shows that the element m−1
1 m2m

−1
1

is (up to a scalar) conjugate to the matrix

MatB(ρ̃l(g
−2
1 g22g

−2
1 )) = ∗

(
q−4(1 + t2) t(1 − q−2)
t(1− q−2) t2 + q4

)
,

which has trace zero. Note that t2 = q + q2 + q3 and q−4 = −q. Hence ord(m−1
1 m2m

−1
1 ) =

ord(m1m
−1
2 m1) = 2. Therefore if we put a = m1m

−1
2 m1 and b = m−1

1 m2, we have ab = m1 and
ab2 = m2, so that ord(a) = 2, ord(b) = 3, and ord(ab) = 5, i.e. a, b generate the group A5. �

Corollary 5.4. In the four cases l = 1, 2, 4 and 8, the image ρ̃l(B3) in GL(2,C) is finite.

Proof. First, we observe that the image ρl(π1(M0,4, x)) in GL(2,C) is finite. In fact, by Propo-
sition 5.3 its image in PGL(2,C) is finite and its intersection ρl(π1(M0,4, x)) ∩ C∗Id with
the center of GL(2,C) is also finite. The latter follows from the fact that the determinant

detMatB(ρ̃l(gi)) = −q−
1

2 has finite order in C∗.
Secondly, we recall that P3 is generated by the normal subgroup π1(M0,4, x) and by the

element g21. Since ρ̃l(g
2
1) has finite order and since B3/P3 = Σ3 is finite, we obtain that ρ̃l(B3)

is a finite subgroup. �

6. Infinite monodromy over Mg,n

6.1. Desingularization of families of nodal curves. We introduce the notation R = C[[τ ]],
K = C((τ)) and K the algebraic closure of K. For a variety B defined over C we denote
BR = B × Spec(R) and BK = B × Spec(K).

Proposition 6.1. Let F̃ = (π̃ : C̃ → B; s1, . . . , sn+2) be a family of smooth n + 2 pointed
(not necessarily connected) curves parameterized by a base variety B and let F0 = (π0 : C0 →
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B; s1, . . . , sn) be the n-pointed family of nodal curves obtained from F̃ by identifying the two

points sn+1(b) and sn+2(b) of C̃b = π̃−1(b) for each point b ∈ B. Then there exists a flat family

FR = (πR : CR → BR; s1,R, . . . , sn,R),

such that

(1) the restriction of FR to the special fiber (FR)0 is isomorphic to F0,
(2) the generic fiber FK is a family of smooth n-pointed curves over BK .

Proof. Let b ∈ B. We denote by A = ÔB,b the completion of the local ring OB,b and by
π0 : C0 → Spec(A) the pull-back of the family F0 of nodal curves of genus g to Spec(A). We
introduce the formal deformation space Γ → M of the stable n-pointed nodal curve (C0)b = C
with one node z ∈ C (see [DM] section 1). Then we have the cartesian diagram

C0 −−−→ Γy
y

Spec A
s

−−−→ M,

as well as n sections σi : M → Γ. By [DM] page 82, we have

M = Spec C[[t1, . . . , t3g−3+n]], and ÔΓ,z
∼= C[[t1, . . . , t3g−3+n, u, v]]/(uv − t1),

where t1 = 0 is the equation of the locus of singular curves in M. The classifying map
s : Spec A → Spec C[[t1, . . . , t3g−3+n]] = M sends t1 to 0 ∈ A (since Spec A parameterizes
singular curves) and ti to an element fi ∈ A for i ≥ 2. We extend s to ŝ : Spec A[[τ ]] −→
Spec C[[t1, . . . , t3g−3+n]] by mapping t1 to τ and ti to fi for i ≥ 2. The base change by ŝ then
defines an n-pointed family FR over Spec A[[τ ]] such that F|Spec A((τ)) is smooth.

Hence, we have constructed the n-pointed family FR over Spec A[[τ ]] for any complete local

ring A = ÔB,b, which proves the theorem. �

6.2. The sewing procedure. We will briefly sketch the construction of the sewing homomor-
phism and give some of its properties (for the details see [TUY] or [U]).

We consider two versal families F̃ and FR parameterized by the base varieties B and BR as in
Proposition 6.1. For any dominant weight µ the Virasoro operator L0 induces a decomposition
of the representation space Hµ into a direct sum of eigenspaces Hµ(d) for the eigenvalue d+∆µ

of L0, where ∆µ ∈ Q is the trace anomaly and d ∈ N. We recall that there exists a unique (up
to a scalar) bilinear pairing (.|.) : Hµ × Hµ† → C such that (X(n)u|v) + (u|X(−n)v) = 0 for
any X ∈ sl2, n ∈ Z, u ∈ Hµ, v ∈ Hµ† and (.|.) is zero on Hµ(d)×Hµ†(d′) if d 6= d′. We choose a
basis {v1(d), . . . , vmd

(d)} of Hµ(d) and let {v1(d), . . . , vmd(d)} be its dual basis of Hµ†(d) with
respect to the above bilinear form. Then the element

γd =

md∑

i=1

vi(d)⊗ vi(d) ∈ Hµ(d)⊗Hµ†(d) ⊂ Hµ ⊗Hµ†

does not depend on the basis. Given ψ ∈ V†

l,~λ,µ,µ†
(F̃) we define an element ψ̃ ∈ H†

~λ
⊗ OBR

=

H†
~λ
[[τ ]]⊗OB by the formula

〈ψ̃|φ〉 =

∞∑

d=0

〈ψ|φ⊗ γd〉τ
d, for any φ ∈ H~λ ⊗OB.
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Here 〈.|.〉 denotes the standard pairing between H~λ,µ,µ† and its dual H†
~λ,µ,µ†

. It is shown in

[TUY] that ψ̃ ∈ V†

l,~λ
(FR), hence we obtain for any µ ∈ Pl and any ~λ ∈ (Pl)

n an OBR
-linear map

sµ : V†

l,~λ,µ,µ†
(F̃)⊗OB

OBR
−→ V†

l,~λ
(FR), ψ 7→ ψ̃.

Proposition 6.2. For any µ ∈ Pl and any ~λ ∈ (Pl)
n the sewing map over the generic fiber BK

sµ : V†

l,~λ,µ,µ†
(F̃)⊗OB

OB
K
−→ V†

l,~λ
(FK)

is projectively flat for the WZW connections on both sheaves of conformal blocks.

Proof. By definition of the sewing map sµ it is clear that ∇D(ψ̃) = 0 if ∇D(ψ) = 0 for any local
vector field D coming from B, i.e. independent of τ . Therefore the theorem is a corollary of
the following result proved in [TUY]. �

Theorem 6.3 ([TUY] Theorem 6.2.2). For any section ψ ∈ V†

l,~λ,µ,µ†
(F̃) the multi-valued formal

power series ψ̂ = τ∆µψ̃ satisfies the relation

∇τ d
dτ
(ψ̂) = 0 (mod OBK

ψ̂).

Remark 6.4. We note that the statement given in [TUY] Theorem 6.2.2 says that there exists

a vector field ~l such that (
−τ

d

dτ
+ T [~l]

)
.ψ̂ = 0 (mod OBK

ψ̂),

which is equivalent to the above statement using the property θ(~l) = −τ d
dτ
. This last equality

is actually proved in [TUY] Corollary 6.1.4, but there is a sign error. The correct formula of

[TUY] Corollary 6.1.4 is θ(~l) = −τ d
dτ
, which is obtained by writing the 1-cocycle θ12(u, τ) =

l̃′u,τ |U2
− l̃u,τ |U1

.

Remark 6.5. By making the base change νk = τ , where k is the denominator of the trace anom-

aly ∆µ, we obtain a section ψ̂ ∈ V†

l,~λ
(FR′) with R′ = C[[ν]] satisfying ∇ν d

dν
(ψ̂) = 0 (mod OBK

ψ̂).

Moreover, summing over all dominant weights µ ∈ Pl we obtain a OBR
-linear isomorphism

(the factorization rules, see e.g. [TUY] Theorem 6.2.6 or [U] Theorem 4.4.9)

⊕sµ :
⊕

µ∈Pl

V†

l,~λ,µ,µ†
(F̃)⊗OB

OBR

∼
−→ V†

l,~λ
(FR).

Hence, the fiber over a point b ∈ BK has a direct sum decomposition (as K-vector spaces)

(4)
⊕

µ∈Pl

V†

l,~λ,µ,µ†
(F̃)b ⊗C K

∼
−→ V†

l,~λ
(FK)b.

We denote by D the subgroup of PGL(V†

l,~λ
(FK)b) consisting of projective K-linear maps

preserving the direct sum decomposition (4) and by pµ : D −→ PGL(V†

l,~λ,µ,µ†
(F̃)b ⊗C K) the

projection onto the summand corresponding to µ ∈ Pl.

The next proposition is an immediate consequence of the fact that the maps sµ are projec-
tively flat (Proposition 6.2).
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Proposition 6.6. Let F̃ and FR be two families of curves as in Proposition 6.1. Then for any

µ ∈ Pl and any ~λ ∈ (Pl)
n

(1) the monodromy representation of the sheaf of conformal blocks V†

l,~λ
(FK) over BK takes

values in the subgroup D, i.e.,

ρl,~λ : π1(BK , b) −→ D ⊂ PGL(V†

l,~λ
(FK)b).

(2) we have a commutative diagram

π1(BK , b)
ρ
l,~λ

−−−→ Dy∼=

ypµ

π1(B, b)
ρ
l,~λ,µ,µ†

−−−−→ PGL(V†

l,~λ,µ,µ†
(F̃)b ⊗C K)

6.3. Proof of the Theorem. We will now prove the theorem stated in the introduction. This
theorem will be a corollary of the following more general result (Theorem 6.7) since we know by
[L] assuming g ≥ 3 that there is a projectively flat isomorphism between the two projectivized
vector bundles

PZl
∼

−→ PV†
l,∅

equipped with the Hitchin connection and the WZW connection respectively. Here V†
l,∅ stands

for the sheaf of conformal blocks V†
l,0(F) associated to the family F = (π : C → B; s1) of curves

with one point labeled with the trivial representation λ1 = 0 (propagation of vacua).

Theorem 6.7. Assume that the level l 6= 1, 2, 4, 8. For the following values of g, n and ~λ ∈ (Pl)
n

there exists a family F = (π : C → B; s1, . . . , sn) of smooth connected n-pointed projective curves
of genus g such that the projective monodromy representation ρl,~λ of the WZW connection on
the sheaf of conformal blocks

ρl,~λ : π1(B, b) −→ PGL(V†

l,~λ
(F)b)

has an element of infinite order in its image:

(1) g ≥ 0, n = 2m ≥ 2, g +m ≥ 2 and ~λ = ~12m,

(2) g ≥ 2, n = 1 and ~λ = 0.

Proof. We will prove part (1) of the theorem by induction on the genus g and the number of
points 2m. The first case g = 0, m = 2 is given by Proposition 5.1: we can take B = M0,4 =
P1

C
\ {0, 1,∞} with the universal family Funiv

4 of 4-pointed curves (3). Suppose now that the
theorem holds for curves of genus g = 0 with 2m points. Let F = (π : C → B; s1, . . . , s2m)
be a family of 2m-pointed smooth connected curves of genus 0 having an element of infinite
order in the image of the monodromy representation of V†

l,~12m
(F). Consider the family F̃ given

by the disjoint union F ∪ Funiv
4 , i.e. the family parameterized by B ×M0,4 of 2m+ 4 marked

curves equal to the disjoint union P1 ∪ P1 with 2m marked points s1, . . . , s2m on the first P1

and 4 marked points t0, t1, t∞, t on the second P1. We then consider the family F0 of nodal
reducible curves obtained from F̃ by identifying the two points s2m(b) ∈ P1 and t(b′) ∈ P1

for each (b, b′) ∈ B ×M0,4 as well as a family FR satisfying the conditions of Proposition 6.1.
Then the family FK parameterizes (2m+ 2)-marked smooth connected curves of genus 0 and

by the direct sum decomposition (4) the K-vector space V†

l,~12m+2

(FK)(b,b′) with (b, b′) ∈ B×M0,4
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contains the direct summand V†

l,~12m+2,1,1
(F̃)(b,b′) ⊗C K corresponding to µ = 1 ∈ Pl. Note that

µ† = µ for any dominant weight µ of sl(2). Moreover, by [U] Proposition 3.1.10 we have a
decomposition

V†

l,~12m+2,1,1
(F̃)(b,b′) ∼= V†

l,~12m
(F)b ⊗ V†

l,~14
(Funiv

4 )b′.

By the induction hypothesis V†

l,~12m
(F)b 6= {0}. So the monodromy representation of the confor-

mal block V†

l,~12m
(F)⊗V†

l,~14
(Funiv

4 ) has an element of infinite order in its image (by Proposition

5.1 or by the induction hypothesis). Hence, from Proposition 6.6(2) for µ = 1 we deduce that

the monodromy representation of V†

l,~12m+2

(FK) also has an element of infinite order in its image.

By induction this shows part (1) of the theorem for g = 0 and any m ≥ 2.

In order to complete the proof of part (1) we assume that the theorem holds for curves of
genus g with 2k marked points for any k such that g + k ≥ 2. We take k = m + 1 and let

F̃ = (π̃ : C̃ → B; s1, . . . , s2m+2) be a versal family of 2m + 2-pointed smooth connected curves
of genus g having an element of infinite order in the image of the monodromy representation

of V†

l,~12m+2

(F̃). We now apply Proposition 6.1 to the family F̃ . As before, the direct sum

decomposition (4) the K-vector space V†

l,~12m
(FK)b with b ∈ B contains the direct summand

V†

l,~12m+2

(F̃)b⊗CK corresponding to µ = 1 ∈ Pl. By the induction hypothesis and by Proposition

6.6(2) for µ = 1, we obtain that the monodromy representation of V†

l,~12m
(FK) has an element

of infinite order in its image. This proves the statement for 2m-marked curves of genus g + 1
with (g + 1) +m ≥ 2.

Finally, in order to prove part (2) we shall use the existence of a family F̃ = (π̃ : C̃ →
B; s1, s2, s3) of 3-pointed smooth curves of genus g ≥ 1 having an element of infinite order in

the image of the monodromy representation on the conformal block V†

l,~λ
(F̃) with ~λ = (0, 1, 1).

The existence of such a family is shown by induction exactly as in part (1) starting the induction
with the 5-pointed family

Funiv
5 = (π : C = M0,4 ×P1 → M0,4;−t, t0, t1, t, t∞)

and the sheaf of conformal blocks V†

l,0,~14
(Funiv

5 ). Note that there is a projectively flat isomor-

phism (propagation of vacua, see e.g. [U] Theorem 3.3.1)

V†

l,0,~14
(Funiv

5 )
∼

−→ V†

l,~14
(Funiv

4 ).

We then apply Proposition 6.1 to the 3-pointed family F̃ , which produces a 1-pointed family FK

over BK . By the same argument as in part (1) we show that FK has infinite monodromy. �
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