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An electrical potential U on a bordered real surface X in R 3 with isotropic conductivity function σ > 0 satisfies equation d(σd c U ) X = 0, where d c = i( ∂ -∂), d = ∂ + ∂ are real operators associated with complex (conforme) structure on X induced by Euclidien metric of R 3 . This paper gives exact reconstruction of conductivity function σ on X from Dirichlet-to-Neumann mapping U bX → σd c U bX . This paper extends to the case of the Riemann surfaces the reconstruction schemes of R.Novikov [N2] and of A.Bukhgeim [B], given for the case X ⊂ R 2 . The paper extends and corrects the statements of [HM], where the inverse boundary value problem on the Riemann surfaces was firstly considered.

0. Introduction 0.1. Reduction of inverse boundary value problem on a surface in R 3 to the corresponding problem on affine algebraic Riemann surface in C 3 .

Let X be bordered oriented two-dimensional manifold in R 3 . Manifold X is equiped by complex (conformal) structure induced by Euclidean metric of R 3 . We say that X possesses an isotropic conductivity function σ > 0, if any electric potential u on bX generates electrical potential U on X, solving the Dirichlet problem:

U bX = u and dσd c U X = 0, (0.1)

where d c = i( ∂ -∂), d = ∂ +∂ and the Cauchy-Riemann operator ∂ corresponds to complex (conformal) structure on X. Inverse conductivity problem consists in the reconstruction of σ X from the mapping potential U bX → current j = σd c U bX for solutions of (0.1). This mapping is called Dirichlet-to-Neumann mapping. This problem is the special case of the following more general inverse boundary value problem, going back to I.M.Gelfand [Ge] and A.Calderon [C]: to find potential (2-forme) q on X in the equation dd c ψ = qψ (0.2) from knowledge of Dirichlet-to-Neumann mapping ψ bX → d c ψ bX for solutions of (0.2). Equation (0.2) is called in some context by stationary Schrödinger equation, in other context by monochromatic acoustic equation etc. Equation (0.1) can be reduced to the equation (0.2) with q = dd c √ σ √ σ by the substitution ψ = √ σU .

Let restriction of Euclidean metric of R 3 on X have (in local coordinates) the form

ds 2 = Edx 2 + 2F dxdy + Gdy 2 = Adz 2 + 2Bdzdz + Ādz 2 , where z = x + iy, B = E+G 4 , A = E-G-2iF 4 . Put µ = Ā B+ √ B 2 -|A| 2 .
By classical results (going back to Gauss and Riemann) one can construct holomorphic embedding ϕ : X → C 3 , using some solution of Beltrami equation: ∂ϕ = µ∂ϕ on X. Moreover, embedding ϕ can be chosen in such a way that ϕ(X) belongs to smooth algebraic curve V in C 3 . Using existence of embedding ϕ we can identify further X with ϕ(X).

Reconstruction schemes for the case

X ⊂ R 2 ≃ C.
For the case X = Ω ⊂ R 2 the exact reconstruction scheme for formulated inverse problems was given in [N2], [N3] under some restriction (smallness assumption) for σ or q (see Corollary 2 of [N2]) . For the case of inverse conductivity problem, see (0.1), (0.2), when q = dd c √ σ √ σ , restriction on σ in this scheme was eliminated by A.Nachman [Na] by the reduction to the equivalent question for the first order system studied by R.Beals and R.Coifman [START_REF] Beals | The spectral problem for the Davey-Stewartson and Ishomori hierarchies[END_REF]. Recently A. Bukhgeim [B] has found new original reconstruction scheme for inverse boundary value problem, see (0.2), without smallness assumption on q.

In a particular case, the scheme of [N2] for the inverse conductivity problem consists in the following. Let σ(x) > 0 for x ∈ Ω and σ ∈ C (2) ( Ω). Put σ(x) = 1 for x ∈ R 2 \ Ω.

Let q = dd c √ σ √ σ . From L.Faddeev [F1] result it follows: ∃ compact set E ⊂ C such that for each λ ∈ C\E there exists a unique solution ψ(z, λ) of the equation dd c ψ = qψ = dd c √ σ √ σ ψ, with asymptotics ψ(z, λ)e -λz def = µ(z, λ) = 1 + o(1), z → ∞.

Such solution can be found from the integral equation From [N2] it follows that ∀λ ∈ C\E the function ψ bΩ can be found through Dirichlet-to-Neumann mapping by integral equation ψ(z, λ) bΩ = e λz + ξ∈bΩ e λ(z-ξ) g(zξ, λ)( Φψ(ξ, λ) -Φ0 ψ(ξ, λ)), (0.4)

µ(z, λ) = 1 + i 2 ξ∈Ω g(z -ξ, λ) µ(ξ, λ)dd c √ σ √ σ , ( 0 
where Φψ = ∂ψ bΩ , Φ0 ψ = ∂ψ 0 bΩ , ψ 0 bΩ = ψ bΩ and ∂ ∂ψ 0 Ω = 0. By results of [START_REF] Beals | Multidimensional inverse scattering and nonlinear partial differential equations[END_REF], [GN] and [N2] it follows that ψ(z, λ) satisfies ∂-equation of Bers-Vekua type with respect to λ ∈ C\E: From [START_REF] Beals | The spectral problem for the Davey-Stewartson and Ishomori hierarchies[END_REF] and [Na] it follows that for q = dd c √ σ √ σ , σ > 0, σ ∈ C (2) ( Ω) the exceptional set E = {∅} and function λ → b(λ) belongs to L 2+ε (C) ∩ L 2-ε (C) for some ε > 0. As a consequence function µ = e -λz ψ is a unique solution of the Fredholm integral equation µ(z, λ) + 1 2π

λ ′ ∈C b(λ ′ )e λ′ z-λ ′ z μ(z, λ ′ ) dλ ′ ∧ d λ′ λ ′ -λ = 1. (0.8)
Integral equations (0.4), (0.8) permit, starting from the Dirichlet-to-Neumann mapping, to find firstly the boundary values ψ bΩ , secondly " ∂-scattering data" b(λ) and thirdly function ψ Ω . From equality dd c ψ = dd c √ σ √ σ ψ on X we find finally dd c √ σ √ σ on X. The scheme of the Bukhgeim type [B] can be presented in the following way. Let q = Qdd c |z| 2 , where Q ∈ C (1) ( Ω), but potential Q is not necessary of the conductivity form dd c √ σ √ σ . By variation of Faddeev statement and proof we obtain that ∀ a ∈ C ∃ compact set E ⊂ C such that ∀λ ∈ C\E there exists a unique solution ψ a (z, λ) of the equation dd c ψ = qψ with asymptotics

ψ a (z, λ)e -λ(z-a) 2 = µ a (z, λ) = 1 + o(1), z → ∞.
Such a solution can be found from integral equation (0.3), where kernel g(z, λ) is replaced by kernel g a (z, ζ, λ) = ie λa 2 -λā 2 2π 2 C w = (w 0 : w 1 : w 2 : w 3 ). Let CP 2 ∞ = {w ∈ CP 3 : w 0 = 0}. Then CP 3 \CP 2 ∞ can be considered as the complex affine space with coordinates z k = w k /w 0 , k = 1, 2, 3. By classical result of G. Halphen (see R. Hartshorne [H], ch.IV, § 6) any compact Riemann surface of genus g can be embedded in CP 3 as projective algebraic curve Ṽ , which intersects

CP 2 ∞ transversally in d > g points, where d ≥ 1 if g = 0, d ≥ 3 if g = 1 and d ≥ g + 3 if g ≥ 2. Without loss of generality one can suppose that i) V = Ṽ \CP 2 ∞ is connected affine algebraic curve in C 3 defined by polynomial equations V = {z ∈ C 3 : p 1 (z) = p 2 (z) = p 3 (z) = 0} such that the rang of the matrix [ ∂p 1 ∂z (z), ∂p 2 ∂z (z), ∂p 3 ∂z (z)] ≡ 2 ∀ z ∈ V . ii) Ṽ ∩ CP 2 ∞ = {β 1 , . . . , β d },
where

β l = (0 : β 1 l : β 2 l : β 3 l ), β 2 l β 1 l , β 3 l β 1 l ∈ C 2 , l = 1, 2, . . . , d.
iii) For r 0 > 0 large enough

det ∂p α ∂z 2 ∂p α ∂z 3 ∂p β ∂z 2 ∂p β ∂z 3 = 0 for z ∈ V : |z 1 | ≥ r 0 and α = β.
iv) For |z| large enough: (V ) denotes the space of antiholomorphic (0,1)-forms on V . Let

dz 2 dz 1 V l = γ l + γ 0 l z 2 1 + O 1 z 3 1 , dz 3 dz 1 V l = γl + γ0 l z 2 1 + O 1 z 3 1 , where γ l , γl , γ 0 l , γ0 l = 0, for l = 1, . . . , d, d ≥ 2. Let V 0 = {z ∈ V : |z 1 | ≤ r 0 } and V \V 0 = ∪ d l=1 V l , where {V l } are connected components of V \V 0 . Let us equip V by Euclidean volume form dd c |z| 2 . Let W 1, p(V ) = {F ∈ L ∞ (V ) : ∂F ∈ L p 0,1 (V )}, W 1, p 1,0 (V ) = {f ∈ L ∞ 1,0 (V ) : ∂f ∈ L p 1,1 (V )}, p > 2. Let H 0,1
H p 0,1 (V ) = H 0,1 (V ) ∩ L p 0,1 (V ), 1 < p < 2. Let W 1,p (V ) = {F ∈ L p (V ) : ∂F ∈ L p 0,1 (V )}.
From the Hodge-Riemann decomposition theorem (see [GH], [Ho]) ∀Φ 0 ∈ W 1,p 0,1 ( Ṽ ) we have Φ 0 = ∂( ∂ * GΦ 0 ) + HΦ 0 , where HΦ 0 ∈ H 0,1 ( Ṽ ) and G is the Hodge-Green operator for the Laplacian ∂ ∂ * + ∂ * ∂ on Ṽ with the properties:

G(H 0,1 ( Ṽ )) = 0, ∂G = G ∂, ∂ * G = G ∂ * .
Straight generalization of Proposition 1 from [He] gives explicit operators: V ) we have decomposition of Hodge-Riemann type:

R 1 : L p 0,1 (V ) → L p(V ), R 0 : L p 0,1 (V ) → W 1, p(V ) and H : L p 0,1 (V ) → H p 0,1 (V ), 1 < p < 2, 1 p = 1 p -1 2 , such that ∀Φ ∈ L p 0,1 ( 
Φ = ∂RΦ + HΦ, where R = R 1 + R 0 , R 1 Φ(z) = 1 2πi ξ∈V Φ(ξ) ∧ (dp α ∧ dp β )⌋dξ 1 ∧ dξ 2 ∧ dξ 3 det[ ∂p α (ξ) ∂ξ , ∂p β (ξ) ∂ξ , ξ - z |ξ -z| 2 ], R 0 Φ(z) = ( ∂ * G( ∂R 1 Φ -Φ))(z) -( ∂ * G( ∂R 1 Φ -Φ))(β 1 ), ( ∂R 1 Φ -Φ) ∈ W 1,p 0,1 ( Ṽ )
, G is the Hodge -Green operator for Laplacian ∂ ∂ * for (0, 1)forms on Ṽ ,

(1,1)-form under sign of integral does not depend on the choice of indexes α, β = 1, 2, 3, α = β,

HΦ = g j=1 V Φ ∧ ω j ωj , {ω j } is orthonormal basis of holomorphic (1,0)-forms on Ṽ , i.e. V ω j ∧ ωk = δ jk , j, k = 1, 2, . . . , g.
Note that as a corollary of construction of R we have that lim

z∈V 1 z→∞ RΦ(z) = RΦ(β 1 ) = 0. Remark 1.1. If V = {z ∈ C 2 : P (z) = 0} be algebraic curve in C 2 then formula for operator R 1 is reduced to the following: R 1 Φ(z) = 1 2πi ξ∈V Φ(ξ) dξ 1 ∂P ∂ξ 2 det ∂P ∂ξ (ξ), ξ - z |ξ -z| 2 .
Remark 1.2. Based on [HP] one can construct an explicit formula not only for the main part R 1 of the R-operator, but for the whole operator

R = R 1 + R 0 . Let ϕ ∈ L 1 1,1 (V ) ∩ L ∞ 1,1 (V ), f ∈ W 1, p 1,0 (V ), λ ∈ C, θ ∈ C. Let Rθ ϕ = R((dz 1 + θdz 2 )⌋ϕ)(dz 1 + θdz 2 ), R λ,θ f = e -λ,θ R(e λ,θ f )
, where e λ,θ (z) = e λ(z 1 +θz 2 )-λ(z 1 + θ z2 ) .

By straight generalization of Propositions 2, 3 from [He] the form

f = Rθ ϕ is a solution of ∂f = ϕ on V , function u = R λ,θ f is a solution of (∂ + λ(dz 1 + θdz 2 ))u = f -H λ,θ f, where H λ,θ f def = e -λ,θ H(e λ,θ f ), u ∈ W 1, p(V ), p > 2.
In addition, by straight generalization of Proposition 4 from [He] we have that

∂(∂ + λ(dz 1 + θdz 2 ))u = ϕ + λ(dz 1 + θdz 2 ) ∧ H λ,θ ( Rθ ϕ) on V. Definition 1.1. The kernel g λ,θ (z, ξ), z, ξ ∈ V , λ ∈ C, of integral operator R λ,θ • Rθ is called in [He] the Faddeev type Green function for operator ∂(∂ + λ(dz 1 + θdz 2 )).
Definition 1.2. Let g = genus Ṽ . Let {ω j }, j = 1, . . . , g, be orthonormal basis of holomorphic forms on Ṽ . Let {a 1 , . . . , a g } be different points (or effective divisor) on

V \V 0 . Let ∆ θ (λ) = det ξ∈V Rθ (δ(ξ, a j )) ∧ ωk (ξ)e λ,θ (ξ), j, k = 1, . . . , g,
where δ(ξ, a j )-Dirac (1,1)-form concentrated in {a j }.

Let

E θ = {λ ∈ C : ∆ θ (λ) = 0}.
Definition 1.3. Parameter θ ∈ C will be called generic if θ / ∈ {θ 1 , . . . , θ d }, where θ l = -1/γ l . Divisor {a 1 , . . . , a g } on V \V 0 will be called generic if det ω j dz 1 (a k ) j,k=1,...,g = 0.

Proposition 1.1. Let parameter θ ∈ C and divisor {a 1 , . . . , a g } on V \V 0 be generic, where

V 0 = {z ∈ V : |z 1 | ≤ r 0 }, g ≥ 1.
Then for r 0 large enough we have inequalities:

lim λ→∞ |λ g ∆ θ (λ)| < ∞ and ∀ε > 0 lim λ→∞ |λ g ∆ θ (λ)| ε > 0, where |λ g ∆ θ (λ)| ε = sup {λ ′ :|λ ′ -λ|<ε} |(λ ′ ) g • ∆ θ (λ ′ )|
Besides, the set E θ is a closed nowhere dense subset of C.

Let X be domain containing V 0 and relatively compact on

V . Let σ ∈ C (3) (V ), σ > 0, on V , σ = 1 on V \X.
Let Y be domain containing X and relatively compact on V . Let divisor {a 1 , . . . , a g } on Y \X and parameter θ ∈ C be generic.

Definition 1.4. The functions ψ θ (z, λ) = √ σF θ (z, λ) = µ θ (z, λ)e λ(z 1 +θz 2 ) , z ∈ V , θ ∈ C\{θ 1 , . . . , θ d }, λ ∈ C\E θ
, will be called the Faddeev type functions, associated with σ, θ and {a 1 , . . . , a g } if ψ θ , F θ , µ θ satisfy correspondingly properties:

dσd c F θ = 2 √ σe λ(z 1 +θz 2 ) g j=1 C j,θ (λ)δ(z, a j ), dd c ψ θ = qψ θ + 2e λ(z 1 +θz 2 ) g j=1 C j,θ (λ)δ(z, a j ), ∂(∂ + λ(dz 1 + θdz 2 ))µ θ = i 2 qµ θ + i g j=1 C j,θ (λ)δ(z, a j ), (1.1)
and the normalization condition

lim z∈V 1 z→∞ µ θ (z, λ) = 1, (1.2) where µ θ Y ∈ L p(Y ), µ θ V \Y ∈ L ∞ (V \Y ), p > 2, q = dd c √ σ √ σ , {C j,θ } are some functions of λ ∈ C\E θ .
Theorem 1.1. Under the aforementioned notations and conditions, ∀ generic θ ∈ C, ∀ generic divisor {a 1 , . . . , a g } ⊂ V \X and ∀ λ ∈ C\E θ : |λ| > const(V, {a j }, θ, σ) there exists unique Faddeev type function

ψ θ (z, λ) = √ σF θ (z, λ) = e λ(z 1 +θz 2 ) µ θ (z, λ),
associated with conductivity function σ and divisor {a 1 , . . . , a g }. Moreover: A) function z → ψ θ (z, λ) and parameters {C j,θ (λ)} can be found from the following equations, depending on parameters θ ∈ C, λ ∈ C\E θ ,

ψ θ (z, λ) - i 2 ξ∈X e λ((z 1 -ξ 1 )+θ(z 2 -ξ 2 )) g λ,θ (z, ξ) dd c √ σ √ σ ψ θ (z, λ) = e λ(z 1 +θz 2 ) + i g j=1 C j,θ (λ)g λ,θ (z, a j )e λ(z 1 +θz 2 ) , (1.3) 2 g j=1 C j,θ (λ)e λ,θ (a j ) ωk dz 1 + θdz 2 (a j ) = - z∈V e -λ(z 1 + θ z2 ) dd c √ σ √ σ ψ θ (z, λ) ωk dz 1 + θdz 2 (z),
(1.4)

where k = 1, 2, . . . , g and {ω j } is orthonormal basis of holomorphic forms on Ṽ ; B) functions z → ψ θ (z, λ) and parameters {C j,θ (λ)} satisfy the following properties

for λ ∈ C\E θ : |λ| ≥ const(V, {a j }, θ, σ) ∃ lim z→∞, z∈V l l=1,2,...,d z1 + θz 2 λ e -λ(z 1 + θ z2 ) ∂ψ θ ∂ z1 + θ ∂ψ θ ∂ z2 = lim z→∞ z∈V l ψ θ e -λ(z 1 +θz 2 ) b θ (λ), (1.5) iC j,θ (λ) = (2πi)Res a j e -λ(z 1 +θz 2 ) ∂ψ θ def = 2πi lim ε→0 |z-a j |=ε e -λ(z 1 +θz 2 ) ∂ψ θ , (1.6) ∂ψ θ (z, λ) ∂ λ = b θ (λ)ψ θ (z, λ), (1.7) ∂C j,θ (λ) 
∂ λ e λ(a j,1 +θa j,2 ) = b θ (λ)C j,θ (λ)e λ(ā j,1 + θā j,2 ) .

(1.8)

Besides, λb θ (λ)d = - 1 2πi z∈bX e λ,θ (z) ∂µ(z) + i g j=1 C j,θ e λ,θ (a j ), |λ| • |b θ (λ)| ≤ const(V, {a j }, σ) 1 (|λ| + 1) 1/3 1 |∆ θ (λ)|(1 + |λ|) g , |C j,θ (λ)| ≤ const(V, {a j }, σ) 1 (|λ| + 1) 1/3 1 |∆ θ (λ)|(1 + |λ|) g . (1.9) Remark 1.3. If ln √ σ C (2) (X) ≤ const(V, {a j }, θ) then the condition λ ∈ C\E θ : |λ| ≥ const(V, {a j }, θ, σ) in Theorem 1.1 can be replaced by the condi- tion λ ∈ C\E θ . Dependence of const(V, {a j }, θ, σ) of σ means its dependence only of ln √ σ C (2) (X) .
Definition 1.5. The functions b θ (λ) and {C j,θ } will be called "scattering" data for potential q.

Let Φ(ψ bX ) = ∂ψ bX for all sufficiently regular solutions ψ of (0.2) in X, where

q = dd c √ σ √ σ .
The operator Φ is equivalent to the Dirichlet-to-Neumann operator for (0.1). Let Φ0 denote Φ for q ≡ 0 on X.

Theorem 1.2. Under the conditions of Proposition 1.1 and Theorem 1.1, the following statements are valid:

A) ∀λ ∈ C\E θ : |λ| ≥ const(V, {a j }, θ, σ) the restriction of ψ θ (z, λ) on bX and data {C j,θ (λ)} can be reconstructed from Dirichlet-to-Neumann data as unique solution of the Fredholm integral equation

ψ θ (z, λ)| bX + ξ∈bX e λ[(z 1 -ξ 1 )+θ(z 2 -ξ 2 )] g λ,θ (z, ξ)( Φ -Φ0 )ψ θ (ξ, λ) = (1.10) e λ(z 1 +θz 2 ) + i g j=1 C j,θ (λ)g λ,θ (z, a j )e λ(z 1 +θz 2 ) , where z∈bX (z 1 + θz 2 ) -k (∂ + λ(dz 1 + θdz 2 ))µ θ (z, λ) = - g j=1 (a j,1 + θa j,2 ) -k C j,θ (λ), (1.11) k = 2, . . . , g + 1,
where (without restriction of generality) we suppose that values {a j,1 } of the first coordinates of points {a j } are mutually different; B) Function σ(w), w ∈ X, can be reconstructed from Dirichlet-to-Neumann data

ψ θ bX def = µ θ bX e λ(z 1 +θz 2 ) → ∂ψ θ bX
by explicit formulas, where we assume that ψ θ bX is found using (1.10), (1.11).

For the case V = {z ∈ C 2 : P (z) = 0}, where P is a polynomial of degree N , this formula has the following form. Let {w m } be points of V , where (dz 1 + θdz 2 ) V (w m ) = 0, m = 1, . . . , M . Then for almost all θ values dd c √ σ √ σdd c |z| 2 V (w m ) can be found from the following linear system

τ (1 + o(1)) d k dτ k z∈bX e iτ,θ (z) ∂µ θ (z, iτ ) = M m=1 iπ(1 + |θ| 2 ) 2 dd c √ σ √ σdd c |z| 2 V (w m )× | ∂P ∂z 1 (w)| 3 d k dτ k exp iτ [(w m,1 + θw m,2 ) + ( wm,n + θ wm,2 )] ∂ 2 P ∂z 2 1 ∂P ∂z 2 2 -2 ∂ 2 P ∂z 1 ∂z 2 ∂P ∂z 2 ∂P ∂z 1 + ∂ 2 P ∂z 2 2 ∂P ∂z 1 2 (w m ) ,
(1.12)

where m, k = 1, . . . , M ; M = N (N -1), τ ∈ R, τ → ∞, |τ | g |∆ θ (iτ )| ≥ ε > 0, ε-small enough. Determinant of system (1.12) is proportional to the determinant of Vandermonde. C) If g = 0 and if θ = θ(λ) = λ -2 , then ∀ z ∈ X and ∀λ ∈ C function µ θ (z, λ) = ψ θ (z, λ)e -λ(z 1 +θz 2 is unique solution of Fredholm integral equation µ θ(λ) (z, λ) + 1 2πi ξ∈C b θ(ξ) (ξ)e ξ(z 1 + θ(ξ)z 2 )-ξ(z 1 +θ(ξ)z 2 ) μθ(ξ) (z, ξ) dξ ∧ d ξ ξ -λ = 1, where |b θ(ξ) (ξ)| ≤ const(V ) (1 + |ξ|) 2 ,
and function z → σ(z), z ∈ X, can be found from equality

dd c ψ θ(λ) (z, λ) = dd c √ σ √ σ (z)ψ θ(λ) (z, λ), z ∈ X.
Remark 1.4. Using the Faddeev type Green function constructed in [He], in [START_REF] Henkin | Inverse conductivity problem on Riemann surfaces[END_REF] were obtained natural analogues of the main steps of the reconstruction scheme of [N2] on the Riemann surface V . In particular, under a smallness assumption on ∂ log √ σ the existence (and uniqueness) of the solution µ(z, λ) of the Faddeev type integral equation

µ θ (z, λ) = 1 + i 2 ξ∈V g λ,θ (z, ξ) µ θ (ξ, λ)dd c √ σ √ σ + i g j=1 C j g λ,θ (z, a j ), z ∈ V, λ ∈ C,
holds for any a priori fixed constants C 1 , . . . , C g . However (and this fact was overlooked in [HM]) for λ ∈ C\E there exists unique choise of constants C j (λ, σ) for which the integral equation above is equivalent to the differential equation

∂(∂ + λ(dz 1 + θdz 2 ))µ - i 2 dd c √ σ √ σ µ + i g j=1 C j δ(z, a j ),
where δ(z, a j ) are Dirac measures concentrated in the points a j .

Faddeev type functions on Riemann surfaces. Uniqueness

Let projective algebraic curve Ṽ be embedded in CP 3 and intersect

CP 2 ∞ = {w ∈ CP 3 : w 0 = 0} transversally in d > g points. Let V = Ṽ \CP 2 ∞ , V 0 = {z ∈ V : |z 1 | ≤ r 0 } and properties i)-iv) from § 1 be valid. Proposition 2.1. Let σ be positive function belonging to C (2) (V ) such that σ ≡ const = 1 on V \X ⊂ V \V 0 = ∪ d l=1 V l , where {V l } are connected components of V \ V0 . Put q = dd c √ σ √ σ . Let {a 1 , . . . , a g } be generic divisor with support in Y \ X, X ⊂ Y ⊂ Ȳ ⊂ V . Let for generic θ ∈ C and λ ∈ C : |λ| ≥ const(V, {a j }, θ, σ) function z → µ = µ θ (z, λ) be such that: µ Y ∈ L p(Y ), µ V \Y ∈ L ∞ (V \ Ȳ ), ∂µ Y ∈ L p (Y ), ∂µ V \ Ȳ ∈ L p(V \Y ), 1 ≤ p < 2, p > 2, (2.1) ∂(∂ + λ(dz 1 + θdz 2 )µ = i 2 qµ + i g j=1 C j δ(z, a j ) with some C j = C j,θ (λ) and (2.2) µ θ (z, λ) → 0, z → ∞, z ∈ V 1 . (2.3) Then µ θ (z, λ) ≡ 0, z ∈ V .
Remark 2.1. Proposition 2.1 is a corrected version of Proposition 2.1 of [START_REF] Henkin | Inverse conductivity problem on Riemann surfaces[END_REF]. For the case V = C the equivalent result goes back to [START_REF] Beals | The spectral problem for the Davey-Stewartson and Ishomori hierarchies[END_REF].

Lemma 2.1. Let ψ = √ σF = e λ(z 1 +θz 2 ) µ
, where µ satisfies (2.1), ( 2.2) and

F 1 = √ σ∂F, F 2 = √ σ ∂F.
(2.4)

Then forms F 1 , F 2 satisfy the system of equations

∂F 1 + F 2 ∧ ∂ ln √ σ = ie λ(z 1 +θz 2 ) g j=1 C j δ(z, a j ), ∂F 2 + F 1 ∧ ∂ ln √ σ = -ie λ(z 1 +θz 2 ) g j=1 C j δ(z, a j ).
(2.5)

Proof of Lemma 2.1. From definition of F 1 and F 2 it follows that

dσd c F = i[2σ∂ ∂F -∂σ ∧ ∂F + ∂σ ∧ ∂F ] = 2i √ σ(∂F 2 + F 1 ∧ ∂ ln √ σ) = -2i √ σ( ∂F 1 + F 2 ∧ ∂ ln √ σ).
From (2.4) and (2.2) we deduce also that

d(σd c F ) = √ σ dd c ψ -ψ dd c √ σ √ σ = 2 √ σe λ(z 1 +θz 2 ) g j=1 C j δ(z, a j ).
These equalities imply (2.5). Lemma 2.1 is proved.

Lemma 2.2. Let {b m } be the points of X, where

(dz 1 + θdz 2 ) X (b m ) = 0. Let B 0 = ∪ m {b m } and A 0 = ∪ j {a j }. Let u ± = m 1 ± e -λ,θ (z) m2 , where m 1 = e -λ(z 1 +θz 2 ) f 1 , m 2 = e -λ(z 1 +θz 2 ) f 2 , f 1 = √ σ ∂F ∂z 1 , f 2 = √ σ ∂F ∂ z1 . Let also q 1 = ∂ ln √ σ ∂z 1 and δ 0 (z, a j ) = δ(z,a j ) dz 1 ∧dz 1 . Then in conditions of Lemma 2.1 sup z∈X | ∂u ± X (z) • dist 2 (z, B 0 )| = O sup z∈X |u ± dist(z, B 0 )| < ∞; u ± V \X ∈ L 1 (V \X) ∩ O(V \(X ∪ A 0 )) (2.6)
and system (2.5) is equivalent to the system

∂u ± ∂ z1 dz 1 = ∓(e -λ,θ (z)q 1 ū± )dz 1 + i g j=1 (C j ± Cj e -λ,θ (z))δ 0 (z, a j )dz 1 .
(2.7)

Proof of Lemma 2.2. From (2.1) we deduce the property

u ± Y ∈ L p (Y ), 1 ≤ p < 2, u ± V \Y ∈ L p(V \Y ) ⊕ L ∞ (V \Y ), p > 2.
System (2.5) is equivalent to the system of equations

∂f 1 ∂ z1 = -f 2 q 1 + ie λ(z 1 +θz 2 ) g j=1 C j δ 0 (z, a j ), ∂f 2 ∂z 1 = -f 1 q1 + ie λ(z 1 +θz 2 ) g j=1 C j δ 0 (z, a j ).
This system and definition of m 1 , m 2 imply

∂m 1 ∂ z1 = -q 1 m 2 + i g j=1 C j δ 0 (z, a j ), ∂m 2 ∂z 1 + λm 2 1 + θ ∂z 2 ∂z 1 = -q 1 m 1 + i g j=1 C j δ 0 (z, a j ).
From the last equalities and definition of u ± we deduce

∂u ± ∂ z1 = ∂m 1 ∂ z1 ± e -λ,θ (z) ∂ m2 ∂ z1 + λ 1 + θ ∂ z2 ∂ z1 m2 = -q 1 m 2 + i g j=1 C j δ 0 (z, a j )± e -λ,θ (z) λ 1 + θ ∂ z2 ∂ z1 m2 -λ m2 1 + θ ∂ z2 ∂ z1 -q 1 m1 + i g j=1 Cj δ 0 (z, a j ) = ∓ (e -λ,θ (z)q 1 ū± ) + i g j=1 (C j ± Cj e -λ,θ (z))δ 0 (z, a j ).
Property (2.7) is proved. For proving (2.6) we will use construction coming back to Bers and Vekua (see [Ro], [V]). Let β ± be continuous on Y solutions of ∂equations

∂β ± = ±e -λ,θ (z)q 1 ū± u ± dz 1 ,
where the right-hand side belongs to

L ∞ 0,1 (Y ). Functions v ± = u ± e -β ± belongs to O(Y ). Indeed, from (2.1), (2.2) it follows that µ ∈ W 1,p (Y ) ∩ W 1, p loc (Y \(A 0 ∪ B 0 )).
From this and from definition of v ± we deduce that ∂v z) .

± = q 1 ū± dz 1 e -β ± -q 1 u ± ū± u ± e -β ± dz 1 = 0 on Y \(A 0 ∪ B 0 ) and the following formula for u ± is valid u ± (z) = v ± (z)e β ± (
(2.8)

From this and (2.7), (2.8) we obtain (2.6). Lemma 2.2 is proved.

Lemma 2.3. Let u ± be the functions from Lemma 2.2 and µ be the function from Lemma 2.1. Then

u ± = ∂µ ∂z 1 + λ 1 + θ ∂z 2 ∂z 1 µ -q 1 µ ± e -λ,θ (z) ∂ μ ∂z 1 -q 1 μ .
Proof of Lemma 2.3. We have

u ± = e -λ(z 1 +θz 2 ) f 1 ± e -λ(z 1 +θz 2 ) f2 = e -λ(z 1 +θz 2 ) (f 1 ± f2 ),
where

f 1 = √ σ ∂F ∂z 1 = √ σ ∂ ∂z 1 1 √ σ e λ(z 1 +θz 2 ) µ = e λ(z 1 +θz 2 ) ∂µ ∂z 1 + λ 1 + θ ∂z 2 ∂z 1 µ -q 1 µ , f2 = √ σ ∂ F ∂z 1 = √ σ ∂ ∂z 1 1 √ σ e λ(z 1 + θ z2 ) μ = e λ(z 1 + θ z2 ) ∂ μ ∂z 1 -q 1 μ .
This imply Lemma 2.3.

Lemma 2.4. Let ω 1 , . . . , ω g be orthonormal basis of holomorphic 1-forms on Ṽ . Let {a 1 , . . . , a g } be generic divisor on Y \ X, where V 0 ⊂ X ⊂ Y ⊂ V . Put ω 0 j,k = ω k dz 1 (a j ). Let for some generic θ ∈ C and λ ∈ C functions u ± from Lemmas 2.2-2.3 satisfy (2.6), (2.7) with some C j = C j,θ (λ). Then sup j |C j,θ (λ)| ≤ const(V, {a j }, θ) ln √ σ 2 W 2,∞ (X) (1 + |λ|) -1/3 u ± L ∞ (X,B 0 ) , where u ± L ∞ (X,B 0 ) def = sup z∈X |u ± (z)dist(z, B 0 )|.
Proof of Lemma 2.4. From condition iv) of section 1 we deduce |ω 0 j,k | < ∞. From definition of generic divisor we obtain det[ω 0 j,k ] = 0. From (2.7) and from definition of Dirac measure ∀ k = 1, . . . , g we deduce lim

r→∞ {z∈V : |z 1 |=r} u ± ∧ ω k ± X e -λ,θ (z) ∂ ln √ σ ∂z 1 ū± dz 1 ∧ ω k = i Y g j=1 (C j ± Cj e -λ,θ (z))δ 0 (z, a j )dz 1 ∧ ω k = i g j=1 (C j ± Cj e -λ,θ (a j ))ω 0 j,k , j, k = 1, 2, . . . , g.
(2.9)

From estimates lim

r n →∞ sup {z∈V : |z 1 |=r n } |u ± (z)| < ∞,
for some sequence r n → ∞, and

|ω k | dz 1 ≤ O | 1 z 2 1 | , z ∈ V \Y , k = 1, . . . , g, we obtain lim r→∞ {z∈V : |z 1 |=r} u ± ∧ ω k = 0.
(2.10) From (2.9), (2.10) and Kramers's formula we obtain

i(C j ± Cj e -λ,θ (a j )) = det[ω 0 1,k ; . . . ; ω 0 j-1,k ; X ±e -λ,θ (z) ∂ ln √ σ ∂z 1 ū± dz 1 ∧ ω k ; ω 0 j+1,k ; . . . ; ω 0 g,k ] det[ω 0 j,k ] ,
(2.11)

where j, k = 1, . . . , g.

Let us prove estimate

X e -λ,θ (z) ∂ ln √ σ ∂z 1 ū± dz 1 ∧ ω k ≤ const(X, θ)(1 + |λ|) -1/3 ln √ σ 2 W 2,∞ (X) • u ± L ∞ (X,B 0 ) .
(2.12)

For |λ| ≤ 1 estimate follows directly, using that ln

√ σ ∈ W 1,∞ (X). Let B ε = ∪ M m=1 {z ∈ X : |z -b m | ≤ ε}. Let χ ε,ν , ν = 1, 2, be functions from C (1) (V ) such that χ ε,1 + χ ε,2 ≡ 1 on V , supp χ ε,1 ⊂ B 2ε , supp χ ε,2 ⊂ V \B ε , |dχ ε,ν | = O( 1 ε ), ν = 1, 2. Put J ε ν u ± = X χ ε,ν (z)e -λ,θ (z) ∂ ln √ σ ∂z 1 ū± dz 1 ∧ ω k , ν = 1, 2.
We have directly:

|J ε 1 u ± | ≤ const(X)ε ln √ σ W 1,1 (X) • u ± L ∞ (X,B 0 ) .
(2.13) For J ε 2 u ± we obtain by integration by parts:

J ε 2 u ± = - 1 λ X χ ε,2 ∂e -λ,θ (z) ∂ ln √ σ ∂z 1 ū± dz 1 ∧ ω k dz 1 + θdz 2 = 1 λ X e -λ,θ (z)∂ χ ε,2 ∂ ln √ σ ∂z 1 ū± dz 1 ∧ ω k dz 1 + θdz 2 .
(2.14)

To estimate (2.14) we use (2.6) and the following properties:

|∂χ ε,2 | = O( 1 ε ), supp(∂χ ε,2 ) ⊂ B 2ε , ∂ ln √ σ ∂z 1 dz 1 ∧ ∂χ ε,2 u ± ω k dz 1 + θdz 2 L 1 0,1 (X) ≤ const(X, θ) ε ln √ σ W 1,∞ (X) u ± L ∞ (X,B 0 ) ∂ 2 ln √ σ ∂z 2 1 dz 1 ∧ dz 1 χ ε,2 u ± ω k dz 1 + θdz 2 L 1 1,1 (X) ≤ | ln ε|const(X, θ) ln √ σ W 2,∞ (X) u ± L ∞ (X,B 0 ) ∂ ln √ σ ∂z 1 dz 1 χ ε,2 u ± ∧ ∂ ω k dz 1 + θdz 2 L 1 0,1 (X) ≤ const(X, θ) ε ln √ σ W 1,∞ (X) u ± L ∞ (X,B 0 )
∂ ū± X = ∓(e λ,θ (z)q 1 ū± )dz 1 .

From (2.14), (2.6) and these properties we obtain

|J ε 2 u ± | ≤ | ln ε| const(X, θ) |λ| ln √ σ W 2,∞ (X) • u ± L ∞ (X,B 0 ) + const(X, θ) ε|λ| ln √ σ W 1,∞ (X) • u ± L ∞ (X,B 0 ) + const(X, θ, δ) ε 1+δ |λ| ln √ σ W 1,∞ (X) • u ± L ∞ (X,B 0 ) .
(2.15)

Putting in (2.13), (2.15) ε = 1 √ λ and δ = 1/3 we obtain (2.12) for |λ| ≥ 1. Inequalities (2.11), (2.12) imply estimate

|C j ± Cj e -λ,θ (a j )| ≤ const(X, {a j }, θ)(1 + |λ|) -1/3 ln √ σ 2 W 2,∞ (X) • u ± L ∞ (X,B 0 ) .
We obtained statement of Lemma 2.4.

Lemma 2.5. Let functions u ± satisfy (2.6), (2.7) and R -operator from section 1. Then

R[e -λ,θ q 1 ū± d ξ1 L ∞ (X,B 0 ) ≤ const(X, θ)(1 + |λ|) -1/5 ln √ σ W 2,∞ (X) • u ± L ∞ (X,B 0 ) .
Proof of Lemma 2.5. Let χ ε,ν , ν = 1, 2, be partition of unity from Lemma 2.4. Put S ε ν u ± = R[χ ε,ν q 1 ū± d ξ1 ], ν = 1, 2. Using (2.6) and formula for operator R we deduce estimate

S ε 1 u ± L ∞ (X,B 0 ) = O(ε) ln √ σ W 1,∞ (X) u ± L ∞ (X,B 0 ) . (2.16) Let R 1,0 (ξ, z) be kernel of operator R. It means, in particular, that ∂ξ R 1,0 (ξ, z) = -δ(ξ, z),
where δ(ξ, z)-Dirac (1,1)-measure, concentrated in the point ξ = z. We have

S ε 2 u ± = X χ ε,2 e -λ,θ q 1 ū± d ξ1 R 1,0 (ξ, z).
(2.17)

Integration by parts in (2.17) gives the following

S ε 2 u ± = 1 λ X ∂e -λ,θ (ξ) d ξ1 d ξ1 + θd ξ2 χ ε,2 (ξ)q 1 (ξ)ū ± (ξ)R 1,0 (ξ, z) = - 1 λ X e -λ,θ (ξ) ∂ d ξ1 d ξ1 + θd ξ2 χ ε,2 (ξ)q 1 (ξ)ū ± (ξ) R 1,0 (ξ, z)+ 1 λ e -λ,θ (z) d ξ1 d ξ1 + θd ξ2 (z)χ ε,2 (z)q 1 (z)ū ± (z).
(2.18)

To estimate (2.18) we use (2.6), properties of partition of unity {χ ε,ν } and inequalities

d ξ1 d ξ1 + θd ξ2 (ξ) = O 1 dist(ξ, B 0 ) , ∂ d ξ1 d ξ1 + θd ξ2 (ξ) = O 1 (dist(ξ, B 0 )) 2 , |q 1 (ξ)| = O 1 dist(ξ, B 0 ) , | ∂q 1 (ξ)| = O 1 (dist(ξ, B 0 )) 2 , ξ ∈ X.
(2.19) From (2.19), (2.8) and from the formula for operator R we deduce estimate 

S ε 2 u ± L ∞ (X) = O( 1 ε 4 |λ| ) ln √ σ W 2,∞ (X) u ± L ∞ (X,B 0 ) . ( 2 
u ± (z, λ) = lim z→∞ z∈V 1 (m 1 ± e -λ,θ (z) m2 ) = lim z→∞ z∈V 1 [λ 1 + θ dz 2 dz 1 µ + ∂µ ∂z 1 ± e -λ,θ (z) ∂ μ ∂z 1 ] → 0. (2.21) Let h ± = u ± ± R[(e -λ,θ (z)q 1 ū± )dz 1 -i g j=1 (C j ± Cj e -λ,θ (z))δ 0 (z, a j )dz 1 ], (2.22)
where R is the operator from section 1. By Lemmas 2.2-2.5 and properties of operator R we have 

h ± ∈ O(V ) ∩ L ∞ (V ) and h ± (z, λ) → 0, z → ∞, z ∈ V 1 . By Liouville theorem, h ± (z, λ) ≡ 0 on V , λ ∈ C. Then from (2.22) with h ± (z, λ) ≡ 0 and Lemmas 2.4, 2.5 it follows that u ± (z, λ) ≡ 0, z ∈ V , if λ ∈ C\E θ : |λ| ≥ const(V, {a j }, θ) ln √ σ 2 W 2,∞ (X) . Property u ± (z, λ) ≡ 0, z ∈ V , implies by Lemma 2.3 equality ∂µ ∂ z1 -q1 µ = 0, z ∈ V , where µ(z) → ∞ if z ∈ V 1 , z → ∞.
ψ def = √ σF def = e λ(z 1 +θz 2 ) µ, where ψ = ψ θ (z, λ), F = F θ (z, λ), µ = µ θ (z, λ), (3.1) 
associated with σ and divisor {a 1 , . . . , a g }, i.e.

∂(∂ + λ(dz 1 + θdz 2 ))µ = i 2 qµ + g j=1 C j δ(z, a j ), for some C j = C j,θ (λ), where q = dd c √ σ √ σ , µ Y ∈ L p(Y ), µ V \ Ȳ ∈ L ∞ (V \ Ȳ ), lim z→∞ z∈V 1 µ θ (z, λ) = 1.
(3.1a)

In addition,

µ θ (z, λ) -µ θ (∞ l , λ) L p(V ) ≤ const(V, {a j }, θ, σ, p, ε) |∆ θ (λ)| • (1 + |λ|) g+1-ε , where µ θ (∞ l , λ) def = lim z→∞ z∈V l µ θ (z, λ), l = 1, . . . , d, ∂µ L p 1,0 (Y ) + ∂µ L p 1,0 (V \Y ) ≤ const(V, {a j }, θ, σ, p, p, ε) |∆ θ (λ)| • (1 + |λ|) g-ε , p < 2, p > 2, (3.1b) ∀ generic θ ∈ C and λ ∈ C\E θ : |λ| ≥ const(V, {a j }, θ, σ), ∂µ ∂ λ Y ∈ W 1,p (Y ), ∂µ ∂ λ V l \Y ∈ L ∞ (V l \Y ) ∪ W 1, p(V l \Y ), (3.1c)
where {V l } are connected components of V \V 0 , l = 1, . . . , d, e λ,θ (z) = e λ(z 1 +θz 2 )-λ(z 1 + θ z2 ) .

Remark 3.1. Proposition 3.1 is a corrected version of Proposition 2.2 from [START_REF] Henkin | Inverse conductivity problem on Riemann surfaces[END_REF]. For the case V = C the results of such a type goes back to [F1], [F2].

Lemma 3.1. Under the conditions of Proposition 3.1, ∀λ ∈ C\E θ function z → µ θ (z, λ) belonging to L p(Y ) on Y and to L ∞ (V \Y ) on V \Y satisfies (3.1a) iff there exists C j = C j,θ (λ), j = 1, . . . , g, such that µ θ (z, λ) = 1 + i 2 ξ∈X g λ,θ (z, ξ)qµ θ (ξ, λ) + i g j=1 C j,θ (λ)g λ,θ (z, a j ) (3.2)
and one of two equivalent conditions is valid

H λ,θ Rθ i 2 qµ + i g j=1 C j,θ (λ)H λ,θ ( Rθ (δ(z, a j )) = 0 or (∂ + λ(dz 1 + θdz 2 ))µ θ (z, λ) ∈ H 1,0 (V \(X ∪ g j=1 {a j })) ∩ L 1 1,0 (Y \X), (3.3)
where g λ,θ is Faddeev type Green function, Rθ , H λ,θ -operators defined in section 1.

Proof of Lemma 3.1. From Proposition 4 in [He] and from definition of Green function g λ,θ (z, ξ) we deduce that integral equation (3.2) is equivalent to the following differential equation

∂(∂ + λ(dz 1 + θdz 2 ))µ = i 2 qµ + i g j=1 C j,θ δ(z, a j )+ λ(dz 1 + θdz 2 )) × H λ,θ Rθ i 2 qµ + i g j=1 C j,θ H λ,θ ( Rθ (δ(z, a j )) .
(3.4)

Equation (3.4) is equivalent to (3.1a) if one of two equivalent conditions (3.3) is valid. Lemma 3.1 is proved. Lemma 3.2. Let {a 1 , . . . , a g } be generic divisor in Y \ X. Then for any generic θ ∈ C and ∀λ ∈ C\E θ : |λ| ≥ const(V, {a j }, θ, σ), integral equation (3.2), (3.3) is uniquely solvable Fredholm integral equation in the space W 1, p(V ).
Proof of Lemma 3.2. Let θ ∈ C and λ ∈ C\E θ : |λ| ≥ const(V, {a j }, θ, σ). From (3.2), (3.3) we obtain integral equation for μθ = µ θ -1 and Cj,θ :

μθ (z, λ) - i 2 ξ∈V g λ,θ (z, ξ)q(ξ)μ θ (ξ, λ) -i g j=1 Cj,θ (λ)g λ,θ (z, a j ) = i 2 ξ∈V g λ,θ (z, ξ)q(ξ) + i g j=1 C 0 j,θ (λ)g λ,θ (z, a j ).
(3.5)

Parameters Cj = Cj,θ (λ), j = 1, . . . , g, are defined by the equations:

-i g j=1 Cj V Rθ (δ(ξ, a j ))ω k (ξ)e λ,θ (ξ) = ξ∈V e λ,θ (ξ) Rθ i 2 q μ ωk (ξ), k = 1, 2, . . . , g. (3.6)
We remind that determinant of system (3.6) is exactly ∆ θ (λ). Parameters C 0 j,θ are defined by (3.6) with C 0 j,θ in place of Cj,θ and 1 in place of μ. One can see also that C 0 j,θ (λ) = C j,θ (λ) -Cj,θ (λ). Let us prove that (3.5), (3.6) determine Fredholm integral equation in the space W 1, p(V ), p > 2.

Propositions 2, 3 of [He] imply that correspondance

μ → R λ,θ • ( Rθ i 2 q μ + i g j=1 Cj,θ Rθ (δ(z, a j ))
define linear continuous mapping of W 1, p(V ) into itself. This mapping is compact because 

mapping μ → q μ, supp q ⊂ X, from W 1, p(V ) into L p 1,1 (X) is compact, operator Rθ : L p 1,1 (X) → W 1, p 1,0 (V ) and operator R λ,θ : W 1, p 1,0 (V ) → W 1, p(V )
(z) → 0, z → ∞, z ∈ V 1 . By Proposition 2.1, μ * ≡ 0 if λ ∈ C\E θ : |λ| ≥ const(V, {a j }, θ, σ).
It means that equation (3.2), (3.3) is uniquely solvable Fredholm integral equation for any λ ∈ C\E θ : |λ| ≥ const(V, {a j }, θ, σ).

Lemma 3.2 is proved.

Lemma 3.3. Let {a 1 , . . . , a g } be generic divisor on Y \X. Let λ ∈ C\E θ . Let µ be solution of integral equation (3.2), (3.3). Then relations (3.3) determining parameters C j = C j,θ (λ) are reduced to the following explicit formulas 2i g j=1 C j,θ e λ,θ (a j ) ωk dz 1 (a j ) = z∈X e λ,θ (z) i dd c √ σ √ σ + 2 ∂ ln √ σ ∧ ∂ ln √ σ µ ωk dz 1 (z). (3.7)
Proof of Lemma 3.3. By Lemma 3.1 equations (3.2), (3.3) are equivalent to the equation:

∂(∂ + λ(dz 1 + θdz 2 ))µ = i 2 qµ + i g j=1 C j,θ δ(z, a j ), (3.8) where µ = µ θ (z, λ) → 1, z ∈ V 1 , z → ∞.
System (2.7) implies the following relation lim

R→∞ |z 1 |=R ū± ∧ ωk + i z∈V \X g j=1 ( Cj,θ ∓ C j,θ e λ,θ (z)) δ(z, a j ) dz 1 ωk = ∓ z∈X e λ(z 1 +θz 2 )-λ(z 1 + θ z2 ) q1 u ± dz 1 ∧ ωk , (3.9) 
where q1 = ∂ ln √ σ ∂ z1 . To obtain (3.9) we multiply the both sides of (2.7) by ∧ω k , integrate on V and take conjugation.

From Lemma 2.3 and Lemma 3.2 it follows that

u ± (z) → λ(1 + θγ l ) • lim z→∞ z∈V l µ θ (z, λ), z → ∞, z ∈ V l ,
where γ l = lim

z→∞ z∈V l ∂z 2 ∂z 1 , lim z→∞ z∈V 1 µ θ (z, λ) = 1.
Existence of lim C j e λ,θ (z) δ(z, a j )

dz 1 ∧ ωk = z∈X e λ,θ (z)q 1 (u + + u -)dz 1 ∧ ωk = 2 z∈X e -λ(z 1 + θ z2 ) q1 f 1 dz 1 ∧ ωk , where f 1 = √ σ ∂F ∂z 1 .
By Lemma 2.3 we have

2 z∈X e -λ(z 1 + θ z2 ) q1 f 1 dz 1 ∧ ωk = 2 z∈X e λ,θ (z)q 1 ∂µ ∂z 1 + λµ + λθ ∂z 2 ∂z 1 µ -q 1 µ dz 1 ∧ ωk . (3.11)
From definition of δ(z, a j ) we have 2i g j=1 z∈V \X

C j e λ,θ (z) δ(z, a j )

dz 1 ∧ ωk = -2i g j=1
C j e λ,θ (a j ) ωk dz 1 (a j ).

(3.12)

By integration by part we have

2 z∈X e λ,θ (z)q 1 ∂µ ∂z 1 + λµ dz 1 ∧ ωk = 2 X e λ,θ (z) ∂ ln √ σ ∂ z1 λµdz 1 ∧ ωk - -2 X e λ,θ (z) ∂ ln √ σ ∂ z1 λµ + λθ ∂z 2 ∂z 1 µ dz 1 ∧ ωk -2 X e λ,θ (z) ∂ 2 ln √ σ ∂z 1 ∂ z1 µdz 1 ∧ ωk = -2 X e λ,θ (z) ∂ 2 ln √ σ ∂z 1 ∂ z1 + ∂ ln √ σ ∂ z1 λθ ∂z 2 ∂z 1 µdz 1 ∧ ωk .
(3.13) Using (3.11), (3.12), (3.13) we obtain

i g j=1 C j,θ e λ,θ (a j ) ωk dz 1 (a j ) = z∈X e λ,θ (z) ∂ 2 ln √ σ ∂z 1 ∂ z1 + ∂ ln √ σ ∂ z1 2 µdz 1 ∧ ωk .
Lemma 3.3 is proved.

Proof of Proposition 3.1. a) By Lemmas 3.1-3.3 statement (3.1a) of Proposition is valid, i.e. there exists function z

→ µ θ (z, λ), z ∈ V with property (3.1a) ∀λ ∈ C\E θ : |λ| ≥ const(V, {a j }, θ, σ). b) Put f 0 = Rθ i 2 qµ , f 1 = Rθ i g j=1 C j,θ δ(z, a j ) and f = f 0 + f 1 . By (3.2) we have µ -1 = R λ,θ f = R λ,θ f 0 + R λ,θ f 1 . Put L p, p 0,q (V ) = {u : u Y ∈ L p 0,q (Y ), u V \ Ȳ ∈ L p 0,q (V \Y )}, 1 ≤ p < 2, p > 2, q = 0, 1. By Proposition 3 ii ′ from [He] we obtain µ -µ θ (∞ l , λ) L p(V l \Y ) ≤ const(V, p, θ) • min(|λ| -1/2 , |λ| -1 ) f 0 W 1, p 1,0 (V ) + g j=1 |C j,θ | ∂µ L p, p 1,0 (V ) ≤ const(V, p, θ) f 0 W 1, p 1,0 (V ) + g j=1 |C j,θ | . (3.14)
For proving estimates (3.1b) let us now estimate {C 0 j,θ }. In order to estimate {C 0 j,θ } we must use equations (3.6), where parameters { Cj,θ } are replaced by {C 0 j,θ } and function μ is replaced by 1. For modified equations (3.6) 1) we apply Kramer formula for solution of linear system and integration by parts in all integrals of this system, using e λ,θ (z)(dz 1 + θdz 2 ) = 1 λ ∂e λ,θ (z). In addition, we use: formula (1.2) for ∆ θ (λ), formula ∂ Rθ i 2 qµ = i 2 qµ and estimate of singular integral, containing ∂ ωk dz 1 + θdz 2 . This gives inequality:

j |C 0 j,θ (λ)| ≤ const(V, {a j }, θ, σ) |∆ θ (λ)|(1 + |λ|) g .
ii 

|λ| -ε µ W 1, p(V ) + j | Cj,θ (λ)| ≤ const(V, {a j }, θ, σ, p, ε) |∆ θ (λ)|(1 + |λ|) g and µ -µ(∞ l , •) L p(V l \Y ) ≤ const(V, {a j }, θ, σ, p, ε) |∆ θ (λ)|(1 + |λ|) g+1-ε , where λ ∈ C\E θ : |λ| ≥ const(V, {a j }, θ, σ, ε), l = 1, . . . , d, µ θ (∞ 1 , λ) = 1.
(3.15)

These estimates imply estimates (3.1b). c) Differentiation of equation (3.2) with respect to λ gives equality

∂µ ∂ λ -R λ,θ • Rθ i 2 q ∂µ ∂ λ + i g j=1 ∂C j,θ (λ) ∂ λ δ(z, a j ) = (z 1 + θz 2 )(µ -1) -R λ,θ ( ξ1 + θ ξ2 ) Rθ i 2 qµ + i g j=1
C j,θ δ(z, a j ) .

(3.16) Equality (3.16) can be rewritten in the following form

∂µ ∂ λ = I -R λ,θ • Rθ i 2 q• -1 (z 1 + θz 2 )(µ -1) + R λ,θ • Rθ i g j=1 ∂C j,θ ∂ λ δ(z, a j ) - R λ,θ ( ξ1 + θ ξ2 ) Rθ i 2 qµ + i g j=1 C j,θ (λ)δ(z, a j ) .
(3.17) Using Propositions 2, 3 from [He], estimates from part (b) of this proof we obtain from (3.17)

e λ,θ (z) ∂µ ∂ λ Y ∈ W 1,p (Y ), e λ,θ (z) ∂µ ∂ λ V l ∈ W 1, p(V l \Y ) ∪ L ∞ (V l \Y ). Statement (3.1c) is proved. Proposition 3.1 is proved. 4. Equation ∂µ(z,λ) ∂ λ = b θ (λ)e -λ,θ (z)μ θ (z, λ). Proof of Theorem 1.1B
Proposition 4.1. Let conductivity σ, divisor {a 1 , . . . , a g } and θ satisfy the conditions of Proposition 2.1. Let function ψ θ (z, λ) = e λ(z 1 +θz 2 ) µ θ (z, λ) be the Faddeev type function, associated with σ, θ and divisor {a 1 , . . . , a g }. Then for λ ∈ C\E θ : |λ| ≥ const(V, {a j }, θ, σ) i) the following ∂-equations take place

∂µ θ (z, λ) ∂ λ = b θ (λ)e -λ,θ (z)µ θ (z, λ), if z ∈ V \{a 1 , . . . , a g }, (4.1) ∂C j,θ (λ) ∂ λ = b θ (λ)e -λ,θ (a j )C j,θ (λ), j = 1, . . . , g, where (4.2) ii) function b θ (λ) satisfies equations: b θ (λ) lim z→∞ z∈V l µ θ (z, λ) = lim z→∞ z∈V l z1 + θz 2 λ e λ,θ (z) ∂µ θ (z, λ) ∂(z 1 + θz 2 ) , λb θ (λ)d = - 1 2πi z∈bX e λ,θ (z) ∂µ θ (z, λ) + i g j=1 C j,θ (λ)e λ,θ (a j ), l = 1, . . . , d (4.3)
and the inequality

|λ|(1 + |λ|) g |∆ θ (λ)| • |b θ (λ)| ≤ const(V, {a j }, θ, σ) 1 (|λ| + 1) 1/3 .
(4.4)

Remark 4.1. For the case V = C this statement is obtained in [GN], [N2], [N3]. Proposition 4.1 is a corrected version of Proposition 3.2 of [START_REF] Henkin | Inverse conductivity problem on Riemann surfaces[END_REF].

Lemma 4.1. i) Let function µ = µ θ (z, λ), z ∈ V \Y , λ ∈ C\E θ : |λ| ≥ const(V, {a j }, θ, σ) satisfy equation ∂(∂ + λ(dz 1 + θdz 2 ))µ = 0 on V \Y (4.5)
and the property

[µ -µ θ (∞ l , λ)] V l \Y ∈ W 1, p(V l \ Ȳ ), where p > 2, µ θ (∞ l , λ) def = lim z→∞ z∈V l µ θ (z, λ), l = 1, . . . , d. Then A def = ∂µ ∂(z 1 + θz 2 ) + λµ ∈ O( Ṽ \ Ȳ ) and A V l \Y = λµ(∞ l ) + ∞ k=1 A k,l 1 (z 1 + θz 2 ) k , B def = e λ,θ (z) ∂µ ∂(z 1 + θz 2 ) ∈ O( Ṽ \ Ȳ ) and B V l \Y = ∞ k=1 B k,l 1 (z 1 + θz 2 ) k , l = 1, . . . , d, (4.6)
where O( Ṽ \ Ȳ ) is the space of holomorphic functions on ( Ṽ \ Ȳ ).

ii) Let

M V l = µ θ (∞ l , λ) + ∞ k=1 a k,l (λ) (z 1 + θz 2 ) k and N V l = ∞ k=1 b k,l (λ) (z 1 + θz 2 ) k
be formal series with coefficients determined by relations

λa k,l -(k -1)a k-1,l = A k,l , λb k,l -(k -1)b k-1,l = B k,l , l = 1, . . . , d, k = 1, 2, . . . . Let M ν V l = µ θ (∞ l , λ) + ν k=1 a k,l (z 1 + θz 2 ) k , Nν V l = ν k=1 b k,l (z 1 + θz 2 ) k . (4.7)
Then function µ has the asymptotic decomposition

µ V l = M V l + e -λ,θ (z) N V l , z 1 → ∞, i.e. µ V l = M V l + e -λ,θ (z) Nν V l + O 1 |z 1 | ν+1 . Proof of Lemma 4.1. i) From (4.5) it follows that ∂ ∂(e λ(z 1 +θz 2 ) µ(z, λ)) V \ Ȳ = 0.
Thus ∂(e λ(z 1 +θz 2 ) µ(z, λ)) = e λ(z 1 +θz 2 ) ∂µ is antiholomorphic form on V \ Ȳ and ∂µ + λµ(dz 1 + θdz 2 ) is holomorphic form on V \ Ȳ . From this, condition ∂µ ∈ L p 0,1 (V \ Ȳ ) and the Cauchy theorem it follows that

e λ(z 1 +θz 2 ) ∂µ V l \ Ȳ = e λ(z 1 + θ z2 ) B(dz 1 + θdz 2 ) V l \ Ȳ = e λ(z 1 + θ z2 ) ∞ k=1 B k,l (z 1 + θz 2 ) k (dz 1 + θdz 2 ) V l and (∂µ + λµ(dz 1 + θdz 2 )) V l \ Ȳ = A(dz 1 + θdz 2 ) V l \ Ȳ = λµ(∞ l ) + ∞ k=1 A k,l (z 1 + θz 2 ) k (dz 1 + θdz 2 ) V l \ Ȳ .
It gives (4.6).

ii) From (4.6), (4.7) we obtain, first, that

∂µ V l = e -λ(z 1 +θz 2 ) ∂ e λ(z 1 + θ z2 ) Nν V l + O 1 |z 1 | ν+1 then µ V l = M ν V l + e -λ,θ (z) Nν V l + Õ 1 |z 1 | ν . (4.8)
Comparison of the last equality for different indexes ν and ν + 1 implies that Õ 1

|z 1 | ν = O 1 |z 1 | ν+1 .
It gives statement of Lemma 4.1.

Lemma 4.2. i) Functions M ν and N ν (congugated to Nν ) from decomposition (4.8) have the following properties:

∀ z ∈ Ṽ \Y ∃ lim ν→∞ ∂M ν ∂(z 1 + θz 2 ) + λM ν def = ∂M ∂(z 1 + θz 2 ) + λM and ∃ lim ν→∞ ∂N ν ∂(z 1 + θz 2 ) + λN ν def = ∂N ∂(z 1 + θz 2 ) + λN. ii) Functions ∂M ∂(z 1 +θz 2 ) + λM and ∂N ∂(z 1 +θz 2 ) + λN belongs to O( Ṽ \Y ) and ∂µ ∂(z 1 + θz 2 ) = e -λ,θ (z) ∂ N ∂(z 1 + θz 2 ) + λ N , ∂µ ∂(z 1 + θz 2 ) + λµ = ∂M ∂(z 1 + θz 2 ) + λM, (4.9) ∂N ∂(z 1 + θz 2 ) + λN → 0, z 1 → ∞. (4.10)
Proof of Lemma 4.2.

Part i) and equalities (4.9), (4.10) from part ii) follow directly from (4.8). Properties (4.8), (4.9), (4.10), property ∂µ ∈ L p, p 0,1 (Proposition 3.1b) and extension property of bounded holomorphic functions through isolated singularities imply that

∂M ∂(z 1 + θz 2 ) + λM and ∂N ∂(z 1 + θz 2 ) + λN belongs to O( Ṽ \Y ). Lemma 4.2 is proved. Lemma 4.3. Let ψ θ (z, λ) = e λ(z 1 +θz 2 ) µ θ (z, λ) be the Faddeev type function on V , associated with potential q = dd c √ σ √ σ and divisor {a 1 , . . . , a g } on Y \ X. Then ∀λ ∈ C\E θ : |λ| ≥ const(V, {a j }, θ, σ) e λ,θ (z) ∂µ ∂(z 1 + θz 2 ) V l \ Ȳ = ∞ k=1 B k,l (z 1 + θz 2 ) -k , where B 1,l = - 1 2πi × {z∈V l : |z 1 |=r 1 } e λ,θ (z) ∂µ ∂(z 1 + θz 2 ) (dz 1 + θdz 2 ) ∀ r 1 : Y ⊂ {z ∈ V : |z 1 | < r 1 }.
(4.11)

Proof of Lemma 4.3.

Estimate of ∂µ from (3.1b) and the Cauchy theorem, applied to antiholomorphic function e λ,θ (z) ∂µ

∂(z 1 + θ z2 ) V l \ Ȳ implies (4.11).
Proof of Proposition 4.1. Since ψ, µ are Faddeev type functions, we have the equations

∂(∂ + λ(dz 1 + θdz 2 ))µ = i 2 qµ + i ∞ j=1 C j,θ (λ)δ(z, a j ), dd c ψ = qψ + 2 g j=1
e λ(z 1 +θz 2 ) C j,θ (λ)δ(z, a j ).

Put ψλ = ∂ψ ∂ λ and µλ = ∂µ ∂ λ . We obtain

dd c ψλ = qψλ + 2 g j=1 e λ(z 1 +θz 2 ) ∂C j,θ ∂ λ (λ)δ(z, a j ).
From Lemma 4.1 we deduce

∂µ ∂(z 1 + θz 2 ) V l \ Ȳ = e -λ,θ (z) B 1,l (λ) z1 + θz 2 + O 1 |z 1 | 2 , and ∂µ ∂(z 1 + θz 2 ) + λµ V l \ Ȳ = λµ(∞ l ) + A 1,l (λ) z 1 + θz 2 + O 1 |z 1 | 2 .
(4.12) From (4.6), (4.7), (4.8) we deduce

µ V l \ Ȳ = µ θ (∞ l , λ) + a l (λ) z 1 + θz 2 + e -λ,θ (z) b l (λ) z1 + θz 2 + O 1 |z 1 | 2 , z 1 → ∞, (4.13)
where λb l (λ) . . . , d. (4.14) From (4.13) and (3.1c) we obtain for l = 1, . . . , d

def = λb 1,l (λ) = B 1,l , λa l (λ) def = λa 1,l (λ) = A 1,l , l = 1,
ψ V l \Y = e λ(z 1 +θz 2 ) µ = e λ(z 1 +θz 2 ) µ θ (∞ l , λ) + a l (λ) z 1 + θz 2 + e λ(z 1 + θ z2 )-λ(z 1 +θz 2 ) b l (λ) z1 + θz 2 + O 1 |z 1 | 2 , ψλ V l \Y = ∂ψ ∂ λ V l \Y = e λ(z 1 + θ z2 ) (z 1 + θz 2 ) b l (λ) + e λ,θ (z) ∂µ θ (∞ l ,λ) ∂ λ z1 + θz 2 + O 1 |z 1 | = e λ(z 1 + θ z2 ) b l (λ) + e λ,θ (z) ∂µ θ (∞ l , λ) ∂ λ + O 1 |z 1 | .
For function µλ = e -λ(z 1 +θz 2 ) ψλ we obtain

∂(∂ + λ(dz 1 + θdz 2 ))µλ = i 2 qµλ + i g j=1 ∂C j,θ ∂ λ δ(z, a j ) and µλ = e -λ,θ (z) b l (λ) + e λ,θ (z) ∂µ θ (∞ l , λ) ∂ λ + O 1 |z 1 | , z ∈ V l .
For z 1 large enough function e -λ,θ (z)μλ

def = ϕ(z, λ) satisfies equation ∂(∂ + λ(dz 1 + θdz 2 ))ϕ = 0. From this, Lemma 4.1 and property lim z→∞ |ϕ(z, λ)| V < ∞ we deduce that ϕ V l (z, λ) → const l (λ) def = ϕ(∞ l , λ), if z ∈ V l , z → ∞, l = 1, . . . , d.
So in the relations above we have e λ,θ (z)µλ(∞ l , λ) ≡ 0, l = 1, . . . , d. Functions e -λ,θ (z)μλ and µ both satisfy equation ∂(∂ + λ(dz

1 + θdz 2 ))µ = i 2 qµ on V \{a 1 , . . . , a g }. Besides µ V l (z, λ) → µ(∞ l , λ) and e λ,θ (z)µλ(z, λ) → b l (λ), if z ∈ V l , z → ∞. Applying Proposition 2.1 we obtain e λ,θ (z)µλ = b l (λ)μ θ (z, λ)(µ θ (∞ l , λ)) -1 , l = 1, . . . , d.
This implies equalities (4.1), (4.2), where Let X be domain containing V 0 and relativement compact in V with smooth (of classe

b θ (λ) = b l (λ) µ θ (∞ l , λ) , l = 1, . . . , d. ( 4 
C (2) ) boundry. Let σ ∈ C (2) (V ), σ > 0 on V , σ = 1 on V \X. Let q = dd c √ σ √ σ . Let u ∈ C(bX) and ũ ∈ W 1, p(X ), p > 2, be solution of the Dirichlet problem dσd c ũ X = 0, ũ bX = u, where d c = i( ∂ -∂), d = ∂ + ∂. Let ψ = √ σũ and ψ = √ σu.
Then

dd c ψ = dd c √ σ √ σ ψ = q ψ on X, ψ bX = ψ.
(5.1) Let ψ 0 be solution of Dirichlet problem

dd c ψ 0 X = 0, ψ 0 bX = ψ bX . Let Φψ = ∂ ψ bX and Φ0 ψ = ∂ ψ0 bX . (5.2) 
Operator ψ bX → ∂ ψ bX is equivalent to the Dirichlet-to-Neumann operator u bX → σd c ũ bX .

Proposition 5.1. Let ψ = e λ(z 1 +θz 2 ) µ be the Faddeev type function associated with potential q = dd c √ σ √ σ (see Definition 1.4), generic divisor {a 1 , . . . , a g } with support in V \ X and generic θ ∈ C. Then ∀λ ∈ C\E θ : |λ| ≥ const(V, {a j }θ, σ) the restriction ψ bX of ψ on bX can be found from Dirichlet-to-Neumann operator ψ bX → σd c ψ bX through the uniquely solvable Fredholm integral equation

µ θ (z, λ) bX + ξ∈bX g λ,θ (z, ζ)m -λ ( Φ -Φ0 )m λ µ θ (ζ, λ) = 1 + i g j=1 C j,θ (λ)g λ,θ (z, a j ), (5.3) i g j=1 (a j,1 + θa j,2 ) -k C j,θ (λ) + z∈bX (z 1 + θz 2 ) -k (∂ + λ(dz 1 + θdz 2 ))µ = 0, k = 2, . . . , g + 1, where g λ,θ (z, ξ)-kernel of operator R λ,θ • Rθ , m -λ ( Φ -Φ0 )m λ µ θ (ζ, λ) = w∈bX e -λ(ζ 1 +θζ 2 ) (Φ(ζ, w) -Φ 0 (ζ, w))e λ(w 1 +θw 2 ) µ θ (w, λ), (5.4) Φ(ζ, w), Φ 0 (ζ, w
) are kernels of operators Φ and Φ0 , m ±λ denote the multiplication operators by e ±λ(z 1 +θz 2 ) , values {a j,1 } of the first coordinate of points {a j } are supposed to be mutually different.

This proposition for the case V = C is equivalent to the second part of Theorem 1 from [N2].

Lemma 5.1. Let ψ = e λ(z 1 +θz 2 ) µ be Faddeev type function of Proposition 5.1. Then ∀ z ∈ V \X and ∀λ ∈ C\E θ : |λ| ≥ const(V, {a j }, θ, σ) we have equalities

µ θ (z, λ) = 1 - ξ∈bX g λ,θ (z, ξ) ∂µ θ (ξ, λ) - ξ∈bX µ θ (z, ξ)e λ(ξ 1 +θξ 2 ) ∂ e -λ(ξ 1 +θξ 2 ) g λ,θ (z, ξ) + i g j=1 C j,θ (λ)g j,θ (z, a j ) (5.5) and - ξ∈bX (z 1 + θz 2 ) -k (∂ + λ(dz 1 + θdz 2 ))µ = g j=1 (a j,1 + θa j,2 ) -k iC j,θ (λ), k = 2, . . . (5.6) Proof of Lemma 5.1. The equation ∂(∂ + λ(dz 1 + θdz 2 ))µ = i 2 qµ + i g j=1 C j,θ (λ)δ(z, a j ), (5.7) 
where supp q ⊆ X implies that (1,0)-form f = (∂ + λ(dz 1 + θdz 2 ))µ is holomorphic on (V \(X ∪ g j=1 {a j }) and Res a j (∂ + λ(dz 1 + θdz 2 ))µ = iC j 2πi . This and the property (4.12) imply that ∀λ ∈ C\E θ and ∀ k ≥ 2 form (z 1 + θz 2 ) -k f is holomorphic in the neighborhood of ( Ṽ \V ). By residue theorem applied to the form (z 1 + θz 2 ) -k f on Ṽ \X, we obtain

z∈bX (z 1 +θz 2 ) -k f (z, λ) = -2πi g j=1 Res a j (z 1 +θz 2 ) -k f (z, λ) = -(a j,1 +θa j,2 ) -k (iC j,θ (λ)), k = 2, 3, . . . . Equality (5.6) is proved.
Let us prove now (5.5). Differential equation (5.7), where and (5.8)

µ Y ∈ L p(Y ), µ V \ Ȳ ∈ L ∞ (V \ Ȳ ), µ(z) → 1, z → ∞, z ∈ V 1 , is equivalent by Lemma 3.1 to the system of equations µ(z, λ) = 1 + R λ,θ • Rθ i 2 qµ + i g j=1 C j δ(z, a j ) , z ∈ V,
∂(∂ + λ(dz 1 + θdz 2 ))µ = 0, z ∈ V \(X ∪ g j=1 {a j }).
(5.9)

These equations imply relations (5.6). Besides, we have equality

X g λ,θ (z, ξ) i 2 q(ξ)µ(ξ) = X g λ,θ (z, ξ) ∂(∂ + λ(dz 1 + θdz 2 ))µ.
Using Green-Riemann formula we obtain

X e λ((z 1 -ξ 1 )+θ(z 2 -ξ 2 )) g λ,θ (z, ξ)∂ ∂ψ = X ψ∂ ∂ e λ((z 1 -ξ 1 )+θ(z 2 -ξ 2 )) g λ,θ (z, ξ) + bX e λ((z 1 -ξ 1 )+θ(z 2 -ξ 2 )) g λ,θ (z, ξ) ∂ψ + bX ψ∂ e λ((z 1 -ξ 1 )+θ(z 2 -ξ 2 )) g λ,θ (z, ξ) .
For z ∈ V \X we have

∂ ∂ e λ((z 1 -ξ 1 )+θ(z 2 -ξ 2 )) g λ,θ (z, ξ) = 0.
Then

- ξ∈X g λ,θ (z, ξ) i 2 qµ = ξ∈bX g λ,θ ∂µ + ξ∈bX e λ(ξ 1 +θξ 2 ) µ∂ e -λ(ξ 1 +θξ 2 ) g λ,θ (z, ξ) .
(5.10) From (5.8), (5.10) we deduce statement (5.5) of Lemma 5.1.

Proof of Proposition 5.1. Let ψ 0 : ∂∂ψ 0 X = 0 and ψ 0 bX = ψ. By Green-Riemann formula ∀ z ∈ V \X we have ξ∈bX ψ∂ e λ((z 1 -ξ 1 )+θ(z 2 -ξ 2 )) g λ,θ (z, ξ) + ξ∈bX e λ((z 1 -ξ 1 )+θ(z 2 -ξ 2 )) g λ,θ (z, ξ) ∂ψ 0 = 0. (5.11) Formulas (5.11) and (5.5), (5.6) imply

ψ(z, λ) = e λ(z 1 +θz 2 ) - bX e λ((z 1 -ξ 1 )+θ(z 2 -ξ 2 )) g λ,θ (z, ξ)( ∂ψ(ξ) -∂ψ 0 (ξ))+ i g j=1 e λ(z 1 +θz 2 ) C j g λ,θ (z, a j ).
(5.12) Formula (5.12), (5.6) are equivalent to (5.3). Integral equation (5.3) is the Fredholm equation in C(bX), because operator ( Φ -Φ0 ) is compact operator in C(bX). Existence ∀λ ∈ C\E θ of unique Faddeev type function ψ = e λ(z 1 +θz 2 ) µ, associated with q and divisor {a 1 , . . . , a g } imply existence of solution of (5.3) with residue data iC j = Res a j (∂ + λ(dz 1 + θdz 2 ))µ, j = 1, . . . , g. Let us prove uniqueness of solution (5.3) in C(bX) with residue data {C j }. Suppose µ ∈ C(bX) solves (5.3), (5.6). Consider this µ as Dirichlet data for equation ∂(∂ + λ(dz 1 + θdz 2 ))µ = i 2 qµ on X, solution of which well defines µ on X.

Let us also define µ on V \ X by (5.5). Function µ(z, λ) defined in such a way on V belongs to C(V \ ∪ g j=1 {a j }).

Let us show that µ satisfy (5.7). By Sohotsky-Plemelj jump formula ∀ z * ∈ bX we have

i 2 µ(z * ) = lim z→z * z∈X bX g λ,θ ∂µ + µe λ(ξ 1 +θξ 2 ) ∂ e -λ(ξ 1 +θξ 2 ) g λ,θ - -lim z→z * z∈V \X bX g λ,θ ∂µ + µe λ(ξ 1 +θξ 2 ) ∂ e -λ(ξ 1 +θξ 2 ) g λ,θ .
(5.13) From (5.5) and (5.13) we deduce equality

µ - i 2 µ = 1 - ξ∈bX g λ,θ ∂µ - ξ∈bX µe λ(ξ 1 +θξ 2 ) ∂ e -λ(ξ 1 +θξ 2 ) g λ,θ + i g j=1 C j g λ,θ (z, a j ), z ∈ X.
(5.14) By Green-Riemann formula we have also

- bX g λ,θ ∂µ -µe λ(ξ 1 +θξ 2 ) ∂ e -λ(ξ 1 +θξ 2 ) g λ,θ + i g j=1 C j,θ g λ,θ (z, a j ) = - X µ( ∂(∂ + λ(dz 1 + θdz 2 )g λ,θ ) + X g λ,θ ∂(∂ + λ(dz 1 + θdz 2 ))µ + i g j=1 C j,θ g λ,θ (z, a j ) =        µ 2i + X g λ,θ ∂(∂ + λ(dz 1 + θdz 2 ))µ + i g j=1 C j,θ g λ,θ (z, a j ), z ∈ X, X g λ,θ ∂(∂ + λ(dz 1 + θdz 2 ))µ + i g j=1
C j,θ g λ,θ (z, a j ), z ∈ V \(X ∪ g j=1 {a j }).

(5.15) Equalities (5.5), (5.6), (5.14) and (5.15) imply (3.3) and

µ(z) = 1 + V g λ,θ ∂(∂ + λ(dz 1 + θdz 2 ))µ + i g j=1 C j,θ g λ,θ (z, a j ) = 1 + R λ,θ • Rθ i 2 qµ + i g j=1 C j,θ δ(z, a j ) , z ∈ V.
By Lemma 3.1 function µ θ (z, λ) is the Faddeev type function associated with q and divisor {a 1 , . . . , a g }. The uniqueness of solution of (5.3) in C(bX) with residue data {C j,θ } follows now from uniqueness of the Faddeev type function.

6. Reconstruction of conductivity function from Dirichlet-to-Neumann data. Proof of Theorem 1.2B

We will obtain here exact formulas for reconstruction of conductivity function σ ∈ C (3) (V ), σ > 0, σ ≡ 1 on V \X, from Dirichlet-to-Neumann data

ψ θ bX → ∂ψ θ bX for Faddeev type functions ψ θ (z, λ) = e λ(z 1 +θz 2 ) µ θ (z, λ), θ ∈ C\{θ 1 , θ d }, λ ∈ C\E θ : |λ| ≥ const(V, {a j }, θ, σ), {a 1 , . . . , a g } ⊂ Y \X.
For simplicity of presentation we consider in detail the case of regular algebraic curves in C 2 ⊂ CP 2 , only.

Let Ṽ = {z = (z 0 : z1 : z2 ) ∈ CP 2 : P (z) = 0}, where P (z) homogeneous polynomial of degre N . Let CP 1 ∞ = {z : CP 2 : z0 = 0}. Put

C 2 = {z ∈ CP 2 : z0 = 0}, z 1 = z1 z0 , z 2 = z2 z0 , P (z) = P (1, z 1 , z 2 ), V = {z ∈ C 2 : P (z) = 0} = Ṽ ∩ C 2 . (6.1)
Without restriction of generality we suppose that Ṽ be (regular) curve of degree N ≥ 2 with property:

Ṽ ∩ CP 1 ∞ = {β 1 , . . . , β d }, where β 1 , . . . , β d be different points of CP 1 ∞ , β l = (0 : β 1 l : β 2 l ), β 2 l β 1 l ∈ C, l = 1, . . . , N, ∂P ∂z 2 (z) = 0, if z ∈ V : |z 1 | ≥ r 0 = const(V ). (6.2)
For θ ∈ C let {w m } be points of V , where (dz 1 + θdz 2 ) V (w m ) = 0. Then for almost all θ ∈ C the following relations are valid

θ = ∂P ∂z 2 (w m ) ∂P ∂z 1 (w m ), ∂P ∂z 1 (w m ) = 0, ∂ 2 P ∂z 2 1 ∂P ∂z 2 2 -2 ∂ 2 P ∂z 1 ∂z 2 ∂P ∂z 2 ∂P ∂z 1 + ∂ 2 P ∂z 2 2 ∂P ∂z 1 2 (w m ) = 0.
Without restriction of generality it is sufficient to give proof under condition that θ = 0, i.e. for points w m = (w m,1 , w m,2 ) ∈ V such that

∂P ∂z 1 (w m ) = 0, ∂P ∂z 2 (w m ) = 0, ∂ 2 P ∂z 2 2 (w m ) = 0 (6.3)
and also such that ∀ m the line {z ∈ C 2 : z 1 = w m,1 } has tangency with X only in the single point w m , m = 1, . . . , M . By Hurwitz-Riemann formula M = N (N -1). In the neighborhood of point w m ∈ V curve V can be represented in the form

V = {(z 1 , z 2 ) ∈ C 2 : z 1 = w m,1 + ∂P ∂z 1 (w m ) -1 - 1 2 ∂ 2 P ∂z 2 2 (w m )(z 2 -w m,2 ) 2 + O((z 2 -w m,2 ) 3 ) . (6.4)
The reconstruction formula for dd c √ σ √ σ (w m ), m = 1, . . . , M , will be obtained here by the stationary phase method, using formula (4.17).

Let µ be Faddeev type function (3.1) with properties (3.1a)-(3.1c) and with θ = 0. Below in this section we will write R0 , R λ,0 , e λ,0 , µ 0 , ψ 0 , ∆ 0 , E 0 , C j,0 as R, R λ , e λ , µ, ψ, ∆, E, C j .

Let

f 0 = F 0 dz 1 = i 2 R(qµ), f 1 = F 1 dz 1 = i g j=1 C j (λ) R(δ(•, a j )),
where µ = µ(z, λ), z ∈ V , λ ∈ C\E : |λ| ≥ const(V, {a j }, σ).

Lemma 6.1. For u 0 = R λ f 0 the following estimate holds:

u 0 (•, λ) - F 0 (•, λ) λ L 9/4 (X) ≤ const(V, p) |λ| 7/5 f 0 (•, λ) W 2, p 1,0 (V ) .
Proof of Lemma 6.1. By Lemma 2.1 and Proposition 2 from [He] we have (V ). Using equality ∂ z e λ (z) = λe λ (z)dz 1 and integration by parts formula u 0 = R λ f 0 = e -λ (z)R(e λ f 0 ) can be transformed into the following

f 0 ∈ W 2, p 1,0 (V ), F 0 ∈ W 1,p
u 0 (z) = e -λ (z)R 1 (e λ f 0 ) + e -λ (z)R 0 (e λ f 0 ) = - e -λ (z) 2πi 1 λ V e λ (ξ)∂F 0 ∧ dξ 1 det ∂ P ∂ ξ (ξ), ξ -z ∂ P ∂ ξ2 (ξ) • |ξ -z| 2 - - e -λ (z) 2πi 1 λ V e λ (ξ)F 0 ∂ det ∂ P ∂ ξ (ξ), ξ -z ∧ d ξ1 ∂ P ∂ ξ2 (ξ) • |ξ -z| 2
+ e -λ (z)R 0 (e λ f 0 ), (6.5)

where R 1 , R 0 operators defined in section 1 (see remark 1.1). From (6.5), using Corollary 1.2 from [He], we deduce

λu 0 -F 0 = -e -λ (z)R 1 (e λ (ξ)∂F 0 ) -e -λ (z)R 0 (e λ (ξ)∂F 0 ) def = J 1 (z) + J 0 (z). (6.6)
We will estimate further only term J 1 (z). Estimate for J 0 (z) is similar.

For J 1 (z) we have J 1 (z) = J + 1 (z) + J - 1 (z), where

J ± 1 (z) = e -λ (z) 2πi V e λ (ξ)χ ± ρ (ξ)∂F 0 (ξ) ∧ dξ 2 det ∂ P ∂ ξ (ξ), ξ -z ∂ P ∂ ξ1 (ξ) • |ξ -z| 2 , χ ± ρ be smooth functions such that χ + ρ + χ - ρ ≡ 1, χ + ρ = 1, if dξ 1 dξ 2 ≤ ρ, supp χ + ρ ⊂ {ξ : dξ 1 dξ 2 ≤ 2ρ} and |dχ ± ρ | = O( 1 ρ ).
(6.7)

Let B 0 = {z ∈ V : dξ 1 V (z) = 0}. Property ∂F 0 = dz 1 ⌋ i 2 qµ implies estimate ∂F 0 = O 1 dist(z,B 0 ) dz 2 .
From this, formula for J + 1 (z) and Lemma 3.1 of [He] we obtain estimate for J + 1 : J + 1 L 9/4 (X) = O(ρ 2/3 ) f 0 W 2, p 1,0 (V ) . (6.8) In order to estimate J - 1 (z) we integrate by parts in the formula for J - 1 , using ∂ z e λ (z) = λe λ (z)dz 1 . Then inequalities V ) . (6.9)

| ∂F 0 (z)| = O 1 dist(z, B 0 ) , | ∂∂F 0 (z)| = O 1 dist(z, B 0 ) 2 , z ∈ X\B 0 and inequality ρ≤|ξ 2 |≤1 dξ 2 ∧ d ξ2 |ξ 2 | 2 ( ξ2 -z2 ) + ρ≤|ξ 2 |≤1 dξ 2 ∧ d ξ2 |ξ 2 |( ξ2 -z2 ) 2 = O( 1 ρ ) imply estimate J - 1 L ∞ (X) = O( 1 |λ|ρ ) f 0 W 2, p 1,0 ( 
From (6.6), (6.8), (6.9) with ρ = |λ| -3/5 we obtain statement of Lemma 6.1.

Lemma 6.2. Let q ∈ C (1) 1,1 (V ), supp q ⊆ X, f 0 = i 2 R(qµ), u 0 = R λ f 0 . Then the following asymptotic estimate is valid X e λ (z)q(z)u 0 (z) = o( 1 |λ| ), for λ ∈ C : |λ| ≥ const(V, {a j }, σ), |∆(λ)(1 + |λ|) g | ≥ δ > 0,
for some sufficient small δ.

Proof of Lemma 6.2. From Lemma 6.1, using estimate of µ from (3.1b), we obtain asymptotic relation in the space L p(V ), 2 < p < 9/4:

u 0 (z, λ) = F 0 (z, λ) λ + O( 1 |λ| 7/5 ) = dz 1 ⌋ i 2 R(q) λ + O( 1 |λ| 7/5 ) if |∆ θ (λ)(1 + |λ|) g | ≥ δ > 0. Putting this relation into X e λ (z)q(z)u 0 (z), we obtain X e λ (z)q(z)u 0 (z) = i 2λ X e λ (z)q(z)(dz 1 ⌋ R(q)) + O( 1 |λ| 7/5 ). By Riemann-Lebesgue type theorem X e λ (z)q(z)(dz 1 ⌋ R(q)) = o(1) if λ → ∞, |∆(λ)|(1 + |λ|) g ≥ δ > 0.
This implies the statement of Lemma 6.2. Lemma 6.3. Let q ∈ C (1) 1,1 (V ), supp q ⊂ X. Let w 1 , . . . , w M be the points, where dz 1 V (w m ) = 0. Then the following consequence of stationary phase method is valid:

V e iτ (z 1 +z 1 ) q(z) = m (1 + o(1)) M m=1 - π r ∂P ∂z 1 (w m ) Q 2 (w m ) ∂ 2 P ∂z 2 2 (w m )
e iτ (w m,1 + wm,1 ) , (6.10)

where Q 2 (w m ) = q 2idz 2 ∧dz 2 (w m ). Proof of Lemma 6.3 (see [Fe], Th.2.1).

Lemma 6.4. Let q = dd c √ σ √ σ ∈ C (1) 1,1 (X), supp q ⊂ X, f 1 = i g j=1 C j (λ) R(δ(•, a j )), u 1 = R λ f 1 . Then the following asymptotic estimate is valid X e λ (z)q(z)u 1 (z) = O( 1 |λ| 3/2-ε ), for λ ∈ C : |λ| ≥ const(V, {a j }, σ, ε), |∆(λ)(1 + |λ|) g | ≥ δ > 0,
δ for some sufficiently small δ.

Proof of Lemma 6.4. Using that {a 1 , . . . , a g } be generic divisor, from estimate (3.7) (Lemma 3.3) we obtain inequality sup j,λ

|C j (λ)| ≤ const(V, {a j }) sup k X e λ (z) i dd c √ σ √ σ + 2 ∂ ln √ σ ∧ ∂ ln √ σ µ ωk dz 1 (z) .
Let ε > 0 be small enough and

B ε = {z ∈ X : dz 1 dz 2 < ε}. Then ωk (z) dz 1 X = O M m=1 1 |z 2 -w m,k | , z ∈ X.
Let χ ± ρ ∈ C (1) (X) be functions with properties (6.7). Using that σ ∈ C (3) (X), µ ∈ W 1, p(X ), ∂ z e λ (z) = λe λ (z)dz 1 by integration by parts we obtain

X χ - ρ (z)e λ (z) i dd c √ σ √ σ + 2 ∂ ln √ σ ∧ ∂ ln √ σ µ(z, λ) ωk dz 1 (z) ≤ const(V, σ) ρλ .
We have also directly

X χ + ρ (z)e λ (z) i dd c √ σ √ σ + 2 ∂ ln √ σ ∧ ∂ ln √ σ µ(z, λ) ωk dz 1 (z) ≤ const(V, σ)ρ.
These estimates with ρ = 1 √ |λ| and estimates for Faddeev type Green function

|R λ • R(δ(•, a j )| = O( 1 |λ| 1-ε ) from Theorem 4 of [He]
imply statement of Lemma 6.4. Proposition 6.1. Under conditions (6.1)-( 6

.4), for λ = iτ : τ ∈ R, |τ g ∆(iτ )| ≥ δ > 0, δ-small enough, the following formula is valid z∈bX e iτ (z) ∂z µ(z, iτ ) = z∈X e iτ (z) qµ 2i = 1 + o(1) τ M m=1 πi 2 dd c √ σ √ σdd c |z| 2 V (w m )e iτ (w m,1 + wm,1 ) ∂ 2 P ∂z 2 2 (w m ) -1 ∂P ∂z 1 (w m ).
(6.11)

Proof of Proposition 6.1 and Theorem 1.2B. From Lemma 3.1 we have equality

µ = 1 + R λ • R i 2 qµ + R λ • R i g j=1
C j δ(z, a j ) = 1 + u 0 + u 1 . (6.12)

Let δ > 0 be small enough. Estimates of Lemmas 6.2, 6.4 and (6.12) give asymptotic equality

µ = 1 + o 1 λ (6.13) under conditions λ ∈ C : |λ| ≥ const(V, {a j }, σ), |∆(λ)(1 + |λ|) g | ≥ δ > 0. By Proposition 1.1, ∀ε > 0 we have inequality lim λ→∞ |λ g ∆(λ)| ε = δ(ε) > 0, where |λ g ∆(λ)| ε = sup {λ ′ : |λ ′ -λ|≤ε} |λ ′ ∆(λ ′ |.
So for any ε > 0 and any positive δ < δ(ε) there exists r such that the set {λ ∈

C : |∆(λ)(1 + |λ|) g | ≥ δ > 0} intersects any disque {λ ′ : |λ -λ ′ | < ε}, with |λ| ≥ r.
This property, Lemma 6.3 and property (6.13) imply Proposition 6.1. Theorem 1.2B follows from Proposition 1. Indeed, stationary phase method permits differentiation of (6.11) with respect to τ , keeping (in our case) terms of order 1 τ . Differentiation of the right-hand side of (6.11) gives for θ = 0 the right-hand side of (1.12).

Theorem 1.2B is proved.

Remark 6.1. To obtain version of Proposition 6.1 with arbitrary generic θ from Proposition 6.1 with θ = 0 it is sufficient to change coordinate system: z1 = z 1 + θz 2 , z2 = z 2 . Remark 6.2. Proposition 6.1 can be reformulated also as formula for reconstruction of conductivity function from scattering data b θ (iτ ) and C j,θ (iτ ). Indeed,by formula (4.16), we have bX e iτ,θ (z) ∂µ(z, iτ ) = -2π τ b θ (iτ )d + g j=1 C j,τ (iτ )e iτ,θ (a j ), where d is defined in section 1.

Proof of Proposition 1.1

For simplicity of presentation we give proof only for the case when V is algebraic curve in C 2 . Proposition 1.1 will be obtained here as a corollary of the following statement.

Proposition 7.1. Let θ ∈ C\{θ 1 , . . . , θ N }, δ = δ(θ) = inf l |θ -θ l |, V 0 = {z ∈ V : |z 1 | ≤ r 0 (δ)}, r 0 (δ) = const(V ) √ δ
. Let {b m } be the points of V , where (dz 1 +θdz 2 ) V (b m ) = 0, m = 1, . . . , M , and {a 1 , . . . , a g } be the points of generic divisor in V \ V0 . Then ∀ j, k = 1, . . . , g and for λ = iτ , where τ ∈ R, large enough, such that |∆ θ (iτ )| ≥ δ > 0, the following asymptotic equality is valid Lemma 7.2 Let r 0 (δ), δ = δ(θ) be as in Lemma 7.1. Let χ A ε , χ B ε be smooth functions with properties

V Rθ (δ(ξ, a j )) ∧ ωk (ξ)e λ,θ (ξ) = - 1 λ e λ,θ (a j ) ωk d ξ1 + θd ξ2 (a j )- - π |λ| M m=1 exp [λ(b m,1 + θb m,2 ) -λ( bm,1 + θb m,2 )]K j,k (b m , a j ) + O 1 |λ| 2 ,
χ A ε A ε = 1, χ A ε V \A 2ε = 0, |dχ A ε | = O( 1 ε ), χ B ε B ε = 1, χ B ε V \B 2ε = 0, |dχ B ε | = O( 1 ε ).
Then for any ε > 0 small enough we have B 2ε ∩ A 2ε = {∅} and ∀ j, k = 1, . . . , g

∆ j,k θ,ε (λ) def = ξ∈V (1 -χ A ε -χ B ε ) R(δ(ξ, a j )) ∧ ωk (ξ)e λ,θ (ξ) = O 1 λ 2 .
Proof of Lemma 7.2. By Lemma 7.1, any point b m , where (dz 1 + θdz 2 ) V (b m ) = 0 belongs to {z ∈ V : |z 1 | ≤ r 0 }. Under the conditions of Lemma 7.2, any a j from {a 1 , . . . , a g } belongs to {z ∈ V : |z 1 | > r 0 (δ)}, δ = δ(θ).

Then B 2ε ∩ A 2ε = {∅} if is small enough. From definition of ∆ j,k θ,ε and equality ∂ Rθ (δ(ε, a j )) V \{a j } = 0 we obtain Property (dξ 1 + θdξ 2 ) V \B ε = 0 permits to integrate other terms of the right-hand side of (7.2) by parts once more and to obtain statement of Lemma 7.2. Lemma 7.3 For any k, j ∈ {1, . . . , g}, θ / ∈ {θ 1 , . . . , θ d } and any ε > 0 we have the asymptotic equality V χ A ε,j Rθ (δ(ξ, a j )) ∧ ωk (ξ)e λ,θ (ξ) = -1 λ e λ,θ (a j ) ωk d ξ1 + θd ξ2 (a j ) + 1 λ 2 .

∆ j,k θ,ε (λ) = 1 λ V (1 -χ A ε -χ B ε ) Rθ (δ(ξ, a j )) ∧ ωk d ξ1 + θd ξ2 ∂e λ,θ (ξ) = - 1 λ V (1 -χ A ε -χ B ε ) Rθ (δ(
Proof of Lemma 7.3. Integration by parts of the left-hand side, equality ∂ R(δ(ξ, a j )) = δ(ξ, a j ) and inequality (dξ 1 + θdξ 2 ) A ε,j = 0 imply statement of Lemma 7.3. Proof of Lemma 7.4. This statement is consequence of the classical result of the stationary phase method [Fe], applied to the left-hand side, taking into account the following equality for e λ,θ (z) in the neighborhood of the stationary points b m ∈ V , m = 1, . . . , M , .

We use here z 2 , z2 as coordinates of integration. Lemma 7.4 is proved.

Proof of Proposition 7.1. Proposition 7.1 follows from Lemmas 7.2-7.4.

In the proof of Proposition 1.1 we will apply also the following statement about exponential polynomials discovered by L.Ehrenpreis [E] and reinforced by C.Berenstein and M.Dostal [BD].

Proposition 7.2. ( [E], [BD]) Let Q(ξ) be an exponential polynomial The both inequalities of Proposition 1.1 follow from (7.3)-(7.5).

Q(ξ) =

  w z+ wz) dw ∧ d w w( wiλ) is called the Faddeev-Green function for the operator µ → ∂(∂ + λdz)µ.

  , λ)e -λz = µ(z, λ) → 1, λ → ∞, ∀ z ∈ C. (0.7)

  are bounded. If for fixed λ ∈ E θ Fredholm equation (3.5), (3.6) is not solvable then corresponding homogeneous equation, when the right-hand side of (3.5) is replaced by zero, admits nontrivial solution μ * = µ * -1. By Lemma 3.1 function μ * satisfies differential equation (2.2) with C j replaced by Cj and with property μ *

  ) The equation (3.5) together with obtained inequality for |C 0 j,θ (λ)|, estimate of Faddeev type Green function |g λ,θ (z, ξ)| = O 1 |λ| 1-ε are used to obtain estimate (3.15) for | Cj,θ (λ)| and |µ θ (λ)|:

  .15) Asymptotic formula (4.3) follows from (4.11), (4.14) and (4.15). These formulas and Cauchy-Green formula imply also the following important expression for b θ (λθ (z) ∂µ = X 1 2i e λ,θ (z)qµ. (4.17) Equality (4.3) follows from (4.16). This equality together with estimate of {C j } from Lemma 2.4 and estimate through integration by parts of X e λ,θ qµ imply (4.4). Proposition 4.1 is proved. 5. Reconstruction of function ψ θ bX from Dirichlet-to-Neumann data on bX. Proof of Theorem 1.2A

=

  where K j,k (b m , a j ) =| ∂P ∂z 1 (b m )| 3 Rθ (δ(b m , a j )) ∧ ωk (b m )(1 + |θ| 2 ) Lemma 7.1. Let V \V 0 = ∪ g l=1V l be a curve with properties i)-iv) of section 1. Then ∀θ = θ 1 , . . . , θ d any point w, where (dz1 + θdz 2 ) V (w) = 0, belongs to V 0 = {z ∈ V : |z 1 | ≤ r 0 (δ)}, where r 0 (δ) = const(V )/ √ δ, δ = min l |θθ l |.Proof of Lemma 7.1. For any point w ∈ V \V 0 , where (dz 1 +θdz 2 ) V (w) = 0, definition θ l = -1 γ l , l = 1, . . . , d, and property iii) of Section 1 imply for some l = l(w) equality 0 = (dz 1 + θdz 2 ) V (w) = 1 + θ γ l + θ l . This equality together with inequality |θ -θ l | ≥ δ implies inequality |w 1 | ≤ const(V ) √ δ = r 0 (δ). Lemma 7.1 is proved. Let further A ε,j = {z ∈ V : |za j | ≤ ε}, A ε = ∪ g j=1 A ε,j , B ε,m = {z ∈ V : |zb m | ≤ ε}, B ε = ∪ M m=1 B ε,m .

1 ,

 1 ξ, a j )) ∧ ∂ ωk d ξ1 + θd ξ2 e λ,θ (ξA ε + χ B ε ) Rθ (δ(ξ, a j )) ∧ ωk | Rθ (δ(ξ, a j ))| = O(|dξ 1 |) and |ω k | = O d ξ1 ξ2 ξ 1 → ∞,and property inf l |θθ l | > 0 we obtain vanishing of the last term of the right-hand side of (7.2).

Lemma 7. 4

 4 Under the conditions of Lemmas 7.1, 7.2, ∀δ > 0, θ : infl |θθ l | > δ, ∀ j, k = 1, . . . , g, V χ B ε Rθ (δ(ξ, a j )) ∧ ωk (ξ)e iτ,θ (ξ) = -π |λ| M m=1 exp[λ(b m,1 + θb m,2 ) -λ( bm,1 + θb m,2 )]K j,k (b m , a j ) + O 1 |λ| 2 ,where θ = θ(b m ), m = 1, . . . , M , and K j,k (b m , a j ) are defined by (7.1).

  e λ,θ (z) = exp[λ(b m,1 + θb m,2 ) -λ( bm,1 + θb m,2 )] × exp[λA(z 2b m,2 ) 2 -λ Ā(z 2 -bm,2 ) 2 ∂ 2 P ∂z 1 ∂z 2 θ + ∂ 2 P ∂z 2 2 (b m )(z 2b m,2 ) 2 (1 + O(z 2b m,2 )) 2 ∂P ∂z 1 (b m )

  ξ)e <α k ,ξ> , where {q k } are polynomials of ξ = (ξ 1 , . . . , ξn ) ∈ C n , α k = {α k,1 , . . . , α k,n } ∈ C n , k = 1, . . . , N . Let h(ξ) = max k Re < α k , ξ >. Then ∀ε > 0 ∃ constant C = C(ε, Q) > 0 such that |Q(ξ)| ε def = sup {ξ ′ ∈C: |ξ ′ -ξ|<ε} |Q(ξ ′ )| ≥ 1 C e h(ξ) .The final part of the proof of Proposition 1.1 consists of the following. Proposition 7.1 and definition of ∆ θ (λ) imply asymptotic equality|λ| g ∆ θ (λ) = detb m,1 + θb m,2 ) -λ( bm,1 + θb m,2 )]K j,k (b m , a j ) + O 1 |λ| , (7.3)where j, k = 1, . . . , g.The determinant of the right-hand side of (7.3) is an exponential polynomial Q(λ, λ) of the formQ(λ, λ) = N k=1 q k (λ, λ)e λα k -λ ᾱk ,(7.4)where λ ∈ C, α k ∈ C, k = 1, . . . , N . Coefficient q k (λ, λ) of exponential polynomial Q(λ, λ) and complex frequences {α k } depend on V , {a j }, θ, {b m }. Applying Proposition 7.2 to the exponential polynomial (7.4) we obtain uniformly for λ ∈ C estimate |Q(λ, λ)

  The Liouville type theorem for generalized holomorphic functions ([Ro], theorem 7.1) implies µ ≡ 0. Proposition 2.1 is proved. 3. Faddeev type functions on Riemann surface. Existence. Proof of Theorem 1.1A Proposition 3.1. Let conductivity σ and divisor {a 1 , . . . , a g } satisfy conditions of Proposition 2.1. Then ∀ generic θ ∈ C and ∀λ ∈ C\E θ : |λ| ≥ const(V, {a j }, θ, σ) there exists unique Faddeev type function