
HAL Id: hal-00465672
https://hal.science/hal-00465672

Submitted on 4 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Self-Stabilizing Communication Primitive
Colette Johnen, Ivan Lavallee, Christian Lavault

To cite this version:
Colette Johnen, Ivan Lavallee, Christian Lavault. A Self-Stabilizing Communication Primitive. In-
ternational Conference on Principles of Distributed Systems (OPODIS), 1998, France. pp.15-23.
�hal-00465672�

https://hal.science/hal-00465672
https://hal.archives-ouvertes.fr

A Self-Stabilizing Communication Primitive(Extended Abstract)C. Johnen � I. Lavall�ee y C. Lavault z �� LRI-CNRS Universit�e Paris-Sud.y LRIA-Paradis, Universit�e Paris 8.z LIPN, CNRS UPRES-A 7030, Universit�e Paris-Nord.AbstractThe goal of the paper is to provide designers of distributed self- stabilizing protocols with a fair andreliable communication primitive which allows any process which writes a value in its own registers tomake sure that every neighbour eventually does read that value. We assume a link-register communi-cation model under read/write atomicity, where every process can read from but cannot write into itsneighbours' registers. The primitive runs a self-stabilizing protocol which implements a \rendezvous"communication mechanism in the link-register asynchronous model. This protocol works in arbitrarynetworks and also solves the problem of how to simulate reliable self-stabilizing message-passing inasynchronous distributed systems.Keywords: Self-stabilization, communication primitive, read/write atomicity, rendezvous1 IntroductionA self-stabilizing system which is started from an arbitrary initial con�guration, regains itsconsistency and demonstrates legal behaviour by itself, without any outside intervention. Con-sequently, a self-stabilizing system needs not be initiated to any con�guration, and can recoverfrom transient faults. More precisely, it can recover from memory corruptions and copes withprocessors or channels crashes and recoverings (i.e., dynamic networks). In this paper (seealso [6]), we present a fair and reliable self-stabilizing communication primitive. It allows anyprocess which writes a value in its own register(s) to make sure that every neighbour shallread that latter value, whatever the initial scheduling of processes' actions. Our communi-cation primitive runs a self-stabilizing protocol on dynamic connected networks of arbitrarytopology. Communication among neighbouring processes is carried out by the use of commu-nication registers (called registers throughout the paper). The atomic operations that these�Corresponding author: Christian Lavault LIPN, CNRS UPRES-A 7030, Universit�e Paris-Nord, Av. J.-B.Cl�ement 93430 Villetaneuse, France. Email: lavault@lipn.ura1507.univ-paris13.fr1

registers support are read and write. This protocol implements various self-stabilizing variantsof the rendezvous communication mechanism (as de�ned in [5]) and also allows simulation ofself-stabilizing reliable message-passing in the link-register asynchronous model of distributedsystems. Incidentally, it also maintains a weak scheduling of the communications betweenprocesses in arbitrary networks. Such a general primitive may prove useful as a basic commu-nication tool for designing distributed self-stabilizing protocols.Although distinct from the one described in [3], our model relies on close requirements andassumptions, especially in terms of communication (e.g., link registers, read/write atomicity,etc.). Several related communication problems in various self-stabilization settings (in thelink-register or the message-passing model) have been addressed in the recent literature. Aself-stabilizing communication protocol for two-way handshake is presented in [4], and a self-stabilizing version of the alternating-bit protocol is given in [1]. Though it is much closer,the problem addressed in [2] appears to meet less requirements than the solution given in thepresent paper, since the primitive does not ensure starvation-freeness. In [1], a process canprevent a neighbour from communicating new data, whereas our primitive is starvation-free.In that sense, our assumptions are safer and the problems considered are not equivalent.Section 2 describes our model and gives the basic connected assumptions. In Section 3, wepresent the general principle of our solution for a two processes system. The generalization ton processes in arbitrary networks and the corresponding self-stabilizing protocol is presented inSection 4. Section 5 is devoted to the proof of liveness and correctness of the protocol. Finally,the paper ends with few concluding remarks.2 Model and RequirementsWe model distributed self-stabilizing systems as a set of (possibly in�nite) state machinescalled processes. Each process can communicate with some subset of the processes called itsneighbours. We assume a link-register communication model under read/write atomicity [3].Each link between any two neighbours A and B is composed of two pairs of registers1, denoted(WriteAB; ReadAB) (belonging to A) and (WriteBA; ReadBA) (belonging to B), respectively.Process A can read from the two registers of B, WriteBA and ReadBA, but cannot write intothem. Similarly, process A can write in its own registers,WriteAB and ReadAB, to communicatewith B.An atomic step is the \largest" step which is guaranteed to be executed uninterruptedly. Aprocess uses read/write atomicity if each atomic step contains either a single read operation ora single write operation but not both. The system behaviour is modelled by the interleavingmodel in which processes are activated by a scheduler. The scheduler is regarded as a fairadversary: in a self-stabilizing system, all possible fair executions are required to converge toa correct behaviour. A fair scheduler shall eventually activate any process which may contin-uously perform an action. A common scheduler activates either processes one by one (centraldemon) or subsets of processes (distributed demon). Under read/write atomicity, both central1In our model, the registers are physical (hardware) devices. Reading from or writing in one register is anatomic action according to the the design of the microprocessor.2

and distributed schedulers/demons are \equivalent", in the sense that any execution performedunder a distributed scheduler may be simulated by a central one. In terms of communica-tion, executions remain independent from any scheduling of processes' actions, either they areworking in parallel or serially.Note that self-stabilizing protocols o�ers full and automatic protection against all transientprocess failures, no matter how much the data have been corrupted; all values (constants,variables, etc.) within the registers may be fully corrupted. So, whatever the registers values,the protocol must secure the transfer of information between any two pair of neighbours after a\certain delay time". According to the speci�cation of the protocol, it ensures that no processA can write twice in a row in its own registers WriteA �, without any previous reading fromthat register by either (at least) one neighbour or all its neighbours.3 Principle of the SolutionLet a two processes system, consisting in two neighbouring processes A and B equipped withtheir two pairs of registers (see Section 2). The principle of the solution for A relies on thefollowing basic idea. Under read/write atomicity, A systematically keeps reading the valuefrom WriteBA and copies out this value in ReadAB. (i.e., A reads the message sent by Band copies out the message in ReadAB to inform B that its message is received.) Similarly, Asystematically keeps reading the value from ReadBA and compares it to the value of WriteAB.When both values are equal, A �nds out that B somehow read that value (i.e., the informationhas been transmitted), So it can stop reading and can write again in WriteAB.while true doA writes in WriteABrepeatA reads from WriteBA ;A writes out the value of WriteBA into ReadAB ;A reads from ReadBAuntil ReadBA = WriteABendwhile Fig. 1. The basic 2-processes protocol for A.Although the distributed system is asynchronous, the protocol actually implements a ren-dezvous communication primitive between A and B. When A sends a message to B, A becomeslocked (A cannot exit the repeat loop) until B gets ready to receive the message.In a self-stabilizing setting, A may then proceed with the execution of its own code, sincethe protocol makes it sure that B did read the value from WriteAB (at least, it results fromthe protocol that A knows for sure that the values in ReadBA and WriteAB are identical). Thecorresponding code sequence for B is of course fully symmetrical to the basic protocol for A:3

the roles of A and B (i.e. the registers' names) have simply to be inverted within the aboveprotocol in Fig. 1. Thus, a two-way communication is established between A and B.The 2-processes protocol implements a self-stabilizing two-way rendezvous mechanism and,therefore, allows to simulate a self-stabilizing protocol in the message passing communicationmodel.4 The Protocol in Arbitrary NetworksThe generalization of the above protocol to a system of n > 2 processes constituting an arbitrarynetwork is now easy. We still assume each pair of neighbouring processes in the network tobe equipped with its two pairs of registers on their common link. In order to simplify the useof variables, we call \message" the \information" exchanged between neighbours during theexecution of the protocol.4.1 NotationWrite register for A: ReadABi is the register in which A writes the value of the last messageread by A and sent by Bi.Read register for A: WriteBiA is the register in whichBi writes the message to be transmittedto A, and ReadBiA is the register in which Bi writes the value of the last message read by Biand sent by A.Write and read register for A: WriteABi is the register in which A writes the value of themessage which is to be sent to its ith neighbour Bi.Function geti for A: geti takes no argument and returns the next message to be sent to theith neighbour of A (geti is a helper function added to A).4.2 The General Self-Stabilizing ProtocolOn the same assumptions for the model (read/write atomicity) and for the scheduler's actions(rules of activations of processes and fairness) as given in Section 2, the speci�cation of theprotocol in arbitrary networks for a process A, with neighbours Bi's (1 � i � NA), is as follows.
4

constant NA : the number of neighbours of A ;var si : message to be sent to the ith neighbour of A ;ri : message sent from the ith neighbour of A ;vali : value of the last message sent from A and read by the ith neighbour of A ;while true dofor i = 1 to NA dowrite(WriteABi; geti) ;endforrepeatfor i = 1 to NA dori read(WriteBiA) ;write(ReadABi; ri) ;vali read(ReadBiA) ;si read(WriteABi) ;endforuntil (8i 2 [1; NA] vali = si)endwhile Fig. 2. The general n-processes protocol for A.5 Proving Properties of the General Protocol5.1 Proof of LivenessLemma 5.1 Let
 be any con�guration of an arbitrary network of processes on which thegeneral protocol is performed. Then no process deadlocks in con�guration
.Proof: Let A be a process, its program counter is such that� A is not in the repeat loop, and hence A can write into one of its Write registers;� A is in the repeat loop, and hence A can either read from one of its neighbours' register,or write into one of its Read registers. 2The following Lemma 5.2 and Lemma 5.3 are immediate consequences of Lemma 5.1.Lemma 5.2 Every execution of the protocol on any arbitrary network is in�nite.Lemma 5.3 Whatever the execution, every process performs an in�nite number of actions.De�nition 5.1 Let A and B be two neighbouring processes. A is said to allow B to write i�ReadBA = WriteAB.Let A be a process and let NA denote the number of neighbours of A (NA is the degree of A inthe network). 5

De�nition 5.2 Let A and B be two neighbouring processes. The update of the registerReadAB is the sequence of the two following actions performed by B: ri read(WriteAB) ;write(ReadBA; ri).A wrong writing is a write action in the register ReadBA which is not performed within thecontext of an update.The correct writing into the register ReadBA is a write action executed within the context ofan update.Lemma 5.4 Let A be a process with its program counter in the repeat loop and let B be aneighbour of A. Whatever the current con�guration and the execution, the processes systemexecuting the protocol either eventually reaches a con�guration in which B allows A to write,or A exits the repeat loop.Proof: Suppose B never allows A to write and A never exits the repeat loop. Then Anever changes the value in its register WriteAB. Under these conditions, updating its registerReadBA is a writing permission given to A by B (since between the reading of the value fromthe register WriteAB and the writing of that value in ReadBA, the register WriteAB does notchange value).Whatever the current con�guration and the execution, if the program counter of B is notwithin the repeat loop, it takes B less than NB actions to enter the repeat loop. Once Benters the loop, after 4NB actions, it updates all its Read registers, and thus allows A to write.Whatever the current con�guration and the execution, if the program counter of B is withinthe repeat loop, it takes B at least 4NB actions either to exit the loop, or to update its registerReadAB.Whatever the execution, by Lemma 5.4 B performs an in�nite number of actions, andeventually, either B allows A to write, or A exits the repeat loop. 2Lemma 5.5 and Lemma 5.6 derive easily from Lemma 5.4 and the above de�nitions.Lemma 5.5 After executing its �rst action, no process can perform a wrong writing.Lemma 5.6 Let A and B be two neighbouring processes. After B executes its �rst action, if Ballows A to write, then only the writing of A in its register WriteAB may be able to cancel thatpermission.Theorem 5.1 Let A be a process. Whatever the execution, the system of processes whichperforms the protocol reaches a con�guration in which A is not within the repeat loop anymore.Proof: Suppose A remains within the repeat loop forever; then A never writes into itsWrite registers. Every 4NA actions, A is checking out the loop exiting condition. Whatever theexecution, process A performs an in�nite number of actions. Hence, A checks out the repeatloop exiting condition an in�nite number of times. In particular, A tests the exit condition anin�nite number of times after all its neighbours have already executed an action.If at some test all neighbours of A allow its writing, then, at the next test, all its neighbourskeep on giving A permission to write (by Lemma 5.6). In the meanwhile, A has updated its6

variables ri and si, and when the test happens, the loop exiting condition is satis�ed: A exitsthe loop.Process A stays within the loop in�nitely long in the case when, at each test, at least oneneighbour does not allow its writing. Once a neighbour has allowed A to write, this neighbourcannot withdraw permission from A. Therefore, there exists at least one neighbour of A whichnever allows A to write. Now from Lemma 5.4, this is impossible, and the theorem follows.Therefore, the protocol is deadlock-free. 2Corollary 5.1 Let A be a process. Whatever the execution, A writes an in�nite number oftimes into all its Write registers.5.2 Correctness Proof of the ProtocolDe�nition 5.3 Process B is said to read the value of process A i� ReadBA = WriteAB.Theorem 5.2 Let A and B be two neighbouring processes. After B executes its �rst actionand after any writing in the register WriteAB, B reads the value of A before a next writing inthe register WriteAB.Proof: Process B is the ith neighbour of A. Between each of its two writings, A entersthe repeat loop and exits the loop. Once A is within the loop, the register WriteAB does notchange value. The repeat loop's code is such that when the loop is exited, the value of thelocal variable si of A and the value of the register WriteAB are equal. In the loop, the localvariable ri of A takes the value of the register ReadAB. The value of the register ReadBA maychange after this assignment and before the loop is exited. Thus, when the loop is exited twodistinct cases have to be considered:� No update of the register ReadBA happens between the reading from that register andthe loop exit. Then, si = WriteAB = vali = ReadBA, and B did read the value of A.� Writings into the register ReadBA happen between the reading from that register andthe loop exit. However, the latter writings are performed within the context of updating thisregister. Hence, each time the value has changed, we have that ReadBA = WriteAB and, byLemma 5.6, the equality holds while A does not rewrite into the register WriteAB. 2Summing up of the resultsFirst, the protocol is deadlock-free, since every process is updating all its Write registers anin�nite number of times. Second, the protocol is correct, since no process can write twice ina row in its Write register without any previous reading from that register by (at least) oneneighbour.Remark: Let A be a process and let Ai denote any of its NA neighbours (1 � i � NA).From Subsection 5.2, the notion of weak scheduling of the communication between processesis easily derived. We call a weak scheduling of the communication between process A and all its7

neighbours the property that A cannot write twice into its registers WriteAAi but only wheneverall the Ai's did read from the register WriteAAi in the meantime.Therefore, from Theorem 5.2, the general protocol maintains a weak scheduling of the com-munication between processes in the above sense.6 Concluding RemarksWe presented a basic and general protocol for the design of a fair and reliable self-stabilizingcommunication primitive. This self-stabilizing distributed protocol implements a self-stabilizingversion of the well-known rendezvous communication primitive (as de�ned by Hoare in [5]) inthe link-register asynchronous model of distributed system. It works in arbitrary networks andalso ensures minimal scheduling properties, whatever the initial con�guration of the system ofprocesses and their activations by the scheduler.Besides, the protocol may be modi�ed according to the designer's will and needs: e.g.,in speci�c topologies of networks a weak scheduling of communications may impose fewerneighbours to read from the registers. For example, with only one neighbour, a point to pointself-stabilizing rendezvous mechanism may be completed. Along the same lines, the protocolalso simulates reliable self-stabilizing message-passing in asynchronous distributed systems.Although the paper does not concern itself with complexity measures, it is worth mentioningthat when time is measured by some appropriately de�ned round complexity, the stabilizationtime of the general protocol is O(1).References[1] Y. Afek, G.M. Brown. Self-Stabilization of the Alternating-Bit Protocol. in Proc. ofthe Symp. on Reliable Distributed Systems, 1989, 80-83.[2] E. Anagnostou, V. Hadzilacos. Tolerating Transcient and Permanent Failures. in Proc.of the 7th Int. Workshop on Distributed Algorithms (WDAG93), LNCS 725, Springer-Verlag, 1993, 174-188.[3] S. Dolev, A. Israeli, S. Moran. Self-Stabilization of Dynamic Systems Assuming onlyRead/Write Atomicity. Distributed Computing, 7, 1993, 3-16.[4] M.G. Gouda, N. Multari. Stabilizing Communication Protocols. IEEE Transactionson Computers, 40, 1991, 448-458.[5] C.A.R. Hoare. Communicating Sequential Processes. Communication of the ACM,vol. 21, No 8, 1978, 666-677.[6] I. Lavall�ee, C. Lavault, C. Johnen. Exorcisme ou communication �able et �equitableautostabilis�ee. RR. 001, LRIA, Universit�e Paris 8, Jan. 1998.8

