C Johnen

I Lavall Ee

C Lavault
email: lavault@lipn.ura1507.univ-paris13.fr

A Self-Stabilizing Communication Primitive (Extended Abstract)

Keywords: Self-stabilization, communication primitive, read/write atomicity, rendezvous

The goal of the paper is to provide designers of distributed self-stabilizing protocols with a fair and reliable communication primitive which allows any process which writes a value in its own registers to make sure that every neighbour eventually does read that value. We assume a link-register communication model under read/write atomicity, where every process can read from but cannot write into its neighbours' registers. The primitive runs a self-stabilizing protocol which implements a \rendezvous" communication mechanism in the link-register asynchronous model. This protocol works in arbitrary networks and also solves the problem of how to simulate reliable self-stabilizing message-passing in asynchronous distributed systems.

Introduction

A self-stabilizing system which is started from an arbitrary initial con guration, regains its consistency and demonstrates legal behaviour by itself, without any outside intervention. Consequently, a self-stabilizing system needs not be initiated to any con guration, and can recover from transient faults. More precisely, it can recover from memory corruptions and copes with processors or channels crashes and recoverings (i.e., dynamic networks). In this paper (see also 6]), we present a fair and reliable self-stabilizing communication primitive. It allows any process which writes a value in its own register(s) to make sure that every neighbour shall read that latter value, whatever the initial scheduling of processes' actions. Our communication primitive runs a self-stabilizing protocol on dynamic connected networks of arbitrary topology. Communication among neighbouring processes is carried out by the use of communication registers (called registers throughout the paper). The atomic operations that these 1 registers support are read and write. This protocol implements various self-stabilizing variants of the rendezvous communication mechanism (as de ned in 5]) and also allows simulation of self-stabilizing reliable message-passing in the link-register asynchronous model of distributed systems. Incidentally, it also maintains a weak scheduling of the communications between processes in arbitrary networks. Such a general primitive may prove useful as a basic communication tool for designing distributed self-stabilizing protocols.

Although distinct from the one described in 3], our model relies on close requirements and assumptions, especially in terms of communication (e.g., link registers, read/write atomicity, etc.). Several related communication problems in various self-stabilization settings (in the link-register or the message-passing model) have been addressed in the recent literature. A self-stabilizing communication protocol for two-way handshake is presented in 4], and a selfstabilizing version of the alternating-bit protocol is given in 1]. Though it is much closer, the problem addressed in 2] appears to meet less requirements than the solution given in the present paper, since the primitive does not ensure starvation-freeness. In 1], a process can prevent a neighbour from communicating new data, whereas our primitive is starvation-free. In that sense, our assumptions are safer and the problems considered are not equivalent.

Section 2 describes our model and gives the basic connected assumptions. In Section 3, we present the general principle of our solution for a two processes system. The generalization to n processes in arbitrary networks and the corresponding self-stabilizing protocol is presented in Section 4. Section 5 is devoted to the proof of liveness and correctness of the protocol. Finally, the paper ends with few concluding remarks.

Model and Requirements

We model distributed self-stabilizing systems as a set of (possibly in nite) state machines called processes. Each process can communicate with some subset of the processes called its neighbours. We assume a link-register communication model under read/write atomicity 3].

Each link between any two neighbours A and B is composed of two pairs of registers1 , denoted (Write AB ; Read AB) (belonging to A) and (Write BA ; Read BA) (belonging to B), respectively. Process A can read from the two registers of B, Write BA and Read BA , but cannot write into them. Similarly, process A can write in its own registers, Write AB and Read AB , to communicate with B.

An atomic step is the \largest" step which is guaranteed to be executed uninterruptedly. A process uses read/write atomicity if each atomic step contains either a single read operation or a single write operation but not both. The system behaviour is modelled by the interleaving model in which processes are activated by a scheduler. The scheduler is regarded as a fair adversary: in a self-stabilizing system, all possible fair executions are required to converge to a correct behaviour. A fair scheduler shall eventually activate any process which may continuously perform an action. A common scheduler activates either processes one by one (central demon) or subsets of processes (distributed demon). Under read/write atomicity, both central and distributed schedulers/demons are \equivalent", in the sense that any execution performed under a distributed scheduler may be simulated by a central one. In terms of communication, executions remain independent from any scheduling of processes' actions, either they are working in parallel or serially.

Note that self-stabilizing protocols o ers full and automatic protection against all transient process failures, no matter how much the data have been corrupted; all values (constants, variables, etc.) within the registers may be fully corrupted. So, whatever the registers values, the protocol must secure the transfer of information between any two pair of neighbours after a \certain delay time". According to the speci cation of the protocol, it ensures that no process A can write twice in a row in its own registers Write A , without any previous reading from that register by either (at least) one neighbour or all its neighbours.

Principle of the Solution

Let a two processes system, consisting in two neighbouring processes A and B equipped with their two pairs of registers (see Section 2). The principle of the solution for A relies on the following basic idea. Under read/write atomicity, A systematically keeps reading the value from Write BA and copies out this value in Read AB . (i.e., A reads the message sent by B and copies out the message in Read AB to inform B that its message is received.) Similarly, A systematically keeps reading the value from Read BA and compares it to the value of Write AB . When both values are equal, A nds out that B somehow read that value (i.e., the information has been transmitted), So it can stop reading and can write again in Write AB . Although the distributed system is asynchronous, the protocol actually implements a rendezvous communication primitive between A and B. When A sends a message to B, A becomes locked (A cannot exit the repeat loop) until B gets ready to receive the message.

In a self-stabilizing setting, A may then proceed with the execution of its own code, since the protocol makes it sure that B did read the value from Write AB (at least, it results from the protocol that A knows for sure that the values in Read BA and Write AB are identical). The corresponding code sequence for B is of course fully symmetrical to the basic protocol for A: constant N A : the number of neighbours of A ; var s i : message to be sent to the ith neighbour of A ; r i : message sent from the ith neighbour of A ; val i : value of the last message sent from A and read by the ith neighbour of A ; while true do for i = 1 to N A do write(Write AB i ; get i) ; endfor repeat for i = 1 to N A do r i read(Write B i A) ; write(Read AB i ; r i) ; val i read(Read B i A) ; s i read(Write AB i) ; endfor until (8i 2 1; N A] val i = s i) endwhile Fig. 2. The general n-processes protocol for A.

5 Proving Properties of the General Protocol

Proof of Liveness

Lemma 5.1 Let be any con guration of an arbitrary network of processes on which the general protocol is performed. Then no process deadlocks in con guration .

Proof: Let A be a process, its program counter is such that A is not in the repeat loop, and hence A can write into one of its Write registers; A is in the repeat loop, and hence A can either read from one of its neighbours' register, or write into one of its Read registers.

2

The following Lemma 5.2 and Lemma 5.3 are immediate consequences of Lemma 5.1.

Lemma 5.2 Every execution of the protocol on any arbitrary network is in nite. Lemma 5.3 Whatever the execution, every process performs an in nite number of actions. De nition 5.1 Let A and B be two neighbouring processes. A is said to allow B to write i Read BA = Write AB .

Let A be a process and let N A denote the number of neighbours of A (N A is the degree of A in the network).

variables r i and s i , and when the test happens, the loop exiting condition is satis ed: A exits the loop.

Process A stays within the loop in nitely long in the case when, at each test, at least one neighbour does not allow its writing. Once a neighbour has allowed A to write, this neighbour cannot withdraw permission from A. Therefore, there exists at least one neighbour of A which never allows A to write. Now from Lemma 5.4, this is impossible, and the theorem follows.

Therefore, the protocol is deadlock-free. 2 Corollary 5.1 Let A be a process. Whatever the execution, A writes an in nite number of times into all its Write registers.

Correctness Proof of the Protocol

De nition 5.3 Process B is said to read the value of process A i Read BA = Write AB . Theorem 5.2 Let A and B be two neighbouring processes. After B executes its rst action and after any writing in the register Write AB , B reads the value of A before a next writing in the register Write AB .

Proof: Process B is the ith neighbour of A. Between each of its two writings, A enters the repeat loop and exits the loop. Once A is within the loop, the register Write AB does not change value. The repeat loop's code is such that when the loop is exited, the value of the local variable s i of A and the value of the register Write AB are equal. In the loop, the local variable r i of A takes the value of the register Read AB . The value of the register Read BA may change after this assignment and before the loop is exited. Thus, when the loop is exited two distinct cases have to be considered:

No update of the register Read BA happens between the reading from that register and the loop exit. Then, s i = Write AB = val i = Read BA , and B did read the value of A.

Writings into the register Read BA happen between the reading from that register and the loop exit. However, the latter writings are performed within the context of updating this register. Hence, each time the value has changed, we have that Read BA = Write AB and, by Lemma 5.6, the equality holds while A does not rewrite into the register Write AB . 2

Summing up of the results

First, the protocol is deadlock-free, since every process is updating all its Write registers an in nite number of times. Second, the protocol is correct, since no process can write twice in a row in its Write register without any previous reading from that register by (at least) one neighbour.

Remark: Let A be a process and let A i denote any of its N A neighbours (1 i N A).

From Subsection 5.2, the notion of weak scheduling of the communication between processes is easily derived. We call a weak scheduling of the communication between process A and all its

 Fig. 1. The basic 2-processes protocol for A.

In our model, the registers are physical (hardware) devices. Reading from or writing in one register is an atomic action according to the the design of the microprocessor.

the roles of A and B (i.e. the registers' names) have simply to be inverted within the above protocol in Fig. 1. Thus, a two-way communication is established between A and B.

The 2-processes protocol implements a self-stabilizing two-way rendezvous mechanism and, therefore, allows to simulate a self-stabilizing protocol in the message passing communication model. [START_REF] Dolev | Self-Stabilization of Dynamic Systems Assuming only Read/Write Atomicity[END_REF] The Protocol in Arbitrary Networks

The generalization of the above protocol to a system of n > 2 processes constituting an arbitrary network is now easy. We still assume each pair of neighbouring processes in the network to be equipped with its two pairs of registers on their common link. In order to simplify the use of variables, we call \message" the \information" exchanged between neighbours during the execution of the protocol.

Notation

Write register for A: Read AB i is the register in which A writes the value of the last message read by A and sent by B i .

Read register for A: Write B i A is the register in which B i writes the message to be transmitted to A, and Read B i A is the register in which B i writes the value of the last message read by B i and sent by A.

Write and read register for A: Write AB i is the register in which A writes the value of the message which is to be sent to its ith neighbour B i .

Function get i for A: get i takes no argument and returns the next message to be sent to the ith neighbour of A (get i is a helper function added to A).

The General Self-Stabilizing Protocol

On the same assumptions for the model (read/write atomicity) and for the scheduler's actions (rules of activations of processes and fairness) as given in Section 2, the speci cation of the protocol in arbitrary networks for a process A, with neighbours B i 's (1 i N A), is as follows.

De nition 5.2 Let A and B be two neighbouring processes. The update of the register Read AB is the sequence of the two following actions performed by B: r i read(Write AB) ; write(Read BA ; r i).

A wrong writing is a write action in the register Read BA which is not performed within the context of an update.

The correct writing into the register Read BA is a write action executed within the context of an update. Lemma 5.4 Let A be a process with its program counter in the repeat loop and let B be a neighbour of A. Whatever the current con guration and the execution, the processes system executing the protocol either eventually reaches a con guration in which B allows A to write, or A exits the repeat loop. Proof: Suppose B never allows A to write and A never exits the repeat loop. Then A never changes the value in its register Write AB . Under these conditions, updating its register Read BA is a writing permission given to A by B (since between the reading of the value from the register Write AB and the writing of that value in Read BA , the register Write AB does not change value).

Whatever the current con guration and the execution, if the program counter of B is not within the repeat loop, it takes B less than N B actions to enter the repeat loop. Once B enters the loop, after 4N B actions, it updates all its Read registers, and thus allows A to write.

Whatever the current con guration and the execution, if the program counter of B is within the repeat loop, it takes B at least 4N B actions either to exit the loop, or to update its register Read AB .

Whatever the execution, by Lemma 5.4 B performs an in nite number of actions, and eventually, either B allows A to write, or A exits the repeat loop.

2 Lemma 5.5 and Lemma 5.6 derive easily from Lemma 5.4 and the above de nitions.

Lemma 5.5 After executing its rst action, no process can perform a wrong writing. Lemma 5.6 Let A and B be two neighbouring processes. After B executes its rst action, if B allows A to write, then only the writing of A in its register Write AB may be able to cancel that permission.

Theorem 5.1 Let A be a process. Whatever the execution, the system of processes which performs the protocol reaches a con guration in which A is not within the repeat loop anymore. Proof: Suppose A remains within the repeat loop forever; then A never writes into its Write registers. Every 4N A actions, A is checking out the loop exiting condition. Whatever the execution, process A performs an in nite number of actions. Hence, A checks out the repeat loop exiting condition an in nite number of times. In particular, A tests the exit condition an in nite number of times after all its neighbours have already executed an action.

If at some test all neighbours of A allow its writing, then, at the next test, all its neighbours keep on giving A permission to write (by Lemma 5.6). In the meanwhile, A has updated its neighbours the property that A cannot write twice into its registers Write AA i but only whenever all the A i 's did read from the register Write AA i in the meantime. Therefore, from Theorem 5.2, the general protocol maintains a weak scheduling of the communication between processes in the above sense.

Concluding Remarks

We presented a basic and general protocol for the design of a fair and reliable self-stabilizing communication primitive. This self-stabilizing distributed protocol implements a self-stabilizing version of the well-known rendezvous communication primitive (as de ned by Hoare in 5]) in the link-register asynchronous model of distributed system. It works in arbitrary networks and also ensures minimal scheduling properties, whatever the initial con guration of the system of processes and their activations by the scheduler.

Besides, the protocol may be modi ed according to the designer's will and needs: e.g., in speci c topologies of networks a weak scheduling of communications may impose fewer neighbours to read from the registers. For example, with only one neighbour, a point to point self-stabilizing rendezvous mechanism may be completed. Along the same lines, the protocol also simulates reliable self-stabilizing message-passing in asynchronous distributed systems.

Although the paper does not concern itself with complexity measures, it is worth mentioning that when time is measured by some appropriately de ned round complexity, the stabilization time of the general protocol is O(1).