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Résumé
We present a new algorithm, which solves the problem of distributively �nding a mi-

nimum diameter spanning tree of any arbitrary positively real-weighted graph. We use a
new fast linear time intermediate all-pairs shortest paths routing protocol. The resulting
distributed algorithm is asynchronous, it works for arbitrary named network, and achieves
O(n) time complexity and O(nm) message complexity.
Keywords : Minimum diameter spanning trees, All-pairs shortest paths, Absolute centers,
Shortest path trees.

1 Introduction
Many computer communication networks require nodes to broadcast information to other

nodes for network control purposes, which is done e�ciently by sending messages over a spanning
tree of the network. Now optimizing the worst-case message propagation delays over a spanning
tree is naturally achieved by reducing the diameter to a minimum ; especially in high-speed
networks (where the message delay is essentially equal to the propagation delay).

The use of a control structure spanning the entire network is a fundamental issue in distri-
buted systems and interconnection networks. Since all distributed total algorithms have a time
complexity Ω(D), where D is the network diameter, having a spanning tree of minimum diameter
makes it possible to design a wide variety of time e�cient distributed algorithms.

1.0.1 The Multiport Model
A distributed system is a standard point-to-point asynchronous network consisting of n com-

municating processes connected by m bidirectional links. Each process has a local memory and
can communicate by sending messages to and receiving messages from its neighbours. The model
is for distributed message passing algorithms.

As usual, the network topology is described by a connected undirected graph G = (V,E),
devoid of multiple edges and loop-free. G is de�ned on a set V of vertices representing the
processes and E ⊆ V 2 is a set of edges representing the bidirectional communication links
operating between neighbouring vertices.
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1.0.2 Basic Notation
In the sequel, |V | = n, and |E| = m. We view communication interconnection networks as

undirected graphs. Henceforth, we use the terms graph (resp. nodes/edges) and network (resp.
processes/links) interchangeably. In the remainder of the paper, we denote problems as �the
(MDST) problem�, �the (MST) problem�, �the (GMDST) problem�, etc. (See de�nitions below.)
Distributed algorithms are denoted in italics, e.g. �algorithm MDST�, �protocol APSP�, etc.
Finally, �MDST�, �APSPs�, and �SPT� abbreviate �Minimum Diameter Spanning Tree�, �All-
Pairs Shortest Paths�, and �Shortest Path Tree�, respectively.

1.0.3 The Problem
Let G be a positively real-weighted graph. The (MDST) problem is to �nd a spanning tree

of G of minimum diameter.
The only assumptions needed in the MDST �nding algorithm presented herein are twofold.

(i) All the network's processes are assumed to have distinct identities (IDs). (In order to simplify
the presentation, we also assume the set of all identities to be {1, . . . , n}). (ii) The network G is
regarded as a positively real-weighted graph (i.e., in G the edges' weight ∈ R+). Note that when
edge weights are (possibly negative) real numbers (∈ R), The (MDST) problem is NP-complete.
Besides, distinct IDs are needed to compute the APSPs' routing tables of G at each process in
the network.

1.0.4 Related Works and Results
The few literature related to the (MDST) problem mostly deals either with graph problems in

the Euclidian plane (Geometric Minimum Diameter Spanning Tree), or with the Steiner spanning
tree construction (see [13, 14]). The (MDST) problem is clearly a generalization of the (GMDST)
problem.

Surprisingly, despite the importance of having an MDST in arbitrary distributed systems,
only few papers have addressed the question of how to design algorithms which construct such
spanning trees. Finding and maintaining a minimum spanning tree (the (MST) problem) has
been extensively studied in the literature (e.g., [1, 11] and [2, 6, 7]). Yet, there exist almost no
algorithms which construct an MDST, in spite of the great importance of this issue in distributed
applications. (Recently, the problem of maintaining a small diameter was however addressed in
[15], and the distributed (MDST) problem in [3, 16]).

1.0.5 Main contributions of the paper
To our knowledge, our algorithm appears to be the �rst which distributively solves the (MDST)

problem. The algorithm MDST is asynchronous and it works for arbitrary named network topo-
logies. It achieves an e�cient O(n) time complexity, and O(nm log n + nm log W ) bits commu-
nication complexity, where W is the largest weight of the network's links.

The paper is organized as follows. In Section 2 we present a high-level description and a
formal design of the algorithm MDST. Section 3 is devoted to the complexity analysis of the
algorithm. The paper ends with concluding remarks in Section 4.
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2 The Algorithm
2.0.6 Graph Theoretical Terminology

Let G = (V (G), E(G)) be a connected, undirected, positively real-weighted graph, where the
weight of an edge e = uv ∈ E(G) is given by ωuv ∈ R+. In the remainder of the paper, we use the
graph theoretical terminology and notation. The weight of a path [u0, . . . , uk] of G (ui ∈ V (G))
is de�ned as

∑k−1
i=0 ωuiui+1 . For all nodes u and v, the distance from u to v, denoted dG(u, v),

is the lowest weight of any path length from u to v in G (∞ if no such path exists). The
distance dG(u, v) represents the shortest path from u to v, and the largest (maximal) distance
from node v to all other nodes in V (G), denoted sG(v), is the separation of node v : viz. sG(v) =
maxu∈V (G) dG(u, v) [5]. An absolute center of G is de�ned as a node achieving the smallest
separation. D(G) denotes the diameter of G, de�ned as D(G) = maxv∈V (G) sG(v), and R(G)
the radius of G, de�ned as R(G) = minv∈V sG(v). Finally, ΨG(u) represents a shortest-paths tree
(SPT) rooted at node u : (∀v ∈ V (G)) dΨG(u)(u, v) = dG(u, v). Note that ΨG(u) is one among
all the shortest-paths trees rooted at node u. The set of all SPTs of G is then denoted Ψ(G).
The name of the graph will be omitted when it is clear from the context.

2.1 A High-Level Description
2.1.1 Main Issues

First, we recall (in Lemma 2.1) that the (MDST) problem for a graph G is (polynomially)
reducible to the absolute center problem for G. Then, we constructively prove how to compute an
absolute center of a weighted graph with the help of its APSPs' routing tables (see Lemma 2.2).

In summary, given a positively weighted graph G, the main issues of our algorithm for the
(MDST) problem are threefold :

1. The computation of all APSPs in G ;
2. The computation of an absolute center of G ;
3. The construction of an MDST of G, and the knowledge's transmission of that MDST to

each process within the network G.
The resulting algorithm MDST is thus made up of the corresponding basic protocol APSP (1)
and procedure Gamma_star (2) designed in Subsection 2.2.

2.1.2 Construction of an MDST
The de�nition of separation must be generalized to �dummy nodes� (so-called in contrast to

actual vertices of V ). Such a �ctitious node may possibly be inserted on any edge e ∈ E. Thus,
let e = uv be an edge of weight ωuv, a dummy node γ inserted on e is de�ned by specifying the
weight α of the segment uγ. According to the de�nition, the separation s(γ) of a general node γ,
whether it is an actual vertex in V or a dummy node, is clearly given by : s(γ) = maxz∈V d(γ, z).
A node γ∗ such that s(γ∗) = minγ s(γ) is called an absolute center of the graph. Recall that γ∗

always exists in a connected graph, and that is not unique in general.
Similarly, the de�nition of Ψ(u) is also generalized so as to take these dummy nodes into

account. Finding an MDST actually amounts to search for an absolute center γ∗ of G, and the
SPT rooted at γ∗ is then an MDST of G. Such is the purpose of the following Lemma.

Lemma 2.1 [4] The (MDST) problem for a given graph G is (polynomially) reducible to the
problem of �nding an absolute center of G.
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Fig. 1 � Example of an MDST T ∗ (D(G) = 22 and D(T ∗) = 27). T ∗ is neither a shortest paths
tree, nor a minimum spanning tree of G.

2.1.3 Computation of an absolute center of a graph
According to the results in [5], we use the following Lemma to �nd an absolute center of G.

Lemma 2.2 Let G = (V, E) be a weighted graph. An absolute center γ∗ of G is constructed as
follows :
(i) On each edge e ∈ E, �nd a general node γe of minimum separation.
(ii) Among all the above γes, γ∗ is a node achieving the smallest separation.

Proof : (the proof is constructive)
(i) For each edge e = uv, let α = d(u, γ). Since the distance d(γ, z) is the length of either a

path [γ, u, . . . , z], or a path [γ, v, . . . , z],

s(γ) = max
z∈V

d(γ, z) = max
z∈V

min{α + d(u, z), ωuv − α + d(v, z)}. (1)

If we plot f+
z (α) = α + d(u, z) and f−z (α) = −α + ωuv + d(v, z) in Cartesian coordinates

for �xed z = z0, the real-valued functions f+
z0

(α) and f−z0
(α) (separately depending on α in the

range [0, ωe]) are represented by two line segments (S1)z0 and (S−1)z0 , with slope +1 and −1,
respectively. For a given z = z0, the smallest of the two terms f+

z0
(α) and f−z0

(α) (in (1)) is
thus found by taking the convex cone of (S1)z0 and (S−1)z0 . By repeating the above process for
each node z ∈ V , all convex cones of segments (S1)z∈V and (S−1)z∈V are clearly obtained (see
Figure 2).

Now we can draw the upper boundary Be(α) (α ∈ [0, ωe]) of all the above convex cones of
segments (S1)z∈V and (S−1)z∈V . Be(α) is thus a curve made up of piecewise linear segments,
which passes through several local minima (see Figure 2). The point γ achieving the smallest
minimum value (i.e., the global minimum) of Be(α) represents the absolute center γ∗e of the
edge e.

(ii) By de�nition of the γ∗e s, minγ s(γ) = minγ∗e s(γ∗e ), and γ∗ achieves the smallest separation.
Therefore, an absolute center of the graph is found at any point where the minimum of all s(γ∗e )s
is attained. ¤

By Lemma 2.2, we may consider this method from an algorithmic viewpoint. For each e = uv,
let Ce be the set of pairs {(d1, d2) / (∀z ∈ V ) d1 = d(u, z), d2 = d(v, z)} Now, a pair (d1', d2')
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is said to dominate a pair (d1, d2) i� d1 ≤ d1', and d2 ≤ d2' (viz. the convex cone of (d1', d2')
is over the convex cone of (d1, d2)). Any such pair (d1, d2) will be ignored when it is dominated
by another pair (d1', d2'). Notice that the local minima of the upper boundary Be(α) (numbered
from 1 to 3 in Figure 2) are located at the intersection of segments f−i (α) and f+

i+1(α), when all
dominated pairs are removed. If we sort the set Ce in descending order with respect to the �rst
term of each remaining pair (d1, d2), we obtain the list Le = ((a1, b1), . . . , (a|Le|, b|Le|) consisting
in all such remaining ordered pairs. Hence, the smallest minimum of Be(α) for a given edge e
clearly provides an absolute center γ∗e . (See Procedure Gamma_star(e) in Subsection 2.2). By
Lemma 2.2, once all the γ∗e s are computed, an absolute center γ∗ of the graph is obtained. By
Lemma 2.1, �nding an MDST of the graph reduces to the problem of computing γ∗.

2.1.4 All-Pairs Shortest-Paths Protocol (protocol APSP)
In the previous paragraph, we consider distances d(u, z) and d(v, z), for all z ∈ V and each

edge e = uv. The latter distances must be computed by a distributed routing algorithm, for which
purpose the new protocol APSP is designed in Subsection 2.2. It is simple and time e�cient.
(Recall that the only assumption needed here is that all processes have distinct IDs).

Note that various compact routing methods could a priori be more (space and message)
e�cient and practical solutions to the problem, e.g., Interval routing, Pre�x and Boolean routing,
Multi-label routing, etc. Unfortunately, while we do need shortest paths routing tables to achieve
a minimum diameter value, most graphs do not have optimum compact routing schemes in terms
of shortest paths. More precisely, arbitrary graphs cannot have such optimum (APSPs) compact
routing schemes, and whence, no exact MDST of such graphs can be completed by using compact
routings. (See e.g. [8, 17], and Section 4).

2.1.5 Construction and knowledge transmission of an MDST
At the end of protocol APSP, every node knows the node r with the smallest ID and a shortest

path in G leading to r. Now consider the set of paths [u, r] from each node u ∈ V to r. This set
forms a tree rooted at r, and since it is an SPT of G, the information is exchanged optimally in
the SPT Ψ(r). Hence, the diameter D(G) and the radius R(G) can be computed through Ψ(r).
The number of messages needed to compute D(G) and R(G) represents the number of messages
needed for an extremum searching in the tree Ψ(r), that is at most O(n).

5



Whenever the computation of an absolute center γ∗ of G is completed, the endpoint of γ∗'s
edge with the smallest ID sends a message to r carrying γ∗'s ID. Upon receipt of the message,
r forwards this information over Ψ(r). Therefore each node of G knows the route to γ∗, and the
MDST is built as a common knowledge of all processes in G.

2.2 The algorithm
The distributed algorithm MDST �nds an MDST of an input graph G = (V, E) by computing

the diameter of the SPTs for all nodes. Initially, an edge weight ωuv is only known by its two
endpoints u and v.

Algorithm MDST (for process u)
Type elt : record alpha_best, upbound : real ; id1, id2 : integer end ;
Var Λ : set of elt ; ϕ, ϕ∗u : elt ; D, R, α, localmin : real ;

du : array of weights ; (* du[v] estimates d(u, v) *)
1. For all v ∈ V Compute du[v], D and R ; (* from protocol APSP *)
2. ϕ.upbound ← R ;
3. While ϕ.upbound > D/2 do for any edge uv s.t. v > u

(a) (α, localmin) ← Gamma_star(uv) ;
(b) If localmin < ϕ.upbound then ϕ ← (α, localmin, u, v) ;

4. Λ ← {ϕ} ;
5. Receive 〈ϕ〉 from all sons of u in Ψ(r) (r is s.t. r = min{v ∈ V }) ;

Λ ← Λ ∪ {ϕ} ;
6. Minimum �nding :

(a) Compute ϕ∗u s.t. ϕ∗u.upbound = min
ϕ∈Λ

ϕ.upbound ;
(b) Send 〈ϕ∗u〉 to father in Ψ(r) ;
(c) If u = r then upon reception of 〈ϕ〉 from all sons of r, r forwards 〈ϕ∗u〉 to all other

nodes.

Now we describe the basic procedures used in this algorithm : �rst the protocol APSP and
next the procedure Gamma_star(uv).

Protocol APSP (for process u)
Var du : array of weights ; routu : array of integers ; /* routing table */
For all v ∈ (V − {u}) do routu[v] ← 0 ; du[v] ← +∞ end /* Init */
marked ← {u} ; Send 〈u, 0〉 to all neighbours
Repeat

For all answers 〈x, d〉 (from neighbour v) do
If x 6= u and du[x] > d + ωuv then

du[x] ← d + ωuv ; routu[x] ← v ;
If any change occurs in the tables then

Let v́ be s.t. du[v́ ] = min{v 6∈marked} du[v]
marked ← marked

⋃ {v́ } ;
Send 〈v́ , du[v́ ]〉 to all neighbours

until no change

Assume the list Le (de�ned above in Paragraph 2.1.3(a)) to be already constructed � e.g.
with a heap whenever the routing tables are computed. The following procedure computes the
value of γ∗e for any �xed edge e.
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Procedure Gamma_star(e)

var min, α : real Init min ← +∞ ; α ← 0 ;
For i=1 to |Le| do

compute the intersection (x, y) of segments f−i and f+
i+1 :

x = 1
2 (ωe − ai + bi+1) ; y = 1

2 (ωe + bi+1 + ai)
if y < min then min ← y ; α ← x ;

Return(α,min)

Example : consider the graph G depicted in �gure 1. The MDST T ∗ is neither a shortest-paths
tree Ψ(r), nor a minimum spanning tree of G.

2.3 Improvements
In practice, some improvements in the algorithm MDST can easily be carried out. For

example, reducing the enumeration of dummy nodes may be performed by discarding several
edges of G from the exploration process. To be able to discard an edge, we only need to compute
an upper bound on the diameter of an MDST of G. More precisely, we �rst compute D(Ψ(u)) for
all nodes u ∈ V , and then keep the minimum value min

T∈Ψ(G)
D(T ), where the minimum is taken

over all SPTs of G.

Example : When applied to the example in �gure 1, D(Ψ(A)) = 28 is an upper bound on the
diameter (27) of an MDST of G. The upper bound (28) makes it possible to discard the edges
EF, and AB, AC, BF, CD, DE, EG, FG from the exploration.

3 Analysis
The following Lemma 3.1 provides the complexity of protocol APSP, as well as its termination

proof. Theorem 3.1 derives the time and the communication complexity of the algorithm MDST
from Lemma 3.1.

Lemma 3.1 The All-Pairs Shortest Path protocol APSP process terminates. It runs in O(n)
phases and uses O(nm) messages to compute the routing tables at each node of G. Its message
size is at most O(log n + log W ), where W is the largest weight of edges.

Proof : Consider the set marked de�ned in the protocol APSP. The set marked keeps growing
as long as the completion of the protocol is not performed. Since only one node is added to
marked at each phase of protocol APSP and since the number of nodes in the network is �nite,
the protocol does process terminate.

Now, the above proof of termination of protocolAPSP also provides the number of phases O(n)
involved. Since each node's identity is sent exactly once along each one of its adjacent edges, the
number of messages exchanged at every node is 2m, and the message complexity of the whole
protocol APSP is 2nm. ¤

Theorem 3.1 The algorithm MDST solves the (MDST) problem for any distributed positively
weighted network G in O(n) time. Its communication complexity is O(nmK) bits, and its space
complexity is at most O(nK) bit, where K = O(log n + log W ) and W is the largest weight of
edges in G.

7



4 Concluding Remarks and Open Problems
Given a positively weighted graph G, our asynchronous algorithmMDST constructs an MDST

of G and distributively forwards the control structure all over the named network G. This new
algorithm is time and message e�cient : the complexities are O(n) and O(nm), respectively,
which in some sense seems �almost� the best achievable (though not optimal) in a distributed
setting.

By contrast, the space complexity is far from satisfactory. This is due to the general as-
sumptions of dealing with universal (APSPs) routings on arbitrary network topologies (see the
protocol APSP). Typically, the necessary information is stored in a routing table with n entries,
one entry for every possible destination, and one table at every node. With the expansion of
networks, keeping routing tables becomes untenable, as at each node, the table takes Ω(n)dlg δe
bits (measured in lg n-size words) for a node of degree δ. For the entire network, this leads to
a total of

∑
u∈V n lg(δu) = O(n2 log(m/n)) bits. It was recently proved that reasonable APSP

routing schemes require at least Ω(n2) bit [10].
A more compact way of representing the tables is needed. So, in contrast with the above

universal method, one may use various compact routing methods. They are proved more e�cient,
e.g. interval routing uses O(δ log n) bits per node (hence O(m log n) total bits), and constructs
routing tables in O(m) messages. Moreover, when used for �xed classes G of graphs having
optimum (APSPs) compact routing schemes, the construction of an MDST of G ∈ G may be
performed by using interval, linear interval, pre�x or boolean routing [8, 9, 12, 17]. This, according
to the classes G of graphs considered : i.e., rings, trees, dimensional grids and tori, hypercubes,
complete (bipartite) graphs, etc. [17]. For such graphs, the routing tables can (possibly) be
represented with compact optimum routing (APSPs) schemes. For example, with no more than
2 log n bits of strings as labels for the nodes, Boolean routing designs predicates which are
optimum for wide classes of graphs [9]. The characterization of these classes of graphs which
enjoy above properties is therefore a fundamental open problem.

Along the same lines, keeping compact (possibly optimum) routings for self-stabilizing algo-
rithms, and designing e�cient self-stabilizing compact routing algorithms are also a fundamental
open problems in distributed systems where transient failures are considered.
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