Marc Bui
email: marc.bui@utc.fr

Franck Butelle

Christian Lavault
email: lavault@ura1507.univ-paris13.fr

A Distributed Algorithm for the Minimum Diameter Spanning Tree Problem

Keywords: Minimum diameter spanning trees, All-pairs shortest paths, Absolute centers, Shortest path trees

We present a new algorithm, which solves the problem of distributively nding a minimum diameter spanning tree of any arbitrary positively real-weighted graph. We use a new fast linear time intermediate all-pairs shortest paths routing protocol. The resulting distributed algorithm is asynchronous, it works for arbitrary named network, and achieves O(n) time complexity and O(nm) message complexity.

Introduction

Many computer communication networks require nodes to broadcast information to other nodes for network control purposes, which is done eciently by sending messages over a spanning tree of the network. Now optimizing the worst-case message propagation delays over a spanning tree is naturally achieved by reducing the diameter to a minimum ; especially in high-speed networks (where the message delay is essentially equal to the propagation delay).

The use of a control structure spanning the entire network is a fundamental issue in distributed systems and interconnection networks. Since all distributed total algorithms have a time complexity Ω(D), where D is the network diameter, having a spanning tree of minimum diameter makes it possible to design a wide variety of time ecient distributed algorithms.

The Multiport Model

A distributed system is a standard point-to-point asynchronous network consisting of n communicating processes connected by m bidirectional links. Each process has a local memory and can communicate by sending messages to and receiving messages from its neighbours. The model is for distributed message passing algorithms.

As usual, the network topology is described by a connected undirected graph G = (V, E), devoid of multiple edges and loop-free. G is dened on a set V of vertices representing the processes and E ⊆ V 2 is a set of edges representing the bidirectional communication links operating between neighbouring vertices. 1

Basic Notation

In the sequel, |V | = n, and |E| = m. We view communication interconnection networks as undirected graphs. Henceforth, we use the terms graph (resp. nodes/edges) and network (resp. processes/links) interchangeably. In the remainder of the paper, we denote problems as the (MDST) problem, the (MST) problem, the (GMDST) problem, etc. (See denitions below.) Distributed algorithms are denoted in italics, e.g. algorithm MDST, protocol APSP, etc. Finally, MDST, APSPs, and SPT abbreviate Minimum Diameter Spanning Tree, All-Pairs Shortest Paths, and Shortest Path Tree, respectively.

The Problem

Let G be a positively real-weighted graph. The (MDST) problem is to nd a spanning tree of G of minimum diameter.

The only assumptions needed in the MDST nding algorithm presented herein are twofold. (i) All the network's processes are assumed to have distinct identities (IDs). (In order to simplify the presentation, we also assume the set of all identities to be {1, . . . , n}). (ii) The network G is regarded as a positively real-weighted graph (i.e., in G the edges' weight ∈ R +). Note that when edge weights are (possibly negative) real numbers (∈ R), The (MDST) problem is NP-complete. Besides, distinct IDs are needed to compute the APSPs' routing tables of G at each process in the network.

Related Works and Results

The few literature related to the (MDST) problem mostly deals either with graph problems in the Euclidian plane (Geometric Minimum Diameter Spanning Tree), or with the Steiner spanning tree construction (see [START_REF] Ho | Minimum diameter spanning trees and related problems[END_REF][START_REF] Ihler | On shortest networks for classes of points in the plane[END_REF]). The (MDST) problem is clearly a generalization of the (GMDST) problem.

Surprisingly, despite the importance of having an MDST in arbitrary distributed systems, only few papers have addressed the question of how to design algorithms which construct such spanning trees. Finding and maintaining a minimum spanning tree (the (MST) problem) has been extensively studied in the literature (e.g., [START_REF] Awerbuch | Optimal distributed algorithms for minimum weight spanning tree, counting, leader election and related problems[END_REF][START_REF] Gallager | A distributed algorithm for minimum weight spanning trees[END_REF] and [START_REF] Awerbuch | Communication-optimal maintenance of replicated information[END_REF][START_REF] Eppstein | Sparsication a technique for speeding-up dynamic graph algorithms[END_REF][START_REF] Eppstein | Maintenance of a minimum spanning forest in a dynamic plane graph[END_REF]). Yet, there exist almost no algorithms which construct an MDST, in spite of the great importance of this issue in distributed applications. (Recently, the problem of maintaining a small diameter was however addressed in [START_REF] Italiano | Maintaining spanning trees of small diameter[END_REF], and the distributed (MDST) problem in [START_REF] Bui | Minimum diameter spanning tree[END_REF][START_REF] Lavault | Évaluation des algorithmes distribués analyse, complexité, méthode[END_REF]).

Main contributions of the paper

To our knowledge, our algorithm appears to be the rst which distributively solves the (MDST) problem. The algorithm MDST is asynchronous and it works for arbitrary named network topologies. It achieves an ecient O(n) time complexity, and O(nm log n + nm log W) bits communication complexity, where W is the largest weight of the network's links.

The paper is organized as follows. In Section 2 we present a high-level description and a formal design of the algorithm MDST. Section 3 is devoted to the complexity analysis of the algorithm. The paper ends with concluding remarks in Section 4.

Graph Theoretical Terminology

Let G = (V (G), E(G)) be a connected, undirected, positively real-weighted graph, where the weight of an edge e = uv ∈ E(G) is given by ω uv ∈ R + . In the remainder of the paper, we use the graph theoretical terminology and notation. The weight of a path [u 0 , . . . ,

u k] of G (u i ∈ V (G)) is dened as k-1
i=0 ω uiui+1 . For all nodes u and v, the distance from u to v, denoted d G (u, v), is the lowest weight of any path length from u to v in G (∞ if no such path exists). The distance d G (u, v) represents the shortest path from u to v, and the largest (maximal) distance from node v to all other nodes in [5]. An absolute center of G is dened as a node achieving the smallest separation. D(G) denotes the diameter of G, dened as

V (G), denoted s G (v), is the separation of node v : viz. s G (v) = max u∈V (G) d G (u, v)
D(G) = max v∈V (G) s G (v), and R(G) the radius of G, dened as R(G) = min v∈V s G (v). Finally, Ψ G (u) represents a shortest-paths tree (SPT) rooted at node u : (∀v ∈ V (G)) d Ψ G (u) (u, v) = d G (u, v). Note that Ψ G (u)
is one among all the shortest-paths trees rooted at node u. The set of all SPTs of G is then denoted Ψ(G). The name of the graph will be omitted when it is clear from the context.

A High-Level Description

Main Issues

First, we recall (in Lemma 2.1) that the (MDST) problem for a graph G is (polynomially) reducible to the absolute center problem for G. Then, we constructively prove how to compute an absolute center of a weighted graph with the help of its APSPs' routing tables (see Lemma 2.2).

In summary, given a positively weighted graph G, the main issues of our algorithm for the (MDST) problem are threefold :

1. The computation of all APSPs in G ; 2. The computation of an absolute center of G ; 3. The construction of an MDST of G, and the knowledge's transmission of that MDST to each process within the network G.

The resulting algorithm MDST is thus made up of the corresponding basic protocol APSP [START_REF] Awerbuch | Optimal distributed algorithms for minimum weight spanning tree, counting, leader election and related problems[END_REF] and procedure Gamma_star (2) designed in Subsection 2.2.

Construction of an MDST

The denition of separation must be generalized to dummy nodes (so-called in contrast to actual vertices of V). Such a ctitious node may possibly be inserted on any edge e ∈ E. Thus, let e = uv be an edge of weight ω uv , a dummy node γ inserted on e is dened by specifying the weight α of the segment uγ. According to the denition, the separation s(γ) of a general node γ, whether it is an actual vertex in V or a dummy node, is clearly given by : s(γ) = max z∈V d(γ, z). A node γ * such that s(γ *) = min γ s(γ) is called an absolute center of the graph. Recall that γ * always exists in a connected graph, and that is not unique in general.

Similarly, the denition of Ψ(u) is also generalized so as to take these dummy nodes into account. Finding an MDST actually amounts to search for an absolute center γ * of G, and the SPT rooted at γ * is then an MDST of G. Such is the purpose of the following Lemma. Lemma 2.1 [START_REF] Camerini | Complexity of spanning tree problems : Part I[END_REF] The (MDST) problem for a given graph G is (polynomially) reducible to the problem of nding an absolute center of G.

Computation of an absolute center of a graph

According to the results in [START_REF] Christophides | Graph Theory : An algorithmic approach[END_REF], we use the following Lemma to nd an absolute center of G.

Lemma 2.2 Let G = (V, E) be a weighted graph. An absolute center γ * of G is constructed as follows :

(i) On each edge e ∈ E, nd a general node γ e of minimum separation.

(ii) Among all the above γ e s, γ * is a node achieving the smallest separation.

Proof : (the proof is constructive) (

) 1
If we plot f + z (α) = α + d(u, z) and f - z (α) = -α + ω uv + d(v, z) in Cartesian coordinates for xed z = z 0 , the real-valued functions f + z 0 (α) and f - z 0 (α) (separately depending on α in the range [0, ω e]) are represented by two line segments (S 1) z 0 and (S -1) z 0 , with slope +1 and -1, respectively. For a given z = z 0 , the smallest of the two terms f + z 0 (α) and f - z 0 (α) (in (1)) is thus found by taking the convex cone of (S 1) z0 and (S -1) z0 . By repeating the above process for each node z ∈ V , all convex cones of segments (S 1) z∈V and (S -1) z∈V are clearly obtained (see Figure 2). Now we can draw the upper boundary B e (α) (α ∈ [0, ω e]) of all the above convex cones of segments (S 1) z∈V and (S -1) z∈V . B e (α) is thus a curve made up of piecewise linear segments, which passes through several local minima (see Figure 2). The point γ achieving the smallest minimum value (i.e., the global minimum) of B e (α) represents the absolute center γ * e of the edge e.

(ii) By denition of the γ * e s, min γ s(γ) = min γ * e s(γ * e), and γ * achieves the smallest separation. Therefore, an absolute center of the graph is found at any point where the minimum of all s(γ * e)s is attained. By Lemma 2.2, we may consider this method from an algorithmic viewpoint. For each e = uv, let C e be the set of pairs

{(d 1 , d 2) / (∀z ∈ V) d 1 = d(u, z), d 2 = d(v, z)} Now, a pair (d 1 ', d 2 ')
f + 2 f + 3 f + 4 f - 1 f - 2 f - 3 γ e * ω (e) (a i , b i) pairs of distances f + i (α) = α + a i f - i (α) = ω(u, v) -α + b i Fig. 2

All-Pairs Shortest-Paths Protocol (protocol APSP)

In the previous paragraph, we consider distances d(u, z) and d(v, z), for all z ∈ V and each edge e = uv. The latter distances must be computed by a distributed routing algorithm, for which purpose the new protocol APSP is designed in Subsection 2.2. It is simple and time ecient. (Recall that the only assumption needed here is that all processes have distinct IDs).

Note that various compact routing methods could a priori be more (space and message) ecient and practical solutions to the problem, e.g., Interval routing, Prex and Boolean routing, Multi-label routing, etc. Unfortunately, while we do need shortest paths routing tables to achieve a minimum diameter value, most graphs do not have optimum compact routing schemes in terms of shortest paths. More precisely, arbitrary graphs cannot have such optimum (APSPs) compact routing schemes, and whence, no exact MDST of such graphs can be completed by using compact routings. (See e.g. [START_REF] Flammini | Compact routing models : some complexity results and extensions[END_REF][START_REF] Tan | Compact routing methods : a survey[END_REF], and Section 4).

Construction and knowledge transmission of an MDST

At the end of protocol APSP, every node knows the node r with the smallest ID and a shortest path in G leading to r. Now consider the set of paths [u, r] from each node u ∈ V to r. This set forms a tree rooted at r, and since it is an SPT of G, the information is exchanged optimally in the SPT Ψ(r). Hence, the diameter D(G) and the radius R(G) can be computed through Ψ(r). The number of messages needed to compute D(G) and R(G) represents the number of messages needed for an extremum searching in the tree Ψ(r), that is at most O(n).

3

 3

Fig. 1

 1 Fig. 1 Example of an MDST T * (D(G) = 22 and D(T *) = 27). T * is neither a shortest paths tree, nor a minimum spanning tree of G.

(i)

 i For each edge e = uv, let α = d(u, γ). Since the distance d(γ, z) is the length of either a path [γ, u, . . . , z], or a path [γ, v, . . . , z], s(γ) = max z∈V d(γ, z) = max z∈V min{α + d(u, z), ω uv -α + d(v, z)}.

 Example of an upper boundary B e (α) is said to dominate a pair (d 1 , d 2) i d 1 ≤ d 1 ', and d 2 ≤ d 2 ' (viz. the convex cone of (d 1 ', d 2 ') is over the convex cone of (d 1 , d 2)). Any such pair (d 1 , d 2) will be ignored when it is dominated by another pair (d 1 ', d 2 '). Notice that the local minima of the upper boundary B e (α) (numbered from 1 to 3 in Figure 2) are located at the intersection of segments f - i (α) and f + i+1 (α), when all dominated pairs are removed. If we sort the set C e in descending order with respect to the rst term of each remaining pair (d 1 , d 2), we obtain the list L e = ((a 1 , b 1), . . . , (a |Le| , b |Le|) consisting in all such remaining ordered pairs. Hence, the smallest minimum of B e (α) for a given edge e clearly provides an absolute center γ * e . (See Procedure Gamma_star (e) in Subsection 2.2). By Lemma 2.2, once all the γ * e s are computed, an absolute center γ * of the graph is obtained. By Lemma 2.1, nding an MDST of the graph reduces to the problem of computing γ * .

Acknowledgments

We would like to thank Beryl T. Atkins for his very careful reading of our manuscript, and his suggestions and improvements of the paper as far as linguistic correctness is concerned.

Whenever the computation of an absolute center γ * of G is completed, the endpoint of γ * 's edge with the smallest ID sends a message to r carrying γ * 's ID. Upon receipt of the message, r forwards this information over Ψ(r). Therefore each node of G knows the route to γ * , and the MDST is built as a common knowledge of all processes in G.

The algorithm

The distributed algorithm MDST nds an MDST of an input graph G = (V, E) by computing the diameter of the SPTs for all nodes. Initially, an edge weight ω uv is only known by its two endpoints u and v.

Algorithm MDST (for process u) Type elt : record alpha_best, upbound : real ; id 1 , id 2 : integer end ; Var Λ : set of elt ; ϕ, ϕ * u : elt ; D, R, α, localmin : real ; d u : array of weights ;

If any change occurs in the tables then

Send v´, d u [v´] to all neighbours until no change Assume the list L e (dened above in Paragraph 2.1.3(a)) to be already constructed e.g. with a heap whenever the routing tables are computed. The following procedure computes the value of γ * e for any xed edge e.

Procedure Gamma_star(e)

if y < min then min ← y ; α ← x ; Return(α,min)

Example : consider the graph G depicted in gure 1. The MDST T * is neither a shortest-paths tree Ψ(r), nor a minimum spanning tree of G.

Improvements

In practice, some improvements in the algorithm MDST can easily be carried out. For example, reducing the enumeration of dummy nodes may be performed by discarding several edges of G from the exploration process. To be able to discard an edge, we only need to compute an upper bound on the diameter of an MDST of G. More precisely, we rst compute D(Ψ(u)) for all nodes u ∈ V , and then keep the minimum value min

Analysis

The following Lemma 3.1 provides the complexity of protocol APSP, as well as its termination proof. Theorem 3.1 derives the time and the communication complexity of the algorithm MDST from Lemma 3.1.

Lemma 3.1 The All-Pairs Shortest Path protocol APSP process terminates. It runs in O(n) phases and uses O(nm) messages to compute the routing tables at each node of G. Its message size is at most O(log n + log W), where W is the largest weight of edges.

Proof : Consider the set marked dened in the protocol APSP. The set marked keeps growing as long as the completion of the protocol is not performed. Since only one node is added to marked at each phase of protocol APSP and since the number of nodes in the network is nite, the protocol does process terminate. Now, the above proof of termination of protocol APSP also provides the number of phases O(n) involved. Since each node's identity is sent exactly once along each one of its adjacent edges, the number of messages exchanged at every node is 2m, and the message complexity of the whole protocol APSP is 2nm.

Theorem 3.1 The algorithm MDST solves the (MDST) problem for any distributed positively weighted network G in O(n) time. Its communication complexity is O(nmK) bits, and its space complexity is at most O(nK) bit, where K = O(log n + log W) and W is the largest weight of edges in G.

4 Concluding Remarks and Open Problems

Given a positively weighted graph G, our asynchronous algorithm MDST constructs an MDST of G and distributively forwards the control structure all over the named network G. This new algorithm is time and message ecient : the complexities are O(n) and O(nm), respectively, which in some sense seems almost the best achievable (though not optimal) in a distributed setting.

By contrast, the space complexity is far from satisfactory. This is due to the general assumptions of dealing with universal (APSPs) routings on arbitrary network topologies (see the protocol APSP). Typically, the necessary information is stored in a routing table with n entries, one entry for every possible destination, and one table at every node. With the expansion of networks, keeping routing tables becomes untenable, as at each node, the table takes Ω(n) lg δ bits (measured in lg n-size words) for a node of degree δ. For the entire network, this leads to a total of u∈V n lg(δ u) = O(n 2 log(m/n)) bits. It was recently proved that reasonable APSP routing schemes require at least Ω(n 2) bit [START_REF] Fraigniaud | Memory requirement for universal routing schemes[END_REF].

A more compact way of representing the tables is needed. So, in contrast with the above universal method, one may use various compact routing methods. They are proved more ecient, e.g. interval routing uses O(δ log n) bits per node (hence O(m log n) total bits), and constructs routing tables in O(m) messages. Moreover, when used for xed classes G of graphs having optimum (APSPs) compact routing schemes, the construction of an MDST of G ∈ G may be performed by using interval, linear interval, prex or boolean routing [START_REF] Flammini | Compact routing models : some complexity results and extensions[END_REF][START_REF] Flammini | Boolean routing[END_REF][START_REF] Gavoille | Worst-case bounds for shortest path interval routing[END_REF][START_REF] Tan | Compact routing methods : a survey[END_REF]. This, according to the classes G of graphs considered : i.e., rings, trees, dimensional grids and tori, hypercubes, complete (bipartite) graphs, etc. [START_REF] Tan | Compact routing methods : a survey[END_REF]. For such graphs, the routing tables can (possibly) be represented with compact optimum routing (APSPs) schemes. For example, with no more than 2 log n bits of strings as labels for the nodes, Boolean routing designs predicates which are optimum for wide classes of graphs [START_REF] Flammini | Boolean routing[END_REF]. The characterization of these classes of graphs which enjoy above properties is therefore a fundamental open problem.

Along the same lines, keeping compact (possibly optimum) routings for self-stabilizing algorithms, and designing ecient self-stabilizing compact routing algorithms are also a fundamental open problems in distributed systems where transient failures are considered.