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ON THE HIERARCHY OF FUNCTIONING
RULES IN DISTRIBUTED COMPUTING (*)

by A. BUI (1, 4), M. BUI (2, 4) and C. LAVAULT (3)

Communicated by Catherine ROUCAIROL

Abstract.– In previous papers, we used a Markovian model to determine theoptimal functioning
rules of a distributed system in various settings. Searching optimal functioning rules amounts
to solve an optimization problem under constraints. The hierarchy of solutions arising from the
above problem is called the “first order hierarchy”, and may possibly yield equivalent solutions.
The present paper emphasizes a specific technique for deciding between two equivalent solutions,
which establishes the “second order hierarchy”.

Keywords: Distributed Systems, Performance evaluation, Markov Chains, Optimization.

Résuḿe. – Dans des travaux préćedents, nous avons détermińe gr̂aceà un mod̀ele Markovien,
les règles de fonctionnement optimald’un syst̀eme distribúe pour divers problèmes. La recherche
des r̀egles de fonctionnement optimal revient en faità ŕesoudre un problème d’optimisation sous
contrainte. La híerarchie des solutions obtenues, que nous appelons “la hiérarchisation du premier
odre”, peut ǵeńerer des solutionśequivalentes. Dans le présent article, nous développons une
technique sṕeciale pour d́epartager deux solutionśequivalentes : “la hiérarchisation du second
ordre”.

Mots cĺes : Syst̀emes Distribúes,Évaluation de performance, Chaı̂nes de Markov, Optimisation.

1. INTRODUCTION

In our previous papers [2-5], we presented a stochastic model which allows
a behavioral study of distributed computing, and we showed its usefulness.
For example, thanks to our model, we solved the dining philosophers problem
(cf. [9, 11]) without taking left-handing and right-handing into consideration
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(2) Département de Ǵenie Informatique, Univ. de Technologie de Compiègne, URA CNRS 817,
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16 A. BUI, M. BUI, C. LAVAULT

(cf. [4]). Similarly, we settled in [5], the Multiway-Rendez Vous problem
raised in [10]. Thanks to it, we also proposed in [2], an “identikit” of the
configurations of sites to which corresponds a degree of efficiency for the
functioning of some fault-tolerant distributed routing algorithms (e.g. [12,
13]).

On the other hand, our model is based on the interconnection offinite
Markov chains (each one representing a distributed process having only one
acyclic ergodic class of states and possibly transient states), and it differs
from the other models (see [1, 6, 8]) since it handles a formal specification
of distributed systems through local consideration. It makes it possible to
determine the optimal functioning rules of a distributed system. Searching
optimal functioning rules amounts to optimize a “guide function”under
constraints: we use a function involving the mean recurrence times of
ergodic states and the mean sojourn times within transient states starting
from another transient state. The hierarchy of solutions arising from the
above problem is called the “first order hierarchy” (abbreviation for “first
order conditional moment hierarchy”), which may possibly yield equivalent
solutions. The aim of our present paper is to emphasize a special technique
for deciding between two equivalent solutions, which establishes the “second
order hierarchy” (abbreviation for “second order central conditional moment
hierarchy”).

Consider processors, represented by random function k
t t2

evolving as finite homogeneous Markov Chains, withsimilar states;
their transition matrices are denotedk k

ij

, respectively. These Markov Chains are assumed to have one
acyclic ergodic class (the same class, whatever ), and possibly
transient states (even in the form of several transient classes). The above
notationk actually expresses the fact that each transition matrix depends
on a multi-dimensional parameterk, which characterizes the matrix,e.g.

k
k

11
k

ij
k

rr . The distributed system is made up of a
network of processes logically represented by the interconnection of the
Markov chains. This interconnection defines a set of relations between the
parameters 1 N , which characterizes the network,

j 1 N

where is a set of indices. When there exists a 1 N which
verifies the previous relations, we will write for short; we will also
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call it a functioning rule or solution to the choice problem of functioning
rules for the network.

Now, the problem of choosing functioning rules inevitably raises the
following question: which criterion can we decide on to provide a functioning
rule preference over any other? We propose the following answer: according
to the context, we define a “guide function” mapping the real -tuple

1 N into ; the role of is to “guide” the working of the
system. Searching optimal functioning rules amounts to an optimization
process (maximization or minimization) of the guide function under
constraints.

A functioning rule is said to be optimal if and only if the corresponding
maximizes (resp. minimizes) when the optimality criterion is maximization
(resp. minimization). In such a case, a functioning ruleis said to be
better than a functioning rule 0 if and only if 0 (resp.

0 ). Subsequently, an optimal functioning rule (if any) is
obviously better than a functioning rule which is not optimal.

Two solutions and 0 are said to be equivalent if and only if
0 .

Any functioning rule such that maximizes (resp. minimizes) when
the optimality criterion is minimization (resp. maximization) is a bad rule.
Obviously, every functioning rule which is not bad (it is then said advisable)
is better than a bad functioning rule.

2. FIRST ORDER HIERARCHY

In order to be more concrete in the choice of the guide function, we
consider the following mathematical objects (where the left upper index
still indicates the -th process):

On the assumption that we deal with ergodic states, letk
ii , denote the

mean time to reach the state0, starting from the state. This mean time
may be regarded as the conditional expectation of the random number
k

i , of transitions before entering0 for the first when starting from
the initial state , viz.

k
ii

k
i

k
0

In the particular case when 0, k ii (denoted byk i is the mean
recurrence time of the state.
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18 A. BUI, M. BUI, C. LAVAULT

On the assumption that there are transient states, letk
jj denote the

mean sojourn time within the transient state0 starting from the transient
state . This mean sojourn time may be regarded as the conditional
expectation, starting from the state, of the random numberk j of
times that the process is in state0, viz

k
jj

k
j

k
0

Since we assumed that there is only one acyclic ergodic class (with or
without transient state), we know that n!1

k n k exists and that it
is a matrix with identical rowsk 1

k
r . Let us consider two particular

cases.

If there is no transient state, the matrixk with components k
i

k
0

is given by
k k k

dg
k (2)

where
k k k �1

wherek dg results fromk by setting off-diagonal entries equal to 0, wherek

is the diagonal matrix with-th entry 1

k
, and where is the matrix will all

entries 1. The diagonal of the matrixk provides thek i. If there are transient
states and if we assume the absorbing case, then denotek the matrix with
componentsk jj , and 0 being the transient states,k is such that

k k �1 (3)

wherek is the restriction ofk to the transient states.

Thus, thek ii ’s and thek jj are depending on the parameterk
k

11
k
ij

k
rr . According to the context, the guide function is

defined either through thek jj ’s, or through thek ii ’s.

Since it involves conditional first order moments (namely the conditional
expectations of thek i’s and thek j ’s), we call first order hierarchy, the
hierarchy which arises from the ordering induced by the above function.

3. SECOND ORDER HIERARCHY

Consider the function

1 k N
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How can we decide between two equivalent solutionsand 0?

The above question has already been answered in [3] by studying a
particular problem (performance evaluation of distributed routing algorithms
and construction of a fuzzy set of solutions). Therefore, following the work
in [3], we use conditional variances,i.e. second order central conditional
moments.

The idea is as follows: the variance expresses the dispersion of values
around the mean, thus, between two equivalent solutionsand 0 according
to the first order hierarchy, we decide and prefer the solution with “globally”
smaller conditional variances. The meaning of the world “global” is highly
dependable on the context. Yet, we usually deal with sums of conditional
variances; thus, the criterion of preference establishes a second hierarchy,
which will be called thesecond order hierarchy, because it arises from
conditional variances,i.e. from second order central conditional moments.
The computation of variances is different according to whether states are
transient or ergodic. According to the two cases:

1. When the computations deal with ergodic states, the conditional
variances 2 k

i
k

0 are given by the matrixk

k k k
dg

k k k k k
dg

k
sq (4)

wherek is given by (2),k sq results fromk by squaring each entry,
and wherek k

dg results fromk k by setting off-diagonal entries
equal to 0.

2. When the computation is concerning the transient states, the conditional
variances 2 k

j
k

0 are given by the matrixk

k k k
dg

k
sq (5)

wherek is given by (3), wherek dg results fromk by setting off-
diagonal entries equal to 0, and wherek

sq results fromk by squaring
each entry.
In particular, when the sum j

k
j is involved, (the sum being taken

for all the transient states), one may use more subtle considerations.
The conditional expectations j

k
j

k
0 , (namely the mean

sojourn times in the set of all transient states) are given by the vector
k , where all the values of the column vectorare 1’s. Hence, the
conditional variances 2

j
k

j
k

0 are given by the column
vector k �,

k � k k k
sq (6)
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20 A. BUI, M. BUI, C. LAVAULT

where k
sq denotes the column vector which results fromk by

squaring each entry.
At this point, an important remark is imperative, so that the issue
should not be confused with regard to the interpretation of.
In the first order hierarchy, we considered as a function of the
k

ii
k

i
k

0 and of thek jj
k

j
k

0 , which
are conditional expectations. This is the reason why we advocate the
criterion of the smallest conditional variances of thei ’s and j ’s
in the second order hierarchy. Therefore, the lattermust not be
mistaken for a function with random variablesk

i andk j : in that case
we should have to compute the expectation k

i
k

j and
consider the variance2 k

i
k

j ; such is not the case
in the present settings.

4. APPLICATIONS

Here are two examples of applications: the first exemple uses ergodic
states and the second one uses transient states.

4.1. Example 1

In order to propose a kind of “identikit” of the configurations of sites
providing a good functioning of a type of distributed algorithms in [3], we
use our stochastic model as follows. We consider a network ofMarkov
processes with five states (where state 2 is the waiting state and state 3 is
the updating state); the transition matrix of the-th processor is

k
k k

k k

where

k

N

k=1
k

k

N

k=1
k

It is easily seen, that each of these Markov processes has only one acyclic
ergodic class {1,2,3,4,5} and has no transient state.
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In the present problem,k k k . We know that
n!1 k n exists and that the above identical rows matrix satisfies the

relation k k k . Solving this equation, we obtain the expression
of k , one row of which is 1

G k k k k k , where

k k and . Then we have

k
1

k

k
2

k

k
3

k

k
4

k

k
5

k

Our criterion of choice (detailed in [2]) is that the updating state should
appear the more frequent possible, and the waiting state, the less frequent
possible. This defines the guide function:

1 1 N N

N

k=1

k
3

k
2

N

k=1

k

k

to be minimized under the constraintsNk=1 k and N
k=1 k .

In order to solve the problem, we can start either with1 N , or
with 1 N . We thus propose a bounding of1 N , that is to
perform a closure of N , which is the domain of 1 N .

A bounding for 1 N is a pair where is a number
of such that k for and where is an
integer > 0 such that 1 m m+1 N�1
N . Owing to the above

constraints, necessarly depends on . In [3], we give a
necessary and sufficient condition for the existence of such a bounding, and
we present a catalogue of possible boundings . We also show that
the -tuples 1 N associated with those 1 N which make
minimum, have the following properties. A number among the k ’s is
equal to (1)

�
B
p
�

�(�) , a number among the k’s is equal to

(2)
�

B
p
1��

�(�) , and one of thek ’s is equal to (3)
�

B �(�)
�(�) , where
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22 A. BUI, M. BUI, C. LAVAULT

Since (i)
� , must belong to the range , we give in [2]

necessary and sufficient conditions for that:

Note that if N
2 , the existence of such a bounding is always

insured. Such a bounding is called “a bounding for1 N valid
for 1 N

N ”, and the following result is proved in [2].

PROPOSITION 1: Let be a bounding for 1 N valid for

1 N
N .

The best solution 1 1 N N
N in the sense

of the first order hierarchy is the solution(modulo a permutation of pairs

k k , ) with

1 1 m(�) m(�)
(1)
�

m(�)+1 m(�)+1 N�1 N�1
(2)
�

N N
(3)
�

Sketch of proof:Let 1 N be fixed. The Lagrange multipliers
method applied to the function 1 N

N
k=1

d
b

leads to the

solution 1 N , where k
B
p
d

d
.

Since is convex, 1 N gives the minimal value of , that
is 1

B
N
k=1 k

2. Now consider the function 1 N
1
B

N
k=1 k

2 to minimize under the constraint N
k=1 k . The

function being concave, minimal solutions are to be found among the
solutions lying at the border of the bounding, viz. among the solutions
such that 1 m(�) m(�)+1 N�1 N

. Hence the above statement.

Other solutions are less efficient. Some of them may be equivalent in the
sense of the first order hierarchy, viz. they may give the same value to the
function .

In order to decide between two solutions 1 1 N N and
0 0

1
0
1

0
N

0
N , which are equivalent in the sense of the first order
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hierarchy, we then use the second order hierarchy. In such a case, we have
to compare the “global” dispersion of values around thek

2’s and thek 3’s
for solution to the “global” dispersion of values around thek

2’s and the
k
3’s for solution 0. More precisely, 1 1 N N is said to be

better than 0 0

1
0

1
0

N

0

N
if and only if

N

k=1

k
22

k
33

N

k=1

k 0

22

k 0

33 (7)

wherek ii denotes the term in the diagonal of the matrixk given
by (4). In other words, is said to be better than0 iff (globally) the sum
of the conditional variances corresponding tois strictly smaller than the
one which corresponds to0.

Here are the analytic expression ofk
22 andk 33:

PROPOSITION 2

k
22

k

k k k k k k
2

k
33

k

k
2

k k k

k k
2

Note that the analytic study ofk 22 andk 33 is not easy, and hence, it is
not possible to give directly the analytic expression of an optimal solution
in the second order hierarchy. By contrast, a simple programming software
easily computes a numerical comparison through inequality (7) for deciding
between two equivalent solutionsand 0 (equivalent in the sense of the
first order hierarchy).

4.2. Example 2

In the deadlock problem, (studied in [4]), good functioning properties are
given. We use our stochastic model as follows: the model is a network
of Markov processes with four states (active, idle, terminated,
blocked) where the transition matrix of theth processor is

k

1

N

N�1

N

k
1

N k
N�1

N k k

vol. 33, n� 1, 1999
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under the constraints

k k
2

k k

N

k=1
k

N

k=1
k

The ergodic class is the singleton {4} and the transient class is the set
{1,2,3}. In the present problem,k k k . The matrix
k ; which is the restriction ofk to the transient states, is here

k

1
N

N�1
N

k
1
N k

Hence,
k k �1

N�1
N k k

k
� +� 1

N k

N�1
N k

Here, the criterion of choice amounts to act on the sumNk=1
3
j=1

k
2j

of the mean sojourn times in the states 1,2,3, respectively, when starting
from the state 2, so as to delay the entering in state 4 as long as possible.
This defines the guide function

1 1 N N

N

k=1

k
2N�1
N k

N�1
N

N�1
N k k

to be maximized under the above constraints. As we shown in [4], there
are no best solutions, but there exits a setof advisable solutions, which
complementary set is the following set of bad solutions:

PROPOSITION 3: is the equivalent set (in the sense of the first order
hierarchy) of solutions 1 1 k k N N , where

k k

Fairness (viz. the solution where k k
1
N

1
N

) belongs to .
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Sketch of proof:Indeed, let the following change of variables,

k k k

2

k k

Substituting, the guide function of choice can be put in the form

1 1 N N

N

k=1

2

k

k

has thus to be optimized under the constraints

k

2

k

and
N

k=1
k 1

N

k=1

2

k 2

The use of Lagrange multipliers, for 1 and for 2, yields

k

1

k

2

k

2

k

k
2

k

1

k

2

k

2

k

k

k

This implies

2

k

k

N

k=1

2

k

N

k=1 k

and hence,

k
2

k

Thus,

k k
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Now, let N

k=1 k, where k

t

(N�1)�Nu
. The function k is

convex, since the Hessian

2
k

k

k

k
2

k

k
2

2
k

k
3

corresonds to a positive semi-definition quadratic form. Therefore,is also
convex. Consequently, every minimizes function , and is a bad
solution in the sense of the first order hierarchy.

Let us examine now the second order hierarchy. When two solutions
1 1 N N and 0 0

1
0

1
0

N

0

N
are found to be

equivalent in the sense of the first order hierarchy (for example, solutions of
), one has to turn to the second order hierarchy to decide between them. As

the criterion of choice in the first order hierarchy introduces the mean sojourn
times in all transient states, (starting from the state 2), formula (6) is used
in the second order hierarchy. More precisely, for the-th processor, the
conditional variance of the sum of the sojourn random times in the states 1,
2 and 3 (from state 2) is given by the second term of the vectork � (given)
in (6). Letk �

2 denote this term. We consider the expressionN
k=1

k �

2 as an
element of comparison; in other words, the solution 1 1 N N

is preferred to the solution0 0

1
0

1
0

N

0

N
if and only if

N

k=1

k �

2

N

k=1

k 0�

2

The analytic expression ofk �

2 is then useful. Here is the expression
obtained by use of a programming software:

PROPOSITION 4

k �

2

N

k=1

4
k k k k

3
k k

2
k

2
k

k k
2 2

2
k k k k k

k k
2 2

As mentioned above, a simple programming software easily computes
a numerical comparison for deciding between two equivalent solutions
and 0.
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5. CONCLUSION

Generating the first order hierarchy, our models allows a reasoned choice
of solutions for the functioning of some distributed-algorithms. This choice
by first order hierarchy, which possibly leads to equivalent solutions, is
extended by second order hierarchy. Thus, we developped the necessary
theoretical tools to the second order hierarchy, illustrated by the examples
in Section 4.

Note that, the analytical comparison between two solutions in the second
order hierarchy is not always possible. However, it could be easily done
numerically by a programming software (i.e. Maple).

Other problems already studied by our model: namely the dining
philosphers problem, the mutual exclusion problem, the multi-way-
Rendezvous problem, could be easily extended by using the same method
(with adaptations to the various context) formalized in the present article.
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