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ON THE HIERARCHY OF FUNCTIONING
RULES IN DISTRIBUTED COMPUTING (*)

by A. Bur (1'%, M. Bui (>4 and C. laaut (3)

Communicated by CatherineoBcalroL

Abstract.— In previous papers, we used a Markovian model to determinegtimal functioning
rules of a distributed system in various settings. Searching optimal functioning rules amounts
to solve an optimization problem under constraints. The hierarchy of solutions arising from the
above problem is called thdifst order hierarchy, and may possibly yield equivalent solutions.
The present paper emphasizes a specific technique for deciding between two equivalent solutions,
which establishes thestcond order hierarchy

Keywords: Distributed Systems, Performance evaluation, Markov Chains, Optimization.

Résuné. — Dans des travaux peedents, nous avongtérmiré gaced un moéle Markovien,
les régles de fonctionnement optimdilin syséme distribé& pour divers prol@mes. La recherche
des Bgles de fonctionnement optimal revient en faittsoudre un probime d’optimisation sous
contrainte. La Herarchie des solutions obtenues, que nous appelartgérarchisation du premier
odre’, peut gerérer des solutiongquivalentes. Dans le @sent article, nousé&eloppons une
technique spciale pour @partager deux solutiongquivalentes : Ia hiérarchisation du second
ordre”.

Mots cles : Sysemes Distribés, Evaluation de performance, Ghas de Markov, Optimisation.

1. INTRODUCTION

In our previous papers [2-5], we presented a stochastic model which allows
a behavioral study of distributed computing, and we showed its usefulness.
For example, thanks to our model, we solved the dining philosophers problem
(cf. [9, 11]) without taking left-handing and right-handing into consideration
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16 A. BUI, M. BUI, C. LAVAULT

(cf. [4]). Similarly, we settled in [5], the Multiway-Rendez Vous problem
raised in [10]. Thanks to it, we also proposed in [2], an “identikit” of the
configurations of sites to which corresponds a degree of efficiency for the
functioning of some fault-tolerant distributed routing algorithms (e.g. [12,
13)).

On the other hand, our model is based on the interconnectidwn fifiite
Markov chains (each one representing a distributed process having only one
acyclic ergodic class of states and possibly transient states), and it differs
from the other models (see [1, 6, 8]) since it handles a formal specification
of distributed systems through local consideration. It makes it possible to
determine the optimal functioning rules of a distributed system. Searching
optimal functioning rules amounts to optimize a “guide functidn’under
constraints: we use a functioft involving the mean recurrence times of
ergodic states and the mean sojourn times within transient states starting
from another transient state. The hierarchy of solutions arising from the
above problem is called thdfifst order hierarchy (abbreviation for “first
order conditional moment hierarchy”), which may possibly yield equivalent
solutions. The aim of our present paper is to emphasize a special technique
for deciding between two equivalent solutions, which establishessineohd
order hierarchy (abbreviation for “second order central conditional moment
hierarchy”).

Consider N processors, represented By random function(* X;):en
evolving asN finite homogeneous Markov Chains, withsimilar states;
their transition matrices are denotet = (“p;;), (k € {1,...,N}, i,5 €
{1,...,7}), respectively. These Markov Chains are assumed to have one
acyclic ergodic class (the same class, whatéver{1, ..., N}), and possibly
transient states (even in the form of several transient classes). The above
notation* P actually expresses the fact that each transition matrix depends
on a multi-dimensional parametey., which characterizes the matrie,g.
pr = Fpi1,... Fpij,... *psr). The distributed system is made up of a
network of processes logically represented by the interconnection aWthe
Markov chains. This interconnection defines a set of relations between the
parameters,..., pn, Which characterizes the network,

Rj(plv"'vp]V)Zov ]617

whereZ is a set of indices. When there existya= (p1,...,pn) Which
verifies the previous relations, we will write € R for short; we will also
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call it a functioning rule or solution to the choice problem of functioning
rules for the network.

Now, the problem of choosing functioning rules inevitably raises the
following question: which criterion can we decide on to provide a functioning
rule preference over any other? We propose the following answer: according
to the context, we define agliide functiofi £' mapping the realV-tuple
p = (p1,...,pn) into R; the role of F' is to “guide” the working of the
system. Searching optimal functioning rules amounts to an optimization
process (maximization or minimization) of the guide functidh under
constraints.

A functioning rule is said to be optimal if and only if the corresponding
maximizes (resp. minimizes) when the optimality criterion is maximization
(resp. minimization). In such a case, a functioning ruylés said to be
better than a functioning rule’ if and only if F(p) > F(o') (resp.
—F(p) > —F(p")). Subsequently, an optimal functioning rule (if any) is
obviously better than a functioning rule which is not optimal.

Two solutions p and o' are said to be equivalent if and only if
F(p) = F(¢).

Any functioning rule such thap maximizes (resp. minimizesy’ when
the optimality criterion is minimization (resp. maximization) is a bad rule.
Obviously, every functioning rule which is not bad (it is then said advisable)
is better than a bad functioning rule.

2. FIRST ORDER HIERARCHY

In order to be more concrete in the choice of the guide function, we
consider the following mathematical objects (where the left upper irdex
still indicates thek-th process):

e On the assumption that we deal with ergodic state$/7let, denote the

mean time to reach the state starting from the staté This mean time

may be regarded as the conditional expectation of the random number
k., of transitions before entering for the first when starting from

the initial state¢, viz

" = B |F Xy = 4).

In the particular case wheh= ¢, *T}; (denoted byT; is the mean
recurrence time of the state
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18 A. BUI, M. BUI, C. LAVAULT

e On the assumption that there are transient state$S)et denote the
mean sojourn time within the transient statestarting from the transient
state j. This mean sojourn time may be regarded as the conditional
expectation, starting from the stage of the random numbé"m,v of
times that the process is in stafg viz

"Sjjr = E(*njr|"Xo = j).

Since we assumed that there is only one acyclic ergodic class (with or
without transient state), we know thiitn,, ... P)” =*Q exists and that it
is a matrix with identical rows'q1, ...,*¢). Let us consider two particular
cases.

If there is no transient state, the mafifxwith componentsZ (“f; "X = 7)
is given by
M= -2+ 0 R 2.k A, (2)
where

k‘Z — (I _kP +kQ)_1,

wheré'z,, results fronfZ by setting off-diagonal entries equal to 0, whigke
is the diagonal matrix with-th entrykl—_, and where/ is the matrix will all

entries 1. The diagonal of the matfik brovides thé&T’. If there are transient
states and if we assume the absorbing case, then déntite matrix with
componentéS]-]-,, j andj’ being the transient statés, is such that

A= (=W 3
where*W is the restriction of* I’ to the transient states.
Thus, the*T};’s and thekSJ'j/ are depending on the parameter =

tpi1, .- Fpij, ... Fprr). According to the context, the guide functidn is
defined either through tH&;;.’s, or through théT;;’s.

Since it involves conditional first order moments (namely the conditional
expectations of théf,’s and the"nj’s), we call first order hierarchy the
hierarchy which arises from the ordering induced by the above funéfion

3. SECOND ORDER HIERARCHY

Consider the function

F p:(plu'-'upka"'upf\r)HF(p)'
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ON THE HIERARCHY OF FUNCTIONING RULES IN DISTRIBUTED COMPUTING 19

How can we decide between two equivalent solutiprend p’?

The above question has already been answered in [3] by studying a
particular problem (performance evaluation of distributed routing algorithms
and construction of a fuzzy set of solutions). Therefore, following the work
in [3], we use conditional variancegge. second order central conditional
moments.

The idea is as follows: the variance expresses the dispersion of values
around the mean, thus, between two equivalent solutiossd o’ according
to the first order hierarchy, we decide and prefer the solution with “globally”
smaller conditional variances. The meaning of the world “global” is highly
dependable on the context. Yet, we usually deal with sums of conditional
variances; thus, the criterion of preference establishes a second hierarchy,
which will be called thesecond order hierarchybecause it arises from
conditional variancesi.e. from second order central conditional moments.
The computation of variances is different according to whether states are
transient or ergodic. According to the two cases:

1. When the computations deal with ergodic states, the conditional
variancess?*f,,|¥X, = i) are given by the matrixV’

V=T (220 ) - 42 [2 T — T (2 T ag) =Ty (4)

where*7 is given by (2)*7;, results frontT” by squaring each entry,
and whereZ -*T),, results frontZ -*T by setting off-diagonal entries
equal to O.

2. When the computation is concerning the transient states, the conditional
variancess?(*n;/|*X, = j) are given by the matriXy

Mo=RA (2 A, — 1) —FA, (5)

where*A is given by (3), wheréA,, results fromA by setting off-
diagonal entries equal to 0, and whétg, results fronfA by squaring
each entry.

In particular, when the surEj, *n;, is involved, (the sum being taken

for all the transient states), one may use more subtle considerations.
The conditional expectations (3", *n;/|*Xy = j), (namely the mean
sojourn times in the set of all transient states) are given by the vector
(*A&), where all the values of the column vectpare 1's. Hence, the
conditional variance&Q(ZJ‘,"’nﬂAXo = j) are given by the column
vector v+,

W = (2K - DIAE) — (D), ©)
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where FA¢),, denotes the column vector which results fréig by
squaring each entry.

At this point, an important remark is imperative, so that the issue
should not be confused with regard to the interpretatiod’of

In the first order hierarchy, we considerdd as a function of the
Mo = E(*fi|*Xy = i) and of the’S;;, = E(*n;/|*Xy = j), which
are conditional expectations. This is the reason why we advocate the
criterion of the smallest conditional variances of tfigs and n;:’s

in the second order hierarchy. Therefore, the lattemust not be
mistaken for a function with random variablgs and™; : in that case
we should have to compute the expectatidd(. .. ,*fi,*n;,...)] and
consider the variance?[(F (..., f; *nj:,...))]; such is not the case
in the present settings.

4. APPLICATIONS

Here are two examples of applications: the first exemple uses ergodic
states and the second one uses transient states.

4.1. Example 1

In order to propose a kind of “identikit” of the configurations of sites
providing a good functioning of a type of distributed algorithms in [3], we
use our stochastic model as follows. We consider a network dflarkov
processes with five states (where state 2 is the waiting state and state 3 is
the updating state); the transition matrix of theh processor is

where

0 1 0 0 0

0 I'-b by c 1l—c-T
fp=|o d 1-d 0 0

1 0 0 0 0

1 0 0 0 0
0<ec<1-=T
0<bp <l and 0<dp <1

_'T\’T -7\7
E;:ﬁk—Bzo and z;ﬁ@k—Dzo.

It is easily seen, that each of these Markov processes has only one acyclic
ergodic class {1,2,3,4,5} and has no transient state.
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ON THE HIERARCHY OF FUNCTIONING RULES IN DISTRIBUTED COMPUTING 21

In the present problemp, = (b, di), k € {1,...,N}. We know that
limn%x(kP)” exists and that the above identical rows matrix satisfies the
relation*Q - *P = *Q. Solving this equation, we obtain the expression
of *Q, one row of which is%((1 — I')dy, dy,, b, cdy, ady,), where G =
b + (3—2I')d;, anda = 1 — ¢ —I'. Then we have

q 1 G .. G, G G
bty G G e G ey G
YT ASDd T d T e T e T ady

Our criterion of choice (detailed in [2]) is that the updating state should
appear the more frequent possible, and the waiting state, the less frequent
possible. This defines the guide functidn

N k,],?)
F(by,dy,... by, dy) = Z

kl

to be minimized under the constraifis,_, b = B and Y1, dp = D

In order to solve the problem, we can start either with, ..., by), or
with (di,...,dx). We thus propose a bounding ¢f;,...,dy), that is to

perform a closure of]0, 1[)?, which is the domain ofds, ..., dy).

A bounding ford = (d1,...,dx) is a pair(n,m) wheren is a number
of ]0,1[ such thaty < d, < 1 —n for k € {1,..., N} and wherem is an
integer > 0 such thath = ... =d,, = n,dpy1 = ... =dy_1 =1 —1n,

dy = p(n); p(n) = D —mn — (N —m —1)(1 —n). Owing to the above
constraints,m necessarly depends op : m = m(n). In [3], we give a
necessary and sufficient condition for the existence of such a bounding, and
we present a catalogue of possible boundifgsn(n)). We also show that

the N-tuples(dq, . .., by ) associated with thosgls, . .., dx) which makeF
minimum, have the following properties. A numbei(») among the);’s is

equal tob(l)(n) 1;(\”[ a numberN —m(n) — 1 among the)’s is equal to

B2 () = (‘;(n , and one of they’s is equal tob!® (n) = 60157’), where

6(n) = m(n)y/n+ (N —m(n) — /1 —n+/p(n).
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Sincebij)(n), i = 1,2,3, must belong to the rang®, I'[, we give in [2]
necessary and sufficient conditions for that:

D-1

— N
= : < .
(N—l)—D)F’ if 2_D<27

B<<l+(N—l)

N-1)-D N
B<<(N—1)+ %)F, if - <D<N-L

4

Note that if D = % the existence of such a bounding is always
insured. Such a bounding is called “a bounding fdh,...,dy) valid
for (b1,...,bx) € (0,I')Y”, and the following result is proved in [2].

ProposiTioN 1: Let (7,m(n)) be a bounding for(dy,...,dy) valid for
(b17 R ij) S (]07 P[)N'
The best solutior(dy, d1,...,bx,dy) € (]0,I'[x[n,1 — 7)Y in the sense
of the first order hierarchy is the solutiom (modulo a permutation of pairs
(b, di), k € {1,...,N}) with

(blu dl) = (bm(n)u dm(n)) = (bil)(n)un)u
(bra(m) 415 dn(py+1) = - -- = (by—1,dn-1) = & (), 1 — ),
(b, dy) = (07 (n). p(m)).

Sketch of proof:Let (di,...,dy) be fixed. The Lagrange multipliers
method applied to the functioh : (b1,...,by) — 22;1 Z_f leads to the

solution (by, ..., by), whereb;, = BVl ) ¢ {1,....,N}.

2L Vi
Since v is convex, (by,...,by) gives the minimal value of:, that
is %(Z;}:l Vdi)?. Now consider the functiontd : (di,,...,dy) —

L, Vdi)? to minimize under the constraint;_, di = D. The
function H being concave, minimal solutions are to be found among the
solutions lying at the border of the bounding, viz. among the solutions
such thatd; = ... = dm(77) =1, dm(n)-l-l =...=dy_1=1—ndy =
D — m(n)n — (N —m(n) — 1)(1 — n). Hence the above statement.

Other solutions are less efficient. Some of them may be equivalent in the
sense of the first order hierarchy, viz. they may give the same value to the

function 1. ]
In order to decide between two solutiops= (b1,d1,...,bx,dy) and
pl = (b}, d, ... by, dy), which are equivalent in the sense of the first order
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hierarchy, we then use the second order hierarchy. In such a case, we have
to compare the “global” dispersion of values around*ffigs and thé'Ty’s
for solution p to the “global” dispersion of values around #&’s and the

"I5’s for solution p’. More precisely,p = (b1,dy1,...,by,dy) is said to be
bry's f lution p’. M | bi,d by, d dtob
better thany’ = (¥}, d},..., ¥y, dy) if and only if

N N

> Cona +uz3) <Y (vhy +103), (7)

k=1 k=1

wherefy;; denotes the ternfé, <) in the diagonal of the matrix V' given

by (4). In other wordsp is said to be better thap iff (globally) the sum

of the conditional variances correspondinggtads strictly smaller than the
one which corresponds tg'.

Here are the analytic expressionef; andus3:
ProPosiTiON 2

. 1
Mgy = d_[Zbk + bydy, + dy=(9 — 8T) — (b, + di (3 — 2I))%),
k2

. 1 .
A’Ugg = by [dk(18 — 24" + 8F2) + b2 + bkdk(g — 8F)

— (b + dp(3 — 2I))?].

Note that the analytic study &f»» and*vs3 is not easy, and hence, it is
not possible to give directly the analytic expression of an optimal solution
in the second order hierarchy. By contrast, a simple programming software
easily computes a numerical comparison through inequality (7) for deciding
between two equivalent solutionsand o’ (equivalent in the sense of the
first order hierarchy).

4.2. Example 2

In the deadlock problem, (studied in [4]), good functioning properties are
given. We use our stochastic model as follows: the model is a network
of N(N > 4) Markov processes with four states (active, idle, terminated,
blocked) where the transition matrix of tid" processor is

1 N1
oy 0 N_1 0

- NC S N T e A
1 0 0 0 ’
0 0 0 1
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under the constraints

((Br, 0r) €10, 1[%
-1
N

N
Zk:l Br—1=0

N

\Zk:lek—lzo.

The ergodic class is the singleton {4} and the transient class is the set
{1,2,3}. In the present probleny;, = (G, 0), k € {1,...,N}. The matrix
kTW: which is the restriction of P to the transient states, is here

N
G+ 01 <

v Sy 0
1 N
"W=1|8 % &
1 0 0
Hence,
kA _ (I _kW)—l
1 1 ;.
1 Betbr 1 9
= W I\]I;l N k
N — Mk — Uk N—
N 1 1 -5

Here, the criterion of choice amounts to act on the SjL, Zj?zl"‘szj

of the mean sojourn times in the states 1,2,3, respectively, when starting

from the state 2, so as to delay the entering in state 4 as long as possible.
This defines the guide function

N 2N-1 N—1

Br + N O + N

F(Br,6h,....08n,0n) = S :
R ; V=D - — o)

to be maximized under the above constraints. As we shown in [4], there
are no best solutions, but there exits a gebf advisable solutions, which
complementary set is the following sBtof bad solutions:

ProposiTion 3: B is the equivalent set (in the sense of the first order
hierarchy) of solutiong = (51,61, ..., 08k, 0. ...,0x,0x), Where

2N +1 5N —1

9"‘:_3N—26’“+N(3N—2)'

Fairness (viz. the solutiop where(3;, 6;) = (4, +)) belongs toB.
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Sketch of proofindeed, let the following change of variables,

up = P + Ok
2= (N —1)(8 + 2).
Substituting, the guide function of choice can be put in the form
N 1 N IL]%,
Pl uws ) = =1 ¥ 1 2 (N2 1) = Ny

F has thus to be optimized under the constraints
N-1
N
2(N —1) <13 <3(N -1),

Vkef{l,... N}, {"°

and
Z:]:l up = 2 (£1)
Z}j:l £2=2N+DN-1) (L)

The use of Lagrange multiplierg, for £; and . for £, yields

25

OF 0L 0L Nti
o A = _4+A=0, ke{l,...,N
Ouy, * Oug +M0uk (N —1) — Nuy? - ’ €{l-. N},
OF 0L 0Lo 2&,%
o T A = : 2ut, =0, kef{l,...,Nh
Otk + Otk G Otk [(N — ]_) —Nuk] + 2ty ’ € { ’ ’ }
This implies
A Ny _ Yoo _@N+DHWV -1
o [(N=1)=Nu] (N—1)=>, u N-3 ’
and hence,
N-3 5 N-—-1
=- t — k 1,...,N}L
g (2N+1)(N—]_)k+ N ’ E{u ) }
Thus,
2N +1 5N —1

0 =

TsN 2P NN —2)
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Now, let ¢ = S, gr, Where g, =
convex, since the Hessian

2
(\_lt)—k_wk The function g;, is

2 2Nt
| NCD=Nu (N=D—Nul
Vigr = 2Nt 2N2t;,,

(V=D - Nu [N-1D- NP
corresonds to a positive semi-definition quadratic form. Therefpig,also

convex. Consequently, evegye B minimizes function#, andp is a bad
solution in the sense of the first order hierarchy. |

Let us examine now the second order hierarchy. When two solutions
p = (B1,01,....,0n,0x) and p' = (By,6y,.... 0y, 0y) are found to be
equivalent in the sense of the first order hierarchy (for example, solutions of
B), one has to turn to the second order hierarchy to decide between them. As
the criterion of choice in the first order hierarchy introduces the mean sojourn
times in all transient states, (starting from the state 2), formula (6) is used
in the second order hierarchy. More precisely, for théh processor, the
conditional variance of the sum of the sojourn random times in the states 1,
2 and 3 (from state 2) is given by the second term of the v&ttor(given)
in (6). Let"v} denote this term. We consider the expressiofl_,*v; as an
element of comparison; in other words, the solutios (31, 61,...,08~,0n)
is preferred to the solutiop’ = (31,6}, ..., 3. 0%) if and only if

21’ <ZN k/*

The analytic expression d’iJ;‘ is then useful. Here is the expression
obtained by use of a programming software:

ProrosiTiON 4

o = Z,: 1 N*(38, + 86, — Bibr) — N*(Br + 1260 + 25,3 +67 +1)
(L+ N(Be + 0 — 1))*(N — 1)
—N?(38 — 46k + Bibi) + N(Br — 5) + 2
(L4+ NG + 6. — 1))2(N — 1)?
As mentioned above, a simple programming software easily computes

a numerical comparison for deciding between two equivalent solutions
and p'.

+
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5. CONCLUSION

Generating the first order hierarchy, our models allows a reasoned choice
of solutions for the functioning of some distributed-algorithms. This choice
by first order hierarchy, which possibly leads to equivalent solutions, is
extended by second order hierarchy. Thus, we developped the necessary
theoretical tools to the second order hierarchy, illustrated by the examples
in Section 4.

Note that, the analytical comparison between two solutions in the second
order hierarchy is not always possible. However, it could be easily done
numerically by a programming softwaree( Maple).

Other problems already studied by our model: namely the dining
philosphers problem, the mutual exclusion problem, the multi-way-
Rendezvous problem, could be easily extended by using the same method
(with adaptations to the various context) formalized in the present article.
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