
HAL Id: hal-00465661
https://hal.science/hal-00465661v2

Submitted on 6 Dec 2013 (v2), last revised 11 Dec 2013 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fair and Reliable Self-Stabilizing Communication
Colette Johnen, Ivan Lavallee, Christian Lavault

To cite this version:
Colette Johnen, Ivan Lavallee, Christian Lavault. Fair and Reliable Self-Stabilizing Communication.
Parallel Processing Letters, 2000, 10 (2), pp.51–59. �hal-00465661v2�

https://hal.science/hal-00465661v2
https://hal.archives-ouvertes.fr

Fair and Reliable

Self-Stabilizing Communication

Colette JOHNEN a Ivan LAVALLÉE b Christian LAVAULT c ∗

a
LRI-CNRS Université Paris-Sud

b
LRIA-Paradis, Université Paris 8

c
LIPN, CNRS UPRES-A 7030, Université Paris-Nord

Abstract

We assume a link-register communication model under read/write atomicity, where every
process can read from but cannot write into its neighbours’ registers. The paper presents
two self-stabilizing protocols for basic fair and reliable link communication primitives. The
first primitive guarantees that any process writes a new value in its register(s) only after
all its neighbours have read the previous value, whatever the initial scheduling of processes’
actions. The second primitive implements a “weak rendezvous” communication mechanism
by using an alternating bit protocol: whenever a process consecutively writes n values
(possibly the same ones) in a register, each neighbour is guaranteed to read each value from
the register at least once.

Both protocols are self-stabilizing and run in asynchronous arbitrary networks. The goal
of the paper is in handling each primitive by a separate procedure, which can be used as a
“black box” in more involved self-stabilizing protocols.

Keywords: Self-stabilization, communication primitive, read/write atomicity, rendezvous,
liveness

1 Introduction

A self-stabilizing system which is started from an arbitrary initial configuration, regains its
consistency and demonstrates legal behaviour by itself, without any outside intervention. Con-
sequently, a self-stabilizing system needs not be initiated to any configuration, and can recover
from transient faults. More precisely, it can recover from memory corruptions and copes with
processors or channels crashes and recoverings (i.e., dynamic networks).

1.1 The Communication primitives

In the paper (see also [19]), we present fair and reliable self-stabilizing communication primitives
in the link-register model. Communication between two neighbours (A and B) is carried out
by the use of two sets of communication registers called registers: rAB and rBA. Process A can
write in the registers of rAB and each process A and B can read from the registers of rAB . The
registers support read and write atomic operations.

∗Corresponding author: LIPN, CNRS UPRES-A 7030, Université Paris-Nord, 99, Av. J.-B. Clément 93430
Villetaneuse, France. Email: lavault@lipn.univ-paris13.fr

1

The communication primitives allow any process which writes a value in its own register
(say Write) to make sure that every neighbour eventually reads that latter value before writing
another value in the Write register, whatever the initial scheduling of processes’ actions. The
self-stabilizing protocols for these basic communication primitives run on dynamic asynchronous
arbitrary networks.

The first primitive guarantees that any process A writes a new value in its register(s) WriteAB

only after its neighbour B has read the previous value. Notice that when A writes n times
the same value consecutively in the register WriteAB, the primitive ensures that B eventually
copies this value at least once. This primitive simulates self-stabilizing reliable message-passing
communications in the link-register asynchronous model. It guarantees that a message, that is
the value of the register Write, is eventually received: the value is eventually known from the
neighbours’ process.

The rendezvous mechanism (as defined in [16]) synchronizes communications, i.e., the write

and read operations are performed in and from the same register. When Process A writes a
value in its register WriteAB, it cannot perform any other action until process B has completed
a read operation from the register WriteAB. The second communications primitive is a self-
stabilizing “weak rendezvous”. After performing a write operation in its register WriteAB, the
process A cannot perform but some specific actions, as long as process B has not completed a
read operation from WriteAB. Therefore, if A consecutively writes n values (possibly the same
ones) in the register WriteAB, the primitive guarantees that B eventually copies each value at
least once. Incidentally, this protocol also maintains a weak scheduling between processes in
arbitrary networks: if A writes n times the same value in WriteAB, the value will be read at
least n times.

Each such very basic primitive may prove useful as a communication “black box” in designing
more involved distributed self-stabilizing protocols.

1.2 Related Works en Results

A deterministic self-stabilizing “balance-unbalance” mechanism on two processes systems under
read/write atomicity is presented in [12] and in [13]. The two processes are not executing the
same code. The one executes the balance code: when both processes have the same color,
it changes color. The other executes the unbalance code: when both processes have not the
same color, it changes color. In [12], this mechanism is used to guarantee that each process has a
mutual exclusion access to a critical section, and in [13], it is used to ensure synchronization of the
processes. In both cases, this mechanism provides strong synchronization: between two “actions”
of a process, the other process cannot perform but only one “action”. In [12, 13], the two processes
protocol is used to design a mutual exclusion algorithm (global synchronization) on tree networks.
As claimed in [12, 13], the balance-unbalance mechanism cannot be extended to any network
topology, since there exist no deterministic self-stabilizing synchronization protocols in uniform
arbitrary networks. On the other hand, a self-stabilizing synchronization on unidirectional rings
is provided in [10] through the deterministic token circulation mechanism: between two actions
of a process its neighbours cannot perform but only one action.

Any self-stabilizing reset protocol [5, 2, 8] can be combined with the protocol in [6] to design a
self-stabilizing synchronizer. General self-stabilizing synchronizers are presented e.g. in [9, 7, 20].
Global self-stabilizing synchronizers for tree networks are also proposed in [13, 3, 11]. A self-
stabilizing local synchronizer, that synchronizes each node in a tree network with its neighbours
is presented in [18].

2

In [4], Anagnostou and Hadzilacos present a self-stabilizing data link protocol under the
read/write atomicity model. Their protocol uses the balance-unbalance mechanism in order to
synchronize operations performed on a register (between two write operations in the register
there is only one read operation from that register). No proof of the protocol is given in [4]. For
instance, the authors do not explain how the data link protocol can guarantee starvation-freeness.

By contrast, our primitives use no balance-unbalance mechanism (but the alternating-bit
mechanism in the second primitive). Thus, they can be used in any network topology.

In the recent literature, several communication problems in the message-passing model have
been addressed. A self-stabilizing communication protocol for two-way handshake is presented
in [15], and a self-stabilizing version of the alternating-bit protocol is given in [1].

Section 2 describes our model with the basic assumptions. In Section 3, we present the
general principle of our solution for a two processes system. The generalization to n processes
in arbitrary networks yields the Read Checking self-stabilizing protocol, which is presented in
Section 4. Section 5 is devoted to the proof of liveness and correctness of the Read Checking
protocol. Section 6 presents the weak rendezvous protocol. Finally, the paper ends with few
concluding remarks.

2 Model and Requirements

Although distinct from the one described in [12], our model relies on close requirements and as-
sumptions, especially in terms of communication (e.g., link registers, read/write atomicity, etc.).
A distributed system consists of n processes denoted A, B, etc. Each process resides on a node
of the system’s communication graph (or network). Two processes which reside on two adjacent
nodes of the network are called neighbours. We model distributed self-stabilizing systems as a
set of (possibly infinite) state machines called processes. Each process can only communicate
with the subset of processes consisting of its neighbours. We assume a link-register communica-
tion model under read/write atomicity [12]. Each link between any two neighbours A and B is
composed of two pairs of registers1, denoted (WriteAB , ReadAB) and (WriteBA, ReadBA), and
belonging to A and B, respectively. Process A can read from the two registers of B, WriteBA

and ReadBA, but cannot write into them. Similarly, process A cannot write but in its own
registers, WriteAB and ReadAB, to communicate with B.

A configuration of the system is the vector of states of all processes. The state of a process
is the value of its internal variables and the contents of its registers.

2.1 Schedulers, Demons and Computation

An atomic step is the “largest” step which is guaranteed to be executed uninterruptedly. A
process uses read/write atomicity if each atomic step contains either a single read operation or
a single write operation but not both. The system behaviour is modelled by the interleaving
model in which processes are activated by a scheduler. The scheduler is regarded as a fair ad-
versary: in a self-stabilizing system, all possible fair executions are required to converge to a
correct behaviour. A fair scheduler shall eventually activate any process which may continu-
ously perform an action. A common scheduler activates either processes one by one (central
demon) or subsets of processes (distributed demon). Under read/write atomicity, both central
and distributed schedulers/demons are “equivalent”, in the sense that any execution performed

1In our model, the registers are physical (hardware) devices. Reading from or writing in one register is an
atomic action according to the design of the microprocessor.

3

under a distributed scheduler may be simulated by a central one. A process which can perform
an atomic step into a configuration c, is said to be enabled at c. During a computation step,
one or more processes execute an atomic step. A computation of a protocol P is a sequence of
configurations c1, c2, . . . such that, for i = 1, 2, . . ., the configuration ci+1 is reached from ci by
one computation step. A computation is said to be maximal either if the sequence is infinite, or
if it is finite and no process is enabled in the final configuration. A problem is a predicate defined
on computations.

2.2 Self-Stabilization

The protocol P is self-stabilizing for the problem Π if and only if there exists a predicate L
defined on configurations such that

all computations reach a configuration that satisfies L (convergence) and

all computations, from L, satisfy problem Π (correctness).

Notice that the maximal computations of a self-stabilizing protocol may be finite; in that case
the algorithm is said to be silent [14]. Most self-stabilizing algorithms which build spanning tree
or elect a leader are silent [17]. Self-stabilizing protocols offers full and automatic protection
against all transient process failures, no matter how much the data have been corrupted: e.g.,
all registers values may be fully corrupted.

So, whatever the registers values, our protocols secure the transfer of information between
any two pair of neighbours after a “certain delay time”.

3 Principle of the Solution

Let a two processes system, consisting in two neighbouring processes A and B equipped with
their two pairs of registers (see Section 2). The principle of the solution for A relies on the
following basic idea. Under read/write atomicity, A systematically keeps reading the value from
WriteBA and copies out this value in ReadAB (i.e., A reads the message sent by B and copies
out the message in ReadAB to inform B that its message is received). Besides, A systematically
keeps reading the value from ReadBA and compares it to the value of WriteAB. When both
values are equal, A finds out that B somehow read that value (i.e., the information has been
transmitted), So it can stop reading and can write again in WriteAB.

while true do
A writes in WriteAB

repeat
A reads from WriteBA;
A writes out the value of WriteBA into ReadAB;
A reads from ReadBA

until ReadBA = WriteAB

endwhile

Fig. 1. The basic 2-processes protocol for A.

4

After A has written a new value in WriteAB, A becomes “weakly locked” until B receives the
message (ReadBA = WriteAB). When A is inside the repeat loop, it can only perform some
actions, for instance, A cannot write in its register WriteAB.

In a self-stabilizing setting, A may then proceed with the execution of its own code, since
the protocol makes it sure that B did read the value from WriteAB (at least, it results from
the protocol that A knows for sure that the values in ReadBA and WriteAB are identical). The
corresponding code sequence for B is of course fully symmetrical to the basic protocol for A: the
roles of A and B (i.e. the registers’ names) have simply to be inverted within the above protocol
in Fig. 1. Thus, a two-way communication is established between A and B.

4 The Protocol in Arbitrary Networks

The generalization of the above protocol to a system of n > 2 processes constituting an arbitrary
network is now easy. We still assume each pair of neighbouring processes in the network to
be equipped with its two pairs of registers on their common link. In order to simplify the
use of variables, we call “message” the “information” exchanged between neighbours during the
execution of the protocol.

A protocol which stabilizes on a single link may not generalize to a protocol which stabilizes
on all links of a (finite) network, e.g. by having each process execute the “link-protocol” in a
round robin manner on each individual link adjacent to it. Taking the n-processes system pair
by pair may cause a deadlock: for all i ∈ {0, . . . , n−1}, Ai may be waiting for Ai+1 to read from
WriteAiAi+1

, with An = A0.

4.1 Notation

Write register for A: ReadABi
is the register in which A writes the value of the last message

read by A and sent by Bi.

Read register for A: WriteBiA is the register in which Bi writes the message to be
transmitted to A, and ReadBiA is the register in which Bi writes the value of the last message
read by Bi and sent by A.

Write and read register for A: WriteABi
is the register in which A writes the value of

the message which is to be sent to its ith neighbour Bi.

Function geti for A: geti takes no argument and returns the next message to be sent to
the ith neighbour of A (geti is a helper function added to A).

4.2 The Read Checking Protocol

On the same assumptions for the model (read/write atomicity) and for the scheduler’s actions
(rules of activations of processes and fairness) as given in Section 2, the specification of the self-
stabilizing Read Checking protocol in arbitrary networks for a process A, with neighbours Bi’s
(1 ≤ i ≤ NA), is as follows.

5

constant NA : the number of neighbours of A;
var si : message to be sent to the ith neighbour of A;

ri : message sent from the ith neighbour of A;
vali : value of the last message sent from A and read by the ith neighbour of A;

while true do

for i = 1 to NA do
write(WriteABi

, geti);
endfor

repeat
for i = 1 to NA do

ri ← read(WriteBiA);
write(ReadABi

, ri);
vali ← read(ReadBiA);
si ← read(WriteABi

);
endfor

until (∀i ∈ [1, NA] vali = si)

endwhile

Fig. 2. The Read Checking protocol for A.

5 Proof of the Read Checking Protocol

5.1 Proof of Liveness

Lemma 5.1 Let γ be any configuration of an arbitrary network of processes on which the read
checking protocol is performed. All processes are enabled in configuration γ.

Proof. Let A be a process, its program counter is such that
either A is not in the repeat loop, and hence A can write into one of its Write registers;
or A is in the repeat loop, and hence A can either read from one of its neighbours’ register,

or write into one of its Read registers. Thus, in any configuration, A can perform an atomic step
(if chosen by the scheduler). �

Lemma 5.2 Every execution of the protocol on any arbitrary network is infinite.

Proof. From Lemma 5.1, whatever the current configuration, all processes can execute
an action. Hence, every configuration is deadlock-free and no execution can reach a deadlock
configuration. Therefore, every execution is infinite. �

Lemma 5.3 Whatever the execution, every process performs an infinite number of actions.

Proof. From Lemma 5.2, every execution is infinite. From Lemma 5.1, in each configuration
that is reached every process can perform an action. The scheduling of processes’ actions is fair:
if a process can always execute an action, then the process finally performs an action. Thus, by
fairness, every process is performing an infinite number of actions, whatever the execution. �

6

Definition 5.1 Let A and B be two neighbouring processes. A is said to allow B to write iff
ReadBA = WriteAB. Let A be a process and let NA denote the number of neighbours of A (NA

is the degree of A in the network).

Definition 5.2 Let A and B be two neighbouring processes. The update of the register
ReadAB is the sequence of the two following actions performed by B: ri ← read(WriteAB) ;
write(ReadBA, ri).

A wrong writing is a write action in the register ReadBA which is not performed within the
context of an update.

The correct writing into the register ReadBA is a write action executed within the context of
an update.

Lemma 5.4 Let A be a process with its program counter in the repeat loop and let B be a
neighbour of A. Whatever the current configuration and the execution, the processes system exe-
cuting the protocol either eventually reaches a configuration in which B allows A to write, or A
exits the repeat loop.

Proof. Suppose B never allows A to write and A never exits the repeat loop. Then A never
changes the value in its register WriteAB. Under these conditions, updating its register ReadBA

is a writing permission given to A by B (since between the reading of the value from the register
WriteAB and the writing of that value in ReadBA, the register WriteAB does not change value).

Whatever the current configuration and the execution, if the program counter of B is not
within the repeat loop, it takes B less than NB actions to enter the repeat loop. Once B enters
the loop, after 4NB actions, it updates all its Read registers, and thus allows A to write.

Whatever the current configuration and the execution, if the program counter of B is within
the repeat loop, it takes B at least 4NB actions either to exit the loop, or to update its register
ReadAB.

Whatever the execution, B performs an infinite number of actions (by Lemma 5.4) and
eventually, either B allows A to write, or A exits the repeat loop. �

Lemma 5.5 After executing its first action, no process can perform a wrong writing.

Proof. Process A can perform at most one wrong writing, and it may only happen when
initially its program counter is set up after reading from the Write register and before writing in
the Read register. Once this write action is executed, each write action of A in a Read register
is performed within the context of an update. �

Lemma 5.6 Let A and B be two neighbouring processes. After B executes its first action, if B
allows A to write, then only the writing of A in its register WriteAB may be able to cancel that
permission.

Proof. Nothing but writing into the register ReadBA or into the register WriteAB can cancel
the writing permission. After B executes its first action, from Lemma 5.5 there is no wrong
writing anymore. Hence, any writing into the register ReadBA is executed within the context of
a register’s update. This update is such that the permission remains given to A, unless A writes
into its register ReadBA during the updating process or after the last update. �

Theorem 5.1 Let A be a process. Whatever the execution, the system of processes which per-
forms the protocol reaches a configuration in which A is not within the repeat loop anymore.

7

Proof. Suppose A remains within the repeat loop forever; then A never writes into its
Write registers. Every 4NA actions, A is checking out the loop exiting condition. Whatever the
execution, process A performs an infinite number of actions. Hence, A checks out the repeat
loop exiting condition an infinite number of times. In particular, A tests the exit condition an
infinite number of times after all its neighbours have already executed an action.

If at some test all neighbours of A allow its writing, then, at the next test, all its neighbours
keep on giving A permission to write (by Lemma 5.6). In the meanwhile, A has updated its
variables ri and si, and when the test happens, the loop exiting condition is satisfied: A exits
the loop.

Process A stays within the loop infinitely long in the case when, at each test, at least one
neighbour does not allow its writing. Once a neighbour has allowed A to write, this neighbour
cannot withdraw permission from A. Therefore, there exists at least one neighbour of A which
never allows A to write. Now from Lemma 5.4, this is impossible, and the theorem follows.
Therefore, the protocol is deadlock-free. �

Corollary 5.1 Let A be a process. Whatever the execution, A writes an infinite number of times
into all its Write registers.

Proof. If A is out of the loop, then it takes A less than NA actions to enter the loop. When it
is within the repeat loop, then by Theorem 5.1, A cannot stay infinitely long. NA actions after
exiting the loop, A writes into all its Write registers and reenters the repeat loop. �

5.2 Correctness Proof of the Read Checking Protocol

Theorem 5.2 Let A and B be two neighbouring processes. After B executes its first action and
after any writing in the register WriteAB, A can write in the register WriteAB only if B allows
it, i.e. ReadBA = WriteAB (see Definition 5.1).

Proof. Process B is the ith neighbour of A. Between each of its two writings, A enters
the repeat loop and exits the loop. Once A is within the loop, the register WriteAB does not
change value. The repeat loop’s code is such that when the loop is exited, the value of the local
variable si of A and the value of the register WriteAB are equal. In the loop, the local variable
ri of A takes the value of the register ReadAB. The value of the register ReadBA may change
after this assignment and before the loop is exited. Thus, when the loop is exited two distinct
cases have to be considered.

1. No update of the register ReadBA happens between the reading from that register and the
loop exit. Then, si = WriteAB = vali = ReadBA, and B allows the writing of A.

2. Writings into the register ReadBA happen between the reading from that register and
the loop exit. However, the latter writings are performed within the context of updat-
ing. Hence, each time the value has changed, we have that ReadBA = WriteAB and, by
Lemma 5.6, the equality holds while A does not rewrite into the register WriteAB.

�

After the writing of a value in the register WriteAB, the first primitive guarantees that A

will only write in the register WriteAB if B allows it. In the case when the value is new, B must
perform the action read(WriteAB) to allow the writing.

8

Summing up the Results

1. The protocol is live: every process is updating all its Write registers an infinite number
of times.

2. The protocol is correct: no process can write distinct values twice in a row in its Write
register without any previous reading from that register.

6 Weak Rendezvous Protocol

In this section, we present a self-stabilizing weak rendezvous communications primitive.
Recall that The rendezvous mechanism (as defined in [16]) synchronizes communication in

the link-register asynchronous model of distributed system: each write or read operation is
performed in and from the same register. When Process A writes a value in its register WriteAB,
it cannot perform any other action until process B has completed a read operation from the
register WriteAB.

The weak rendezvous mechanism only requires that between two write operations performed
by a process A in WriteAB, process B performs at least one read operation from WriteAB.
Therefore, if A writes a value n consecutive times (even the same ones in each row) in the
register WriteAB, the primitive guarantees that B copies each of the n values at least one time,
once the system is stabilized.

The weak rendezvous mechanism is based upon the alternating bit technique. After writing
in its register WriteAB, process A changes the value of the bit-register ControlAB . A can write
again in the register WriteAB only after B has copied the new value of ControlAB into the
register CheckControlBA. And B copies the value only after reading in the register WriteAB.

The liveness proof of the weak rendezvous protocol is similar to the proof of the read checking
protocol. The following Theorem 6.1 proves the correctness of the weak rendezvous protocol.

Theorem 6.1 Let A and B be two neighbouring processes. After B executes its first action and
after the xth (≥ 2) writing in the register WriteAB, B reads the value from WriteAB before the
next writing in WriteAB.

Proof. As shown in Theorem 5.2, we can establish that before the xth writing in the
register WriteAB, ControlAB = CheckControlBA. After the writing in the register WriteAB, A

changes the value in ControlAB and enters the repeat loop (ControlAB 6= CheckControlBA).
A stays within the loop as long as B does not copy the value of ControlAB into the register
CheckControlBA. Finally, B copies the value only after reading in the register WriteAB. �

The weak rendezvous protocol maintains a weak scheduling of the communication between
processes in the following sense. We call a weak scheduling of the communication between process
A and all its NA neighbours the property that A can write twice into its registers WriteABi

, only
whenever all the Bi’s did read from the register WriteABi

in the meantime (1 ≤ i ≤ NA).

9

constant NA : the number of neighbours of A;
var ri : message sent from the ith neighbour of A;

bi : alternate bit sent from the ith neighbour of A;
ci : alternate bit sent from A to the ith neighbour of A;
li : value of the last alternate bit sent from A and read by the ith neighbour of A;

while true do
for i = 1 to NA do

write(WriteABi
, geti);

ci ← read(ControlABi
);

write(ControlABi
, (ci + 1) mod 2);

endfor

repeat
for i = 1 to NA do

ri ← read(WriteBiA);
bi ← read(ControlBiA);
write(CheckControlABi

, bi);
ci ← read(ControlABi

);
li ← read(CheckControlBiA);

endfor

until (∀i ∈ [1, NA] ci = li)

endwhile

Fig. 3. The weak rendezvous protocol for A.

7 Concluding Remarks

The paper presents two very basic general protocols for the design of fair and reliable self-
stabilizing communication primitives. Both protocols work in arbitrary networks and also ensure
minimal scheduling properties, whatever the initial configuration of the system of processes and
the activations by the scheduler.

Each primitive can be used as a “black box” by a separate protocol, handling the procedures
in more involved self-stabilizing algorithms. Thus, the protocols may be modified according
to the designer’s will and needs: e.g., in specific topologies of networks a weak scheduling of
communications may impose fewer neighbours to read from the registers. For example, with only
one neighbour, a point to point self-stabilizing pseudo-rendezvous mechanism may be completed.
Along the same lines, the protocols also simulate reliable self-stabilizing message-passing in
asynchronous distributed systems.

Although the paper does not concern itself with complexity measures, it is worth mentioning
that when time is measured by some appropriately defined round complexity, the stabilization
time of the read checking protocol is O(1).

10

References

[1] Y. Afek, G.M. Brown, Self-Stabilization of the Alternating-Bit Protocol, in the Proc. of the
Symposium on Reliable Distributed Systems, (1989) 80-83.

[2] Y. Afek, S. Kutten, M. Yung, Memory-efficient self-stabilization on general networks, in the
Proc of the 4th International Workshop on Distributed Algorithms and Graphs (WDAG’90),
LNCS 486, (Springer-Verlag 1990) 15-28.

[3] L.O. Alima, J. Beauquier, A.K. Datta, S. Tixeuil, Self-stabilization with global rooted syn-
chronizers, in the Proc. of the 18th International Conference on Distributed Computing
Systems, (1998) 102-109.

[4] E. Anagnostou, V. Hadzilacos, Tolerating Transcientand Permanent Failures, in Proc. of
the 7th Int. Workshop on Distributed Algorithms (WDAG’93), LNCS 725, (Springer-Verlag
1993) 174-188.

[5] A. Arora, M.G. Gouda, Distributed reset, IEEE Transactions on Computers, vol. 43 (1994)
1026-1038.

[6] B. Awerbuch, Complexity of network synchronization, J. of the Association for Computing
Machinery, vol. 32, No. 4 (1985) 804-823.

[7] B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, G. Varghese, Time optimal self-
stabilizing synchronization, in the Proc. of the 25th Annual ACM Symposium on Theory of
Computing, (1993) 652-661.

[8] B. Awerbuch, B. Patt-Shamir, G. Varghese, Self-Stabilization by Local Checking and Correc-
tion, in the Proc. of the 31st Annual IEEE Symposium on Foundation of Computer Science,
(1991) 268-277.

[9] B. Awerbuch, G. Varghese, Distributed program checking: a paradigm for building self-
stabilizing distributed protocols, in the Proc. of the 31st Annual IEEE Symposium on Foun-
dations of Computer Science, (1991) 258-267.

[10] J. Beauquier, M. Gradinariu, C. Johnen, Memory space requirements for self-stabilizing
leader election protocols, in Proc. of the 18th Annual ACM Symposium on Principles of
Distributed Computing, (1999) 199-208.

[11] A. Bui, A.K. Datta, F. Petit, V. Villain, Space optimal and fast self-stabilizing pif in tree
networks, Technical Report RR. 98-06, LaRIA, Université de Picadie (1998).

[12] S. Dolev, A. Israeli, S. Moran, Self-Stabilization of Dynamic Systems Assuming only
Read/Write Atomicity, Distributed Computing, 7 (1993) 3-16.

[13] S. Dolev, A. Israeli, S. Moran, Uniform dynamic self-stabilizing leader election, IEEE Trans-
actions on Parallel and Distributed Systems, 8:4 (1997) 424-440.

[14] S. Dolev, M.G. Gouda, M. Schneider, Memory requirements for silent stabilization, in Proc.
of the 15th Annual ACM Symposium on Principles of Distributed Computing, (1996) 27-34.

[15] M.G. Gouda, N. Multari, Stabilizing Communication Protocols, IEEE Transactions on
Computers, 40 (1991) 448-458.

11

[16] C.A.R. Hoare, Communicating Sequential Processes, Communication of the ACM, vol. 21,
No 8 (1978) 666-677.

[17] S.T. Huang, N.S. Chen, A self-stabilizing algorithm for constructing breadth-first trees,
Information Processing Letters, 41, 1992, 109-117.

[18] C. Johnen, L.O. Alima, A.K. Datta, S. Tixeuil, Self-stabilizing neighborhood synchronizer in
tree networks, in Proc. of the 19th IEEE International Conference on Distributed Computing
Systems, 1999.

[19] I. Lavallée, C. Lavault, C. Johnen, Exorcisme ou communication fiable et équitable autosta-
bilisée, RR. 001, LRIA, Université Paris 8 (Jan. 1998).

[20] G Varghese, Self-stabilization by counter flushing, in Proc. of the 13th Annual ACM Sym-
posium on Principles of Distributed Computing, (1994) 244-253.

12

