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Embeddings into the Pancake Interconnection Network

Owing to its nice properties, the pancake is one of the Cayley graphs that were proposed as alternatives to the hypercube for interconnecting processors in parallel computers. In this paper, we present embeddings of rings, grids and hypercubes into the pancake with constant dilation and congestion. We also extend the results to similar efficient embeddings into the star graph.

Introduction

Akers and Krishnamurthy [START_REF] Akers | A group theoretic model for symmetric interconnection networks[END_REF] proposed the pancake and the star as alternatives to the hypercube for interconnecting processors in parallel computers. These networks have some nice properties: edge and vertex symmetry (strong symmetry), small degree and diameter, extensibility, high connectivity (robustness), easy routings and broadcasting, etc. To compare favorably with the hypercube, these graphs must also offer good and simple simulations of other interconnection networks. The problem of simulating known networks by the star graph has been extensively studied. For example, Nigam, Sahni and Krishnamurthy [START_REF] Nigam | Embedding Hamiltonians and Hypercubes in Star interconnection Graphs[END_REF] consider embeddings of rings and hypercubes in star graphs. Miller, Pritkin, and Sudborough [START_REF] Miller | Near Embeddings of Hypercubes into Cayley Graphs on the Symmetric Group[END_REF] study one-to-one and one-to-many embeddings of hypercubes into Cayley graphs. Jwo, Lakshmivarahan, and Dhall [START_REF] Jwo | Embedding of Cycles and Grids in Star Graphs[END_REF], Qiu, Meijer, and Akl [START_REF] Qiu | On the Cycle Structure of Star Graphs[END_REF][START_REF] Qiu | On Some Properties and algorithms for the Star and Pancake Interconnection Networks[END_REF] consider embeddings of grids in stars. Bouabdallah, Heydemann, Opatrny and Sotteau [START_REF] Bouabdallah | Embedding complete binary trees into star networks[END_REF] present embeddings of complete binary tree into star networks. Azevedo, Bagherzadeh and Latifi [START_REF] De Azevedo | Variable-Dilation Embeddings of Hypercubes into Star Graphs: Performance Metrics, Mapping Functions, and Routing[END_REF] propose embeddings of hypercubes in star graphs.

However, embedding interconnection networks into the pancake has received less attention. In this paper, we focus on the problem and present embeddings of rings, grids and hypercubes into the pancake with constant dilation and congestion.

The paper is organized as follows. In the Preliminaries, we state the definitions and the group-theoretic terminology that are used in this paper. Section 3 is devoted to embeddings of rings and arrays into the pancake. In Section 4, we present embeddings of grids into the pancake and the star, and in Section 5, we consider embeddings of hypercubes (binary and generalized hypercubes) into the pancake; the results are extended to the star. The concluding Section 6 briefly outlines possible improvements and open problems.

Preliminaries

Following [START_REF] Akers | A group theoretic model for symmetric interconnection networks[END_REF][START_REF] Biggs | Algebraic Graph Theory[END_REF], we first present the group-theoretic model used to design and analyze the pancake. Next we define the pancake network itself.

Definition 1 Let G be a finite multiplicative group. Let I be the identity in G and G a set of generators of G with the following two properties E) is defined as a simple graph, whose vertex-set and edge-set are

(i) (∀g ∈ G) g -1 ∈ G; (ii) I / ∈ G. Given (G, G), a Cayley graph (V,
V = G and E = {(u, v) ∈ V × V | u -1 v ∈ G}.
It is easily seen that Cayley graphs (V, E) are finite, connected, undirected, devoid of multiple edges, loop-free, and symmetric. Since interconnection networks may be viewed as an undirected graph, we will use the terms graph and (interconnection) network interchangeably.

Notation. In the remainder of the paper, we use the usual terminology of basic group theory and graph theory. Since we only consider finite groups, the groups are mainly represented as permutation groups. The following notation is used:

• Let X and Y be two sets, X \ Y denotes the relative complement of the set Y with respect to the set X.

• S n is the symmetric group on n symbols, i.e. on {1, . . . , n} for simplicity. The multiplication in S n is the composition of permutations.

A permutation π ∈ S n is denoted by x 1 x 2 • • • x n , where we have π(k) = x k for k = 1, . . . , n. This representation is referred to as the standard representation of a permutation, to distinguish it from other representations that are introduced further. The identity permutation on n symbols is thus

I = 123 • • • n.
• τ denotes the transposition permutation and σ(ℓ, m) denotes the cyclic permutation of m positions over the first ℓ symbols:

σ(ℓ, m) = (ℓ -m + 1) • • • ℓ1 • • • (ℓ -m)(ℓ + 1) • • • n.
• Symbols are denoted by lower case letters, and blocks of symbols by upper case letters. No ambiguity may rise from the notation I, since I is (by definition) the unique block of symbols 123 • • • n.

• A permutation π = x 1 x 2 • • • x i-1 x i x i+1 • • •
x n can be represented by blocks of symbols instead of its symbols themselves. For example, we can write π = A B, where

A = x 1 x 2 • • • x i-1 x i and B = x i+1 • • • x n .
For any block of symbols A, Ā denotes the block obtained by reversing

A. For example, if ρ = x i x i-1 • • • x 2 x 1 x i+1 • • • x n , we write ρ = Ā B,
where A and B are the blocks defined above.

Definition 2 [1]

The pancake network P n of dimension n is the Cayley graph (S n , E), whose set of generators is

G = {g i ∈ S n | g i = i(i -1) • • • 321(i + 1) • • • n, i = 2, . . . , n}.
In other words, the n! vertices of P n are labeled with the permutations on n symbols (of S n ), and any two vertices of

P n , u = x 1 x 2 • • • x n and v = y 1 y 2 • • • y n , are connected (i.e. (u, v) ∈ E) iff
there exists an integer i, 2 ≤ i ≤ n, such that y j = x i-j+1 for j = 1, . . . , i, and y j = x j for j > i.

Clearly, there are (n -1) generators, one for each value of i, 2 ≤ i ≤ n, and |G| = n -1. It is easy to show that the Cayley network P n has n! vertices, each with degree |G| = n -1: P n is (n -1)-regular.

When a permutation ρ is obtained from a permutation π = x 1 • • • x n by applying a generator g i ∈ G, we write

x 1 • • • x i • • • x n → x i • • • x 1 • • • x n .
P n can be decomposed into n subpancakes each of dimension (n -1). Each of the (n-1)! vertices of each subpancake has a block representation of the form Ai, where A ∈ S n-1 is a "permutations block" on the (n-1) symbols {1, . . . , n}\{i}, for a given i ∈ {1, . . . , n} which depends on the considered subpancake. As a consequence, each of the n subpancakes of P n (one for each value of i, 1 ≤ i ≤ n) can be represented with two distinct notations depending on the context:

1. For a given integer i (1 ≤ i ≤ n), P n-1,i denotes the subpancake defined from the above representation, i.e. i is the last symbol of each vertex/permutation of P n-1,i .

2. For a given permutation π ∈ P n-1,i (1 ≤ i ≤ n), P n-1 (π) denotes the subpancake defined from the element π, i.e. π is the representation of a vertex of that subpancake.

A subpancake of dimension k is called a k-pancake.

Definition 3 The star network of dimension n (or n-star) is the Cayley graph whose set of generators is

G = {τ (1, i) | i = 1, . . . , n}
, where τ ∈ S n is the transposition permutation. In other words, the n! vertices of the n-star are labeled with the permutations on n symbols, and each vertex u of the n-star, u

= x 1 x 2 • • • x n is connected to the n -1 vertices v such that v = x i x 2 • • • x i-1 x 1 x i+1 • • • x n , for i = 2, . . . , n.
Now recall the definition of an embedding of a graph into another graph.

Definition 4 Given two undirected connected graphs

H 1 = (V 1 , E 1 ) and H 2 = (V 2 , E 2 ) such that |V 1 | ≤ |V 2 |, the embedding of H 1 into H 2 maps V 1 into V 2 .
The ratio |V 2 |/|V 1 | is the expansion of the embedding. The dilation of any edge (x 1 , y 1 ) ∈ E 1 , is the length of the path [x 2 , y 2 ], where x 1 → x 2 and y 1 → y 2 in the embedding, respectively. The dilation of the embedding is the maximum over all dilations. The congestion of an edge (x 2 , y 2 ) ∈ E 2 is the number of edges (x 1 , y 1 ) ∈ E 1 whose image by the mapping contains (x 2 , y 2 ). The congestion of the embedding is the maximum over all congestions.

Embeddings of Rings

In this section we consider rings of size k! (3 ≤ k ≤ n). The dilation and the congestion of embeddings of such rings into P n are shown to be 1.

Proposition 1 For any integer i, 2 ≤ i ≤ n -1, and any generator g

i ∈ G as defined in Definition 2, g i g i+1 • • • g i g i+1 i+1 = I. Proof. Let a permutation π = x 1 x 2 • • • x i-1 x i x i+1 • • • x n = A x i+1 B. Then ρ = π g i = Ā x i+1 B, and
π g i g i+1 = ρ g i+1 = x i+1 A B = x i+1 x 1 x 2 • • • x i-1 x i x i+2 • • • x n .
In other words, g i g i+1 is the cyclic permutation σ(i+1, 1), and since σ(i+1, 1) i+1 = I, the result follows.

For any permutation π and any sequence of generators H = h 1 , . . . , h k , we denote by (π, H) the corresponding sequence of permutations π 0 , . . . , π k such that π 0 = π and π i = π i-1 h i , for all i = 1, 2, . . . , k.

Definition 5 For k = 2, . . . , n, the pancake sequence G k of order k is the sequence of generators recursively defined as follows:

(i)

G 2 = g 2 ; (ii) for k > 2, G k = G k-1 , g k , G k-1 , g k , . . . , G k-1
, where G k-1 occurs k times in the sequence.

Proposition 2 Given a permutation π ∈ S n , for k = 3, . . . , n, (π, G k ) defines a Hamiltonian cycle over the k-pancake containing π. In this Hamiltonian cycle, the vertices of each subpancake have adjacent locations.

Proof. The proof is by induction on k. Since the pancake is vertex transitive, we assume that π = I.

• Base (k = 3): Applying the generators of G 3 yields the following sequence of permutations:

I = 123 • • • n → 213 • • • n → 312 • • • n → 132 • • • n → 231 • • • n → 321 • • • n.
It is easily verified that all the elements of P 3 (I) belong to the sequence and that the last element of the list is connected to the first one through the generator g 3 .

• Induction step: Suppose that (π, G n-1 ) defines a Hamiltonian cycle over P n-1 (π). We first show that the permutation obtained by applying

G n-1 , g n , . . . , G n-1 , g n (h times) is (n -h + 1)(n -h + 2) • • • n12 • • • (n -h).
The property holds for h = 1 since the permutation is obtained from the sequence

12 • • • (n -1)n → (n -1) • • • 21n → n12 • • • (n -1).
Let us now suppose that the property holds up to h. The next step is then

(n -h + 1)(n -h + 2) • • • n12 • • • (n -h -1)(n -h) → (n -h -1) • • • 21n • • • (n -h + 1)(n -h) → (n -h) • • • n12 • • • (n -h -1).
Therefore, after applying G n-1 , g n , . . . , G n-1 , g n (h times), the permutation corresponds to a vertex of P n-1 (n -h). According to the induction step, the next G n-1 visits all the vertices of the subpancake P n-1 (n -h). Whence the result that all vertices of all the (n -1)-pancakes in P n are visited. The last visited vertex is (2

• • • n1) g n-1 = n • • • 21,
and this permutation is connected to I through g n : the proof is completed.

In the following, we still let π = I (w.l.o.g.). The order relation induced by the sequence (I, G n ) on permutations will be referred to as the ordering of the pancake sequence.

Example. Let n = 4. The list of vertices of P 4 ordered by the pancake sequence is:

1234 → 2134 → 3124 → 1324 → 2314 → 3214 → 4123 → 1423 → 2413 → 4213 → 1243 → 2143 → 3412 → 4312 → 1342 → 3142 → 4132 → 1432 → 2341 → 3241 → 4231 → 2431 → 3421 → 4321.
Theorem 1 easily follows.

Theorem 1 For k = 3, . . . , n, the ring of size k! can be embedded into the n-pancake with dilation 1 and congestion 1.

Proof. Immediate from Proposition 2. Given a Hamiltonian graph of order n, the corresponding ring can be embedded into that graph with dilation and congestion 1.

As a consequence of Theorem 1, we also have the Corollary 1 For ℓ such that ℓ ≤ n!, the linear array (line) of length ℓ can be embedded into the n-pancake with dilation 1 and congestion 1.

Embeddings of Grids

4.1 Embeddings of N 1 × N 2 Grids
Given any two positive integers N 1 and N 2 , we first consider embeddings of N 1 × N 2 grids with N 1 N 2 ≤ n! into P n and give a negative result.

Proposition 3

The N 1 × N 2 grid is not a subgraph of the n-pancake.

Proof.

The proof is by contradiction. The 2 × 2 grid is a subgraph of the N 1 × N 2 grid. Suppose the 2 × 2 grid were a subgraph of P n , then there would be two permutations X and Y , and four generators g i , g j , g ℓ , g k , with i = j, i = k, k = ℓ, such that Y = X g i and Y g k = X g j g ℓ . Hence, g i g k = g j g ℓ , which would imply that j = ℓ and k = i, or j = i and ℓ = k: a contradiction.

Lemma 1 For any two integers ℓ and m such that 0 ≤ m ≤ ℓ ≤ n, the cyclic permutation σ(ℓ, m) can always be built with two or three generators of the pancake.

Proof.

Let a permutation π =

x 1 • • • x ℓ-m x ℓ-m+1 • • • x ℓ x ℓ+1 • • • x n = ABC, with blocks A = x 1 • • • x ℓ-m , B = x ℓ-m+1 • • • x ℓ and C = x ℓ+1 • • • x n . Then, π σ(ℓ, m) = x ℓ-m+1 • • • x ℓ x 1 • • • x ℓ-m x ℓ+1 • • • x n = BAC,
and we have the following path joining π to π σ(ℓ, m): π = ABC → ĀBC → BAC → BAC = π σ(ℓ, m). The length of this path is 3 when 1 < m < ℓ-1, and it is 2 whenever m = 1 or m = ℓ-1.

Now from Lemma 1 we present an embedding of the n × (n -1)! grid in P n with constant dilation.

Theorem 2

The n × (n -1)! grid can be embedded in the n-pancake with dilation 7.

Proof. The first row of the grid is represented by the first (n-1)-pancake ordered from the pancake sequence. For 0 ≤ j ≤ (n -1)! -1, let π j be the vertex of the pancake corresponding to the node (0, j) on the grid. A node (i, j), with i = 0, is represented by π j σ(n, i). Now, considering two adjacent nodes on the grid, let us compute the distance between those vertices of the pancake that represent them.

• Two nodes (0, j) and (0, j + 1) are represented by two adjacent vertices of the pancake.

• Two nodes (i, j) and (i+1, j) are represented by the two vertices X = π j σ(n, i) and Y = π j σ(n, i + 1) = X σ(n, 1). According to Lemma 1, the distance between X and Y is 2.

• Two nodes (i, j) and (i, j+1) are represented by the two vertices Y 1 = π j σ(n, i) and Y 2 = π j+1 σ(n, i). Then, for a generator g k , π j+1 = π j g k . To compute the distance between Y 1 and Y 2 , two distinct cases (and two subcases) may arise:

-First case: π j = ABC, π j+1 = ĀBC and Y 1 = CAB. Then, Y 2 = C ĀB, and a path joining

Y 1 to Y 2 is CAB → Ā CB → A CB → C ĀB. The distance from Y 1 to Y 2 is 3.
-Second case: π j = ABC, π j+1 = B ĀC, and Y 1 = BCA. To obtain Y 2 , two subcases must be considered.

-First subcase:

Y 2 = B1 ĀC B2 . In this subcase, a path from Y 1 to Y 2 is Y 1 = B 1 B 2 CA → B2 B1 CA → B 2 B1 CA → Ā CB 1 B2 → CAB 1 B2 → CAB 1 B2 → B1 ĀC B2 = Y 2 . The distance from Y 1 to Y 2 is 6.
-Second subcase:

Y 2 = Ā1 C B Ā2 . In this last subcase a path from Y 1 to Y 2 is Y 1 = BCA 1 A 2 → Ā2 Ā1 C B → A 2 Ā1 C B → BCA 1 Ā2 → C BA 1 Ā2 → C BA 1 Ā2 → B CA 1 Ā2 → Ā1 C B Ā2 = Y 2 .
This last configuration yields a (maximal

) distance 7 from Y 1 to Y 2 .
The same method applies to the (n + (n -2) + (n -3) + • • • + (p + 1)) × p! grid, for p = 2, . . . , n -1; the following Theorem 3 shows that this grid can be embedded into P n with constant dilation. Note that the term (n -1) is omitted in the definition of the grid. Indeed, by Proposition 3, we already know that the

(n + (n -1) + (n -2) + • • • + (p + 1)) × p! grid (2 ≤ p ≤ n -1) is not a subgraph of P n . Theorem 3 For p = 2, . . . , n -1, the (n + (n -2) + (n -3) + • • • + (p + 1)) × p!
grid can be embedded in the n-pancake with dilation 4.

Proof.

The first row of the mesh is represented by the first p-pancake. The next (n -1) rows are obtained by applying the cyclic permutations σ(n, i) to the first row. The next (n -2) rows are obtained by applying the cyclic permutations σ(n -1, i) to the first row, etc. Finally, the last p rows are obtained by applying the cyclic permutations σ(p + 1, i) to the first row. The only new adjacent nodes to consider are X σ(k, k -1) and X σ(k -1, 1).

Let X = x 1 A x k-1 x k B. Then, X σ(k, k -1) = A x k-1 x k x 1 B and X σ(k -1, 1) = x k-1 x 1 A x k B. A path joining these two vertices is A x k-1 x k x 1 B → x k x k-1 Ā x 1 B → x 1 A x k-1 x k B → Ā x 1 x k-1 x k B → x k-1 x 1 A x k B.
The distance between the two vertices is thus 4 and the proof follows.

Embeddings of n -Grids

For embedding n-grids into P n , a new representation of permutations is first introduced. A permutation π may be represented as π = a 2 a 3 • • • a n , where a i is the number of symbols less than i that are located at the left of i in the standard representation of π.

Example. Let n = 5. The permutation 12345 is represented by 1234, and the permutation 54321 is represented by 0000. Similarly, the permutation 42153 is represented by 0203.

The map S n -→ {π = a 2 , . . . , a n | 0 ≤ a i ≤ i -1} is obviously one-one, and it is used in this subsection to embed the 2×3× • • • ×(n -1)×n grid into P n .

Theorem 4 The 2×3× • • • ×(n -1)×n grid can be embedded into the n-pancake with dilation 6.

Proof.

Let two vertices X and Y on the grid be labeled with the two permutations

a 2 • • • a i-1 αa i+1 • • • a n and a 2 • • • a i-1 βa i+1 • • • a n ,
respectively. X and Y are connected on the grid iff α = β + 1 or α = β -1. Let us find the distance from X to Y in the pancake. We may assume w.l.o.g. that α = β + 1. Let X = A x k B i C, where x k is the αth symbol < i and all symbols in B are > i. Consider the permutation

A i B x k C = b 2 • • • b n
and compare the a j s and the b j s. First, for all symbols in A and C, b j = a j . Next, for each symbol j in B, a new symbol that is smaller than j is located on the left of j: it is the symbol i. Similarly, a new symbol that is smaller than j is located on the right of j: it is the symbol x k . Hence, b j = a j + 1 -1 = a j . New symbols located on the left of x k are larger than x k ; they are either the symbol i or any symbol j > i, and hence, b x k = a x k . There is only one new symbol smaller than i located on the right of i: it is the symbol x k , other symbols are larger than i. Hence, b i = a i -1 = α -1 = β. Therefore, A i B x k C = Y , and a path joining X to Y is

X = A x k B i C → x k Ā B i C → i B A x k C → B i A x k C → B i A x k C → Ā i B x k C → A i B x k C = Y.
The distance from X to Y is thus 6, and the dilation follows.

The following corollary is easily derived.

Corollary 2

The binary hypercube Q n can be embedded in the n-pancake with dilation 6.

Proof. Q n is a subgraph of the 2 × 3 × • • • × (n -1) × n grid.
The same method applies to embed the n-grid into the star graph (see Definition 3).

Theorem 5 The 2 × 3 × • • • × (n -1) × n grid can be embedded into the n-star with dilation 3.

Proof.

The above representation of permutations is used again. Consider two permutations X = aAxByC and Y = aAyBxC, and compute the distance from X to Y within the n-star. A path joining X to Y is

X = aAxByC → yAxBaC → xAyBaC → aAyBxC = Y.
The distance from X to Y is thus 3, and the dilation follows.

Embeddings of the Generalized Hypercube

The 2 × 3 × • • • × (n -1) × n generalized hypercube (GHC) [START_REF] Bhuyan | Generalized hypercube and hyperbus structures for a computer network[END_REF] is the graph (V, E) whose vertices are labeled withthe permutations x 2 , . . . , x n , where 0 ≤ x i ≤ i -1. Any two vertices u, v ∈ V are connected iff their labels differ in only one position: i.e. there is an edge (u, v) ∈ E between the two vertices u = x 2 , . . . , x i-1 , α, x i+1 , . . . , x n and v = x 2 , . . . , x i-1 , β, x i+1 , . . . , x n iff α = β for some symbols α and β from x 2 onwards.

Embedding the GHC into the n-pancake could be performed via the representation of permutations defined in the previous section. Unfortunately, the resulting dilation is O(n), i.e. the dilation would then have the same order of magnitude as the diameter of the pancake. Consequently, a more suited representation of permutations must be used. 

A permutation π = x 1 • • • x n is represented by a 2 • • • a n with the following rule (R): for k = n to 2 (step -1) do a k ← x k -1 ; x k ↔ k (i.

Proof.

Again, the above representation of permutations is used. Let two permutations X and Y , wherein at most three symbols have not the same location, i.e. X = aAxByCzD and Y = aAzBxCyD. A path joining X to Y in the n-star is thus X = aAxByCzD → yAxBaCzD → zAxBaCyD → xAzBaCyD → aAzBxCyD = Y , and the result follows.

This last theorem improves on the result presented in [START_REF] Nigam | Embedding Hamiltonians and Hypercubes in Star interconnection Graphs[END_REF]. Indeed, Nigam et al. show that the binary hypercube can be embedded into the n-star with dilation 4.Since the binary hypercube is a subgraph of the GHC, Theorem 7 generalizes that result.

Conclusion

We presented embeddings of rings, grids, and hypercubes into the pancake interconnection network. All embeddings have constant dilations, and some of them lead to similar results into the star graph. Possible improvements on the above results are twofold.

1. The embedding capabilities offered by the pancake interconnection network are very restrictive. In the present paper, the only embeddings of grids that are considered have size n×(n-1)! and (n+(n-2)+(n-3)+ 

Proposition 4 Theorem 6 Theorem 7

 467 e. exchange symbols x k and k in permutation π). Example. Let n = 8 and X = 27351864.Applying rule (R) step by step yields a 8 = 4 -1 = 3, and Y 1 = 27351468, a 7 = 6 -1 = 5, and Y 2 = 26351478, a 6 = 4 -1 = 3, and Y 3 = 24351678, a 5 = 1 -1 = 0, and Y 4 = 24315678, a 4 = 1 -1 = 0, and Y 5 = 21345678, a 3 = 3 -1 = 2, and Y 6 = 21345678, a 2 = 1 -1 = 0, and Y 7 = 12345678. The representation of X is 0200353. The representation given above defines a one-one mapping between the n-pancake and the 2 × 3 × • • • × (n -1) × n generalized hypercube.The following Theorem 6 derives from Lemma 2. The 2 × 3 × • • • × (n -1) × n generalized hypercube can be embedded into the n-pancake with dilation 8.Proof.Let two permutations X and Y , whose representations differ in one position only. According to Lemma 2, each of their standard representations differs in at most three positions, i.e. X = AxByCzD and Y = AzBxCyD. A path joining X to Y is thusX = AxByCzD → z Cy Bx ĀD → xByCz ĀD → BxyCz ĀD → BxyCz ĀD → Cyx Bz ĀD → Cyx Bz ĀD → y Cx Bz ĀD → AzBxCyD = Y ,and the dilation follows.Corollary 3 Let d = 1 + ⌊lg 3⌋ + • • • + ⌊lg(n -1)⌋ + ⌊lg n⌋ be the dimension of the binary hypercube Q d . Q d can be embedded into the n-pancake with dilation 8. Proof. Q d is a subgraph of the 2 × 3 × • • • × (n -1) × n generalized hypercube.The latter representation of permutations yields an embedding of the GHC into the star graph. The 2 × 3 × • • • × (n -1) × n generalized hypercube can be embedded into the star graph of dimension n with dilation 4.

  • • •+(p+1))×p!, for p = 2, . . . , n-1. Finding embeddings of N 1 ×N 2 grids for all pairs (N 1 , N 2 ) such that N 1 N 2 ≤ n! would be a much more general result. 2. Some embeddings presented in the paper have congestion O(n). A class of problems of the following kind remains open: find embeddings of the same interconnection networks with constant dilation and congestion, or else, show that such embeddings do not exist.
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Proof. Let a 2 , . . . , a p , p, . . . , n-1 (2 ≤ p ≤ n-1) denote the above representation of a permutation. The proof is by induction on p.

• Base: Let p = 2 and X = x 1 x 2 34 • • • (n -1)n be a permutation. In that case, {x 1 , x 2 } = {1, 2}. If x 1 = 1, from rule (R) we have a i = i -1 for each value of i (in particular, a 2 = 1). Similarly, if x 1 = 2 we have a 2 = 0. Hence, the property holds for p = 2.

• Induction step: Given p (2 ≤ p ≤ n -1), suppose the map from the set of permutations {x 1 • • • x p (p + 1) • • • n} onto the subgraph of the GHC defined by {a 2 , . . . , a p , p, . . . , n -1} is one-to-one. Let us prove that the property also holds for (p + 1).

Consider the permutations

and notice that the symbol (p + 1) belongs to the set {x 1 , . . . , x p x p+1 }. According to rule (R), the representation of X is constructed step by step, from i = n downto i = 2, by performing a i = x i -1 and exchanging symbols x i and i within X. Therefore, x p+1 and (p + 1) are exchanged in the representation of X and a p+1 takes all the values 0, 1, . . . , p. Since X is of the form x 1 • • • x p (p + 1) • • • n, and according to the induction step, the values a i (1 < i < p + 1) cover the whole set {0, . . . , i -1}. Whence the property holds for (p + 1).

the above representations of two permutations. To find the distance from X to Y within the pancake P n we need Lemma 2 first.

Lemma 2 Let two permutations X and

respectively. Their standard representations differ in at most three positions, i.e. X = AxByCzD and Y = AzBxCyD.

Proof. Consider two permutations W and Z, such that W = AxBpC, where the symbol p is located at position p, with p > x, and Z = ApBxC. Let us compare each of the respective representations of W and Z.

In each representation, the values of a i corresponding to C are equal; the values of a p are (p -1) and x -1, and for i < p, a i is obtained from rule (R). The values of the a i s within each representation of W and Z are equal to the symbols in two permutations π W and π Z (respectively), each obtained by applying rule (R). Now, this construction of π W and π Z yields π W = π Z = ExF p(p + 1) • • • n, where E and F are two blocks of symbols in {1, . . . , x} \ {x, p, . . . , n}. Hence, the representations of W and Z differ in one position only and, for a given X, there are (p -1) such Y s. The standard representations of two such Y s differ in three positions, and the proof follows.