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c LIPN-CNRS, Université Paris-NordAbstratThe paper presents three self-stabilizing protools for basi fair and reli-able link ommuniation primitives. We assume a link-register ommunia-tion model under read/write atomiity, where every proess an read frombut annot write into its neighbours' registers. The �rst primitive guaran-tees that any proess writes a new value in its register(s) only after all itsneighbours have read the previous value, whatever the initial sheduling ofproesses' ations. The seond primitive implements a �weak rendezvous�ommuniation mehanism by using an alternating bit protool: whenever aproess onseutively writes n values (possibly the same ones) in a register,eah neighbour is guaranteed to read eah value from the register at leastone. On the basis of the previous protool, the third primitive implementsa �quasi rendezvous�: in words, this primitive ensures furthermore that thereexists exatly one reading between two writing operationsAll protools are self-stabilizing and run in asynhronous arbitrary net-works. The goal of the paper is in handling eah primitive by a separate pro-edure, whih an be used as a �blak box� in more involved self-stabilizingprotools.Keywords: Self-stabilization, ommuniation primitive, rendezvous,read/write atomiity, liveness
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1 IntrodutionA self-stabilizing system whih is started from an arbitrary initial on�guration,regains its onsisteny and demonstrates legal behaviour by itself, without anyoutside intervention. Consequently, a self-stabilizing system needs not be initiatedto any on�guration, and an reover from transient faults. More preisely, it anreover from memory orruptions and opes with proessors or hannels rashesand reoverings (i.e., dynami networks).1.1 The Communiation primitivesIn the paper, we present fair and reliable self-stabilizing ommuniation primitivesin the link-register model. The ommuniation between two neighbours (A and
B) is arried out by the use of two sets of ommuniation registers alled registers:
rAB and rBA. Proess A an write in the registers of rAB and eah proess A and
B an read from the registers of rAB.The registers support read and write atomioperations. For example, let Σ = {a, b, c, ǫ} be an alphabet and w = aaabbbbcc =
a3b4c2 a sequene of valuewritten by A into rAB. The ommuniation primitives intheir very �rst basi form do not ensure more than e.g.: a∗b∗c∗ is eventually readby B.The �rst presented primitive guarantees that any proess A writes a new valuein its register(s) WriteAB only after its neighbour B has read the previous value.Notie that when A writes n times the same value onseutively in the register
WriteAB, the primitive ensures that B eventually opies this value at least one.For example, given Σ and w as above, the �rst primitive only guarantees that e.g.,
aa∗bb∗cc∗ is eventually read by eah neighbour: eah symbol in w, (a, b and c) isread at least one, whatever the number of ourrenes. This primitive simulatesself-stabilizing reliable message-passing ommuniation in the link-register asyn-hronous model. It guarantees that a message, that is the value of the register
Write, is eventually reeived: the value is eventually known from the neighbours'proess.The rendezvous mehanism (as de�ned in [16℄) synhronizes ommuniations,i.e., the write and read operations are performed in and from the same register.When Proess A writes a value in its register WriteAB, it annot perform any otheration until proess B has ompleted a read operation from the register WriteAB.The seond ommuniation primitive is a self-stabilizing �weak rendezvous�.After performing a write operation in its register WriteAB, the proess A annotperform but some spei� ations, as long as proess B has not ompleted a readoperation from WriteAB. Therefore, if A onseutively writes n values (possiblythe same ones) in the register WriteAB, the primitive guarantees that B eventually2



opies eah value at least one. If A writes n times the same value in WriteAB,the value will be read at least n times. As an example, given Σ and w as above,the seond primitive at least guarantees that e.g., a3a∗b4b∗c2c∗ is eventually readby eah neighbour: eah symbol in w (a, b and c) is read at least the number oftimes the symbol ours in w (but any symbol may be read stritly more than itsnumber of ourrenes).The third self-stabilizing ommuniation primitive performs a quasi synhro-nization. It is a �quasi rendezvous� mehanism and requires that between two
write operations performed by the proess A in WriteAB, the proess B annotperform but one and only one read operation from WriteAB. Therefore, if A writes
n onseutive times the same value (possibly the same one in eah row) in the reg-ister WriteAB, the primitive guarantees that B will opie eah of the n valuesexatly one time, one the system is stabilized. For example, given again Σ and
w as above, the third primitive does ensures that exatly a3b4c2 is eventually readby eah neighbour: eah symbol in w (a, b and c) is read exatly the number oftimes it ours in w.Eah suh primitive may prove useful as a ommuniation �blak box� in de-signing more involved distributed self-stabilizing protools.1.2 Related Works and ResultsA deterministi self-stabilizing �balane-unbalane� mehanism on two proessessystems under read/write atomiity is presented in [12℄ and in [13℄. The twoproesses are not exeuting the same ode. The one exeutes the balane ode:when both proesses have the same olor, it hanges olor. The other exeutes theunbalane ode: when both proesses have not the same olor, it hanges olor.In [12℄, this mehanism is used to guarantee that eah proess has a mutual ex-lusion aess to a ritial setion, and in [13℄, it is used to ensure synhronizationof the proesses. In both ases, this mehanism provides strong synhronization:between two �ations� of a proess, the other proess annot perform but only one�ation�. In [12, 13℄, the two proesses protool is used to design a mutual exlu-sion algorithm (global synhronization) on tree networks. As laimed in [12, 13℄,the balane-unbalane mehanism annot be extended to any network topology,sine there exist no deterministi self-stabilizing synhronization protools in uni-form arbitrary networks. On the other hand, a self-stabilizing synhronization onunidiretional rings is provided in [10℄ through the deterministi token irulationmehanism: between two ations of a proess its neighbours annot perform butonly one ation.Any self-stabilizing reset protool [5, 2, 8℄ an be ombined with the protoolin [6℄ to design a self-stabilizing synhronizer. General self-stabilizing synhroniz-3



ers are presented e.g. in [9, 7, 19℄. Global self-stabilizing synhronizers for treenetworks are also proposed in [13, 3, 11℄. A self-stabilizing loal synhronizer, thatsynhronizes eah node in a tree network with its neighbours is presented in [18℄.In the reent literature, several ommuniation problems in the message-passingmodel have been addressed. A self-stabilizing ommuniation protool for two-wayhandshake is presented in [15℄, and a self-stabilizing version of the alternating-bitprotool is given in [1℄. In [4℄, Anagnostou and Hadzilaos present a self-stabilizingdata link protool under the read/write atomiity model suh that, between two
write operations in the register, only one read operationfrom that register is per-formed. However, no proof of the protool is given in their paper. By ontrast,our last two primitives use the alternating-bit mehanism, and sine the two bitsvalues must begin with the same value 0, our algorithm in setion 7 is twie asfast as in [4℄.Setion 2 desribes our model with the basi assumptions. In Setion 3, wepresent the general priniple of our solution for a two proesses system. Thegeneralization to n proesses in arbitrary networks yields the Read Cheking self-stabilizing protool, whih is presented in Setion 4. Setion 5 is devoted to theproof of liveness and orretness of the Read Cheking protool. Setion 6 presentsthe weak rendezvous protool and Setion 7 desribes our quasi rendezvous proto-ol. Finally, the paper ends with few onluding remarks.2 Model and RequirementsAlthough distint from the one desribed in [12℄, our model relies on lose require-ments and assumptions, espeially in terms of ommuniation (e.g., link registers,read/write atomiity, et.). A distributed system onsists of n proesses denoted
A, B, et. Eah proess resides on a node of the system's ommuniation graph(or network ). Two proesses whih reside on two adjaent nodes of the networkare alled neighbours. We model distributed self-stabilizing systems as a set of(possibly in�nite) state mahines alled proesses. Eah proess an only om-muniate with the subset of proesses onsisting of its neighbours. We assume alink-register ommuniation model under read/write atomiity [12℄. Eah link be-tween any two neighbours A and B is omposed of two pairs of registers1, denoted
(WriteAB, ReadAB) and (WriteBA, ReadBA), and belonging to A and B, respe-tively. Proess A an read from the two registers of B, WriteBA and ReadBA, butannot write into them. Similarly, proess A annot write but in its own registers,
WriteAB and ReadAB, to ommuniate with B.1In our model, the registers are physial (hardware) devies. Reading from or writing in oneregister is an atomi ation aording to the design of the miroproessor.4



A on�guration of the system is the vetor of states of all proesses. The stateof a proess is the value of its internal variables and the ontents of its registers.2.1 Shedulers, Demons and ComputationAn atomi step is the �largest� step whih is guaranteed to be exeuted uninter-ruptedly. A proess uses read/write atomiity if eah atomi step ontains eithera single read operation or a single write operation but not both. The systembehaviour is modelled by the interleaving model in whih proesses are ativatedby a sheduler. The sheduler is regarded as a fair adversary: in a self-stabilizingsystem, all possible fair exeutions are required to onverge to a orret behaviour.A fair sheduler shall eventually ativate any proess whih may ontinuously per-form an ation. A ommon sheduler ativates either proesses one by one (entraldemon) or subsets of proesses (distributed demon). Under read/write atomiity,both entral and distributed shedulers/demons are �equivalent�, in the sense thatany exeution performed under a distributed sheduler may be simulated by aentral one. A proess whih an perform an atomi step into a on�guration c, issaid to be enabled at c. During a omputation step, one or more proesses exeutean atomi step. A omputation of a protool P is a sequene of on�gurations
c1, c2, . . . suh that, for i = 1, 2, . . ., the on�guration ci+1 is reahed from ci byone omputation step. A omputation is said to be maximal either if the sequeneis in�nite, or if it is �nite and no proess is enabled in the �nal on�guration. Aproblem is a prediate de�ned on omputations.2.2 Self-StabilizationThe protool P is self-stabilizing for the problem Π if and only if there exists aprediate L de�ned on on�gurations suh that:
• all omputations reah a on�guration that satis�es L (onvergene);
• all omputations, from L, satisfy problem Π (orretness).Notie that the maximal omputations of a self-stabilizing protool may be�nite; in that ase the algorithm is said to be silent [14℄. Most self-stabilizing al-gorithms whih build spanning tree or elet a leader are silent [17℄. Self-stabilizingprotools o�ers full and automati protetion against all transient proess failures,no matter how muh the data have been orrupted: e.g., all registers values maybe fully orrupted.So, whatever the registers values, our protools seure the transfer of informa-tion between any two pair of neighbours after a �ertain delay time�.
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3 Priniple of the SolutionLet a two proesses system, onsisting in two neighbouring proesses A and Bequipped with their two pairs of registers (see Setion 2). The priniple of thesolution for A relies on the following basi idea. Under read/write atomiity, Asystematially keeps reading the value from WriteBA and opies out this valuein ReadAB (i.e., A reads the message sent by B and opies out the message in
ReadAB to inform B that its message is reeived). Besides, A systematially keepsreading the value from ReadBA and ompares it to the value of WriteAB. Whenboth values are equal, A �nds out that B somehow read that value (i.e., theinformation has been transmitted), So it an stop reading and an write again in
WriteAB.while true do

A writes in WriteABrepeat
A reads from WriteBA ;
A writes out the value of WriteBA into ReadAB ;
A reads from ReadBAuntil ReadBA = WriteABendwhile Fig. 1. The basi 2-proesses protool for A.After A has written a new value in WriteAB, A beomes �weakly loked� until

B reeives the message (ReadBA = WriteAB). When A is inside the repeatloop, it an only perform some ations, for instane, A annot write in its register
WriteAB.In a self-stabilizing setting, A may then proeed with the exeution of its ownode, sine the protool makes it sure that B did read the value from WriteAB(at least, it results from the protool that A knows for sure that the values in
ReadBA and WriteAB are idential). The orresponding ode sequene for B is ofourse fully symmetrial to the basi protool for A: the roles of A and B (i.e. theregisters' names) have simply to be inverted within the above protool in Fig. 1.Thus, a two-way ommuniation is established between A and B.4 The Protool in Arbitrary NetworksThe generalization of the above protool to a system of n > 2 proesses onstitutingan arbitrary network is now easy. We still assume eah pair of neighbouring6



proesses in the network to be equipped with its two pairs of registers on theirommon link. In order to simplify the use of variables, we all �message� the�information� exhanged between neighbours during the exeution of the protool.A protool whih stabilizes on a single link may not generalize to a protoolwhih stabilizes on all links of a (�nite) network, e.g. by having eah proess exe-ute the �link-protool� in a round robin manner on eah individual link adjaentto it. Taking the n-proesses system pair by pair may ause a deadlok: for all
i ∈ {0, . . . , n − 1}, Ai may be waiting for Ai+1 to read from WriteAiAi+1

, with
An = A0.4.1 NotationWrite register for A: ReadABi

is the register in whih A writes the value ofthe last message read by A and sent by Bi.Read register for A: WriteBiA
is the register in whih Bi writes the messageto be transmitted to A, and ReadBiA
is the register in whih Bi writes the valueof the last message read by Bi and sent by A.Write and read register for A: WriteABi

is the register in whih A writesthe value of the message whih is to be sent to its ith neighbour Bi.Funtion geti for A: geti takes no argument and returns the next messageto be sent to the ith neighbour of A (geti is a helper funtion added to A).4.2 The Read Cheking ProtoolOn the same assumptions for the model (read/write atomiity) and for the shed-uler's ations (rules of ativations of proesses and fairness) as given in Setion 2,the spei�ation of the self-stabilizing Read Cheking protool in arbitrary net-works for a proess A, with neighbours Bi's (1 ≤ i ≤ NA), is as follows.onstant NA : the number of neighbours of A ;var si : message to be sent to the ith neighbour of A ;
ri : message sent from the ith neighbour of A ;
vali : value of the last message sent from A and read by the ithneighbour of A ;while true dofor i = 1 to NA dowrite(WriteABi

, geti) ;endforrepeat 7



for i = 1 to NA do
ri ← read(WriteBiA

) ;write(ReadABi
, ri) ;

vali ← read(ReadBiA
) ;

si ← read(WriteABi
) ;endforuntil ( ∀i ∈ [1, NA] vali = si )endwhile Fig. 2. The Read Cheking protool for A.5 Proof of the Read Cheking Protool5.1 Proof of LivenessLemma 5.1 Whatever the exeution, every proess performs an in�nite numberof ations.Proof. Read/write atomiity ensure that eah proess is always enabled.Therefore, every exeution is in�nite (every on�guration is deadlok-free), andin eah on�guration that is reahed every proess an perform an ation (fairsheduler). The sheduling of proesses' ations is fair: if a proess an alwaysexeute an ation, then the proess �nally performs an ation. Thus, by fairness,every proess is performing an in�nite number of ations, whatever the exeution.

�Lemma 5.2 Let A be a proess with its program ounter in the repeat loop andlet B be a neighbour of A. Whatever the urrent on�guration and the exeution,the proesses system exeuting the protool either eventually reahes a on�gurationin whih B allows A to write, or A exits the repeat loop.Proof. Suppose B never allows A to write and A never exits the repeat loop.Then A never hanges the value in its register WriteAB. Under these onditions,updating its register ReadBA is a writing permission given to A by B (sine betweenthe reading of the value from the register WriteAB and the writing of that valuein ReadBA, the register WriteAB does not hange value).Whatever the urrent on�guration and the exeution, if the program ounterof B is not within the repeat loop, it takes B less than NB ations to enter therepeat loop. One B enters the loop, after 4NB ations, it updates all its Readregisters, and thus allows A to write. 8



Whatever the urrent on�guration and the exeution, if the program ounterof B is within the repeat loop, it takes B at least 4NB ations either to exit theloop, or to update its register ReadAB.Whatever the exeution, B performs an in�nite number of ations (byLemma 5.2) and eventually, either B allows A to write, or A exits the repeatloop. �De�nition 5.1 Let A and B be two neighbouring proesses. A is said to allow Bto write i� ReadBA = WriteAB. Let A be a proess and let NA denote the numberof neighbours of A (NA is the degree of A in the network).De�nition 5.2 Let A and B be two neighbouring proesses. The update of theregister ReadAB is the sequene of the two following ations performed by B:
ri ← read(WriteAB) ; write(ReadBA, ri).A wrong writing is a write ation in the register ReadBA whih is not performedwithin the ontext of an update. (The orret writing into the register ReadBA isa write ation exeuted within the ontext of an update.)Lemma 5.3 After exeuting its �rst ation, no proess an perform a wrong writ-ing.Proof. Proess A an perform at most one wrong writing, and it may onlyhappen when initially its program ounter is set up after reading from the Writeregister and before writing in the Read register. One this write ation is exeuted,eah write ation of A in a Read register is performed within the ontext of anupdate. �Lemma 5.4 Let A and B be two neighbouring proesses. After B exeutes its �rstation, if B allows A to write, then only the writing of A in its register WriteABmay be able to anel that permission.Proof. Nothing but writing into the register ReadBA or into the register
WriteAB an anel the writing permission. After B exeutes its �rst ation, fromLemma 5.3 there is no wrong writing anymore. Hene, any writing into the register
ReadBA is exeuted within the ontext of a register's update. This update is suhthat the permission remains given to A, unless A writes into its register ReadBAduring the updating proess or after the last update. �Theorem 5.1 Let A be a proess. Whatever the exeution, the system of proesseswhih performs the protool reahes a on�guration in whih A is not within therepeat loop anymore. 9



Proof. Suppose A remains within the repeat loop forever; then A never writesinto its Write registers. Every 4NA ations, A is heking out the loop exitingondition. Whatever the exeution, proess A performs an in�nite number ofations. Hene, A heks out the repeat loop exiting ondition an in�nite numberof times. In partiular, A tests the exit ondition an in�nite number of times afterall its neighbours have already exeuted an ation.If at some test all neighbours of A allow its writing, then, at the next test,all its neighbours keep on giving A permission to write (by Lemma 5.4). In themeanwhile, A has updated its variables ri and si, and when the test happens, theloop exiting ondition is satis�ed: A exits the loop.Proess A stays within the loop in�nitely long in the ase when, at eah test,at least one neighbour does not allow its writing. One a neighbour has allowed
A to write, this neighbour annot withdraw permission from A. Therefore, thereexists at least one neighbour of A whih never allows A to write. Now fromLemma 5.2, this is impossible, and the theorem follows. Therefore, the protool isdeadlok-free. �Corollary 5.1 Let A be a proess. Whatever the exeution, A writes an in�nitenumber of times into all its Write registers.Proof. If A is out of the loop, then it takes A less than NA ations to enterthe loop. When it is within the repeat loop, then by Theorem 5.1, A annotstay in�nitely long. NA ations after exiting the loop, A writes into all its Writeregisters and reenters the repeat loop. �5.2 Corretness Proof of the Read Cheking ProtoolTheorem 5.2 Let A and B be two neighbouring proesses. After B exeutes its�rst ation and after any writing in the register WriteAB, A an write in the registerWriteAB only if B allows it, i.e. ReadBA = WriteAB (see De�nition 5.1).Proof. Proess B is the ith neighbour of A. Between eah of its two writings,
A enters the repeat loop and exits the loop. One A is within the loop, theregister WriteAB does not hange value. The repeat loop's ode is suh thatwhen the loop is exited, the value of the loal variable si of A and the value ofthe register WriteAB are equal. In the loop, the loal variable ri of A takes thevalue of the register ReadAB. The value of the register ReadBA may hange afterthis assignment and before the loop is exited. Thus, when the loop is exited twodistint ases have to be onsidered:
• No update of the register ReadBA happens between the reading from thatregister and the loop exit. Then, si = WriteAB = vali = ReadBA, and B allowsthe writing of A. 10



• Writings into the register ReadBA happen between the reading from thatregister and the loop exit. However, the latter writings are performed withinthe ontext of updating. Hene, eah time the value has hanged, we have thatReadBA = WriteAB and, by Lemma 5.4, the equality holds while A does not rewriteinto the register WriteAB. �After the writing of a value in the register WriteAB, the �rst primitive guar-antees that A will only write in the register WriteAB if B allows it. In the asewhen the value is new, B must perform the ation read(WriteAB) to allow thewriting.Summing up of the Results1. The protool is live: every proess is updating all its Write registers anin�nite number of times.2. The protool is orret: no proess an write distint values twie in arow in its Write register without any previous reading from that register.6 The Weak Rendezvous ProtoolIn this setion, we present a self-stabilizing weak rendezvous ommuniation prim-itive.Reall that The rendezvous mehanism (as de�ned in [16℄) synhronizes om-muniation in the link-register asynhronous model of distributed system: eah
write or read operation is performed in and from the same register. When Pro-ess A writes a value in its register WriteAB, it annot perform any other ationuntil proess B has ompleted a read operation from the register WriteAB.The weak rendezvous mehanism only requires that between two write opera-tions performed by a proess A in WriteAB, proess B performs at least one readoperation from WriteAB. Therefore, if A writes a value n onseutive times (eventhe same ones in eah row) in the register WriteAB, the primitive guarantees that
B opies eah of the n values at least one time, one the system is stabilized.The weak rendezvous mehanism is based upon the alternating bit tehnique.After writing in its register WriteAB, proess A hanges the value of the bit-register
ControlAB. A an write again in the register WriteAB only after B has opiedthe new value of ControlAB into the register CheckControlBA. And B opies thevalue only after reading in the register WriteAB.The liveness proof of the weak rendezvous protool is similar to the proof ofthe read heking protool. The following Theorem 6.1 proves the orretness ofthe weak rendezvous protool. 11



Theorem 6.1 Let A and B be two neighbouring proesses. After B exeutes its�rst ation and after the xth (≥ 2) writing in the register WriteAB, B reads thevalue from WriteAB before the next writing in WriteAB.Proof. As shown in Theorem 5.2, we an establish that before the xth writingin the register WriteAB, ControlAB = CheckControlBA. After the writing in theregister WriteAB, A hanges the value in ControlAB and enters the repeat loop(ControlAB 6= CheckControlBA). A stays within the loop as long as B does notopy the value of ControlAB into the register CheckControlBA. Finally, B opiesthe value only after reading in the register WriteAB. �The weak rendezvous protool maintains a weak sheduling of the ommuni-ation between proesses in the following sense. We all a weak sheduling of theommuniation between proess A and all its NA neighbours the property that
A an write twie into its registers WriteABi

, only whenever all the Bi's did readfrom the register WriteABi
in the meantime (1 ≤ i ≤ NA).onstant NA : the number of neighbours of A ;var ri : message sent from the ith neighbour of A ;

bi : alternate bit sent from the ith neighbour of A ;
ci : alternate bit sent from A to the ith neighbour of A ;
li : value of the last alternate bit sent from A and read by the ithneighbour of A;

12



while true dofor i = 1 to NA dowrite(WriteABi
, geti) ;

ci ← read(ControlABi
) ;write(ControlABi

, (ci + 1) mod 2) ;endforrepeatfor i = 1 to NA do
ri ← read(WriteBiA

) ;
bi ← read(ControlBiA

) ;write(CheckControlABi
, bi) ;

ci ← read(ControlABi
) ;

li ← read(CheckControlBiA
) ;endforuntil ( ∀i ∈ [1, NA] ci = li )endwhile Fig. 3. The weak rendezvous protool for A.7 The Quasi Rendezvous ProtoolIn this setion, we present a self-stabilizing quasi rendezvous ommuniation prim-itive. A lose idea may be found in [4℄, where the authors also present a self-stabilizing data link protool under read/write atomiity suh that, between two

write operations in the register, there is only one read operation from that register.(See our remarks in setion 1.2.)The quasi rendezvous mehanism requires that between two write operationsperformed by the proess A in WriteAB, the proess B annot perform but oneand only one read operation from WriteAB. Therefore, if A writes n onseutivetimes the same value (possibly the same one in eah row) in the register WriteAB,the primitive guarantees that B will opie eah of the n values exatly one time,one the system is stabilized.The quasi rendezvous mehanism is based upon the alternating bit tehnique.After reading from the register WriteAB, the proess B opies the value of the bit-register ControlAB into CheckControlBA. Now, B an read again from the register
WriteAB only after A has hanged the value of ControlAB. And A hanges thatvalue only after writing in the register WriteAB.13



onstant NA : the number of neighbours of A ;var ri : message sent from the ith neighbour of A ;
bi : alternate bit sent from the ith neighbour of A ;
ci : alternate bit sent from A to the ith neighbour of A ;
li : value of the last alternate bit sent from A and read by the ithneighbour of A;
di : value of the last alternate bit sent from the ith neighbour of Aand read by Awhile true dofor i = 1 to NA dowrite(WriteABi

, geti) ;
ci ← read(ControlABi

) ;write(ControlABi
, (ci + 1) mod 2) ;endforrepeatfor i = 1 to NA do

bi ← read(ControlBiA
) ;

di ← read(CheckControlABi
) ;if bi 6= di then

ri ← read(WriteBiA
) ;write(CheckControlABi

, bi) ;endif
ci ← read(ControlABi

) ;
li ← read(CheckControlBiA

) ;endforuntil ( ∀i ∈ [1, NA] ci = li )endwhile Fig. 4-. The quasi rendezvous protool for A.The liveness proof of the quasi rendezvous protool is similar to the proof ofthe read heking protool.De�nition 7.1 Let A and B be two neighbouring proesses. B is said to allow Ato write i� ChekControlBA = ControlAB.De�nition 7.2 Let A and B be two neighbouring proesses. The full reading ofregister WriteAB is ompleted by the sequene of the four following ations per-formed by B:
b ← read(ControlBA) ; d ← read(CheckControlAB) ; if b 6= d then {r ←read(WriteBA) ; write(CheckControlAB, b) ; }.14



De�nition 7.3 Let A and B be two neighbouring proesses. The full writing ofregister WriteAB is ompleted the sequene of the three following ations performedby A:write(WriteAB, get) ; c← read(ControlAB) ; write(ControlAB, (c + 1) mod 2) ;Lemma 7.1 Let A be a proess with its program ounter in the repeat loop and letB be a neighbour of A. Whatever the urrent on�guration and the exeution, thesystem of proesses exeuting the protool either eventually reahes a on�gurationin whih B allows A to write, or A exits the repeat loop.Lemma 7.2 After exeuting its �rst three ations, no proess an perform aninomplete reading or writing.Lemma 7.3 Let A and B be two neighbouring proesses. After B and A exeutetheir �rst three ations, if B allows A to write, then only the omplete writing ofA in its register WriteAB may be able to anel that permission.Proof. The proof of the three above lemmas (7.1, 7.2 and 7.3) is similar to theproof of Lemma 5.2, Lemma 5.3 and Lemma 5.4, respetively. �Theorem 7.1 Let A be a proess. Whatever the exeution, the system of proesseswhih performs the protool reahes a on�guration in whih A is not within therepeat loop anymore.Skethproof. The proof is by ontradition and it is similar to the proof oftheorem 5.1. �Corollary 7.1 Let A be a proess. Whatever the exeution, A writes an in�nitenumber of times into all its Write registers.The following Theorems 7.2 and 7.3 prove the orretness of the quasi rendezvousprotool.Theorem 7.2 Let A and B be two neighbouring proesses. After A and B exeutetheir �rst three ations and after the xth (≥ 2) writing in the register WriteAB, Breads the value from WriteAB before the next writing in WriteAB an take plae.Proof. We an establish that before the xth writing in the register WriteAB,
ControlAB = CheckControlBA. After writing into the register WriteAB, Ahanges the value in ControlAB and enters the repeat loop (ControlAB 6=
CheckControlBA). A stays within the loop as long as B does not opy the valueof ControlAB into the register CheckControlBA. Finally, B opies the value onlyafter reading from the register WriteAB. �15



Theorem 7.3 Let A and B be two neighbouring proesses. After A and B exeutetheir �rst three ations and after B reads from WriteAB, A performs a ompletewriting in WriteAB before the next reading from WriteAB.Proof. Before the reading from WriteAB, ControlAB 6= CheckControlBA. Afterthe reading from the register WriteAB, B hanges the value in CheckControlBANow, B does not hange the value in CheckControlBA (B does not read from theregister WriteAB) as long as A does not hange the value in ControlAB. After the�rst three ations of A, hanging the value in ControlAB is made after A's writingin WriteAB. �The quasi rendezvous protool maintains a sheduling of the ommuniationsbetween proesses in the following sense. We all a sheduling of ommuniationsbetween proess A and all its NA neighbours the property that A an write twieinto its registers WriteABi
, only whenever eah of the Bi's performed one uniquereading from the register WriteABi

in the meantime (1 ≤ i ≤ NA).8 Conluding RemarksThe paper presents three very basi general protools for the design of fair andreliable self-stabilizing ommuniation primitives. Both protools work in arbi-trary networks and also ensure minimal sheduling properties, whatever the initialon�guration of the system of proesses and the ativations by the sheduler. Inpartiular, the last protool entails the mehanism of a �quasi rendezvous�, whihproves useful in more involved self-stabilizing protools.Eah primitive an atually be used as a �blak box� by a separate protool,handling the proedures in more involved self-stabilizing algorithms. Thus, theprotools may be modi�ed aording to the designer's will and needs: e.g., in spe-i� topologies of networks a weak sheduling of ommuniations may impose fewerneighbours to read from the registers. For example, with only one neighbour, apoint to point self-stabilizing quasi rendezvous mehanism may also be ompleted.Along the same lines, the protools also simulate reliable self-stabilizing message-passing in asynhronous distributed systems.Although the paper does not onern itself with omplexity measures, it isworth mentioning that when time is measured by some appropriately de�ned roundomplexity, the stabilization time of the read heking protool is O(1).Referenes[1℄ Y. Afek, G.M. Brown, Self-Stabilization of the Alternating-Bit Protool, inthe Pro. of the Symposium on Reliable Distributed Systems, (1989) 80-83.16
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