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Abstract 

 

This paper proposes a design concept which allows the simultaneous shaking force/shaking 

moment balancing and torque compensation in slider-crank mechanisms. At first, the shaking force 

and shaking moment are cancelled via a cam mechanism carrying a counterweight. Then, the spring 

designed for maintaining contact in this balancing cam mechanism is used for torque minimization. 

For this purpose, the spring is jointed with a second cam mounted on the input crank. The proposed 

design concept allows the development of only one device for solving the both mentioned problems. 

The suggested solution is illustrated by numerical example carried out by using ADAMS software.  

 

1. Introduction 

 

The slider-crank mechanisms are common elements in high-speed machines and many methods 

(Arakelian et al. 2000; Arakelian and Smith 2005; Lowen et al. 1983) have been developed for their 

balancing. The known methods can be arranged into the following groups:  

a) Balancing by counterweights mounted on the links (Artobolevskii 1968; Campbell 1979; Berkof 

1979a; Gheronimus 1968). The balancing methods based on the redistribution of mass of the 

mechanism by adding counterweights to links are well known. However, in the case of complete 

shaking force balancing, this approach is generally limited to simple mechanisms having only revolute 

joints. It is difficult to apply to mechanisms with a slider because the conditions for complete shaking 

force balancing bring about serious increase in the total mass of the balanced mechanism.   

b) Harmonic balancing by counter-rotating masses (Artobolevskii 1968; Lanchester 1914; 

Shchepetilnikov 1982). These solutions are based on harmonic analysis. The reduction of inertia 

effects is primarily accomplished by the balancing of certain harmonics of the shaking forces and 

shaking moments. Unbalanced forces and moments are approximated by Fourier series (or Gaussian 

least-square formulation) and then each frequency component is studied. This solution has found wide 

application as it may be accomplished by attaching balancing elements to the crank. This approach has 

been used successfully for engine balancing. However, it is not applied on the off-set slider-crank 

mechanisms. 

c) Self-balancing via a double mechanism (Artobolevskii 1968; Arakelian 1998; Arakelian 2006; 

Davies 1968; Dresig and Holzweißig 2004; Filonov and Petrikovetz 1987; Koropetz 1979; Turbin et 

al. 1978). The addition of an axially symmetric duplicate mechanism to any given mechanism will 

make the new combined center of mass stationary and thus balances the shaking force. This approach 

involves building self-balanced mechanical systems, in which two identical mechanisms execute 
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similar but opposite movements. In this case the shaking force is cancelled together with the shaking 

moment. A partial balancing is also possible by this approach.  

d) Balancing by added dyad (Arakelian 1998; Arakelian and Smith 1999; Doronin and Pospelov 

1991; Frolov 1987). The parallelogram loop, consisting of the initial links of the mechanism and the 

added dyad, transfers the motion of the coupler link to a shaft on the frame, where it is connected to a 

counterweight of considerably reduced mass. Partial balancing may be achieved by the generation of 

an approximate straight-line movement of a counterweight mounted on the added dyad. Among 

several works may be distinguished also the studies in which pantograph mechanism properties are 

used. The aim of this approach is to balance the mechanism by using the copying properties of the 

pantograph formed from the links of the initial mechanism and added links. The pantograph carries a 

counterweight that achieves the condition necessary for shaking force and shaking moment balancing.  

e) Balancing by planetary systems (Arakelian and Smith 1999; Berestov 1978; Gao 1990; Ye and 

Smith 1994). The application of planetary systems allows the cancellation of the shaking moment of 

mechanisms. However, such a balancing can only be reached by a considerably complicated design of 

the initial mechanism. 

f) Balancing by using a cable and pulley arrangement (Berkof 1979b). In this case the opposite 

motions of the balancing counterweight and the slider is achieved via a cable and pulley arrangement.   

g) Balancing by using a cam mechanism (Kamenski 1968; Kato 1995; Kato 1997; Krause 1987; 

Schrick and Hanula 1995). In this approach the reduction of inertia forces has been performed by 

means of a cam carrying a counterweight and it was shown how cam-driven masses may be used to 

keep the total center of mass of a mechanism stationary. 

It is known that the inertia force balancing can be only achieved by adding complementary masses 

and it brings an increase in the input torque. The input torque may be reduced by optimal 

redistribution of moving masses (Arakelian 2007; Berkof 1979b; Chaudhary 2007; Soong 2001; Yan 

and Soong 2001) or by using non-circular gears (Yao and Yan 2003). One of the more efficient 

methods used to solve the problem of input torque balancing is creating a cam-spring mechanism, in 

which the spring is used to absorb the energy from the system when the torque is low, and release 

energy to the system when the required torque is high. It allows reducing the fluctuation of the 

periodic torque in the high-speed mechanical systems (Angeles and Wu 2001; Arakawa et al. 1997; 

Benedict et al. 1971; Benedict and Tesar 1970; Funk and Han 1996; Guilan et al. 1999; Nishioka 

1999; Nishioka and Yoshizawa 1995; Poludov 1979). 

In mechanical design, these two problems are considered separately, i.e. the mechanism can be 

balanced by mentioned methods and, after, its input torque can be compensated by a cam-spring 

mechanism.  

In this paper, a new design approach is developed, which proposes simultaneous inertia force 

balancing and torque compensation in slider-crank mechanisms.  

 

2.  Design of the inertia force/moment balanced and torque compensated slider-crank 

mechanism 

 

Fig. 1 shows an off-set slider crank mechanism, which contains an initial slider-mechanism OAB 

with crank 1 mounted on the frame, rod 2 and slider 3, as well as cams 4, 5 with followers 6, 7 and a 

compression spring 8. 

Let us first consider the inertia force and moment balancing of the slider-crank mechanism. For 

this purpose, we consider that rod 2 is a “physical pendulum” link (Berkof 1973) (see also (Arakelian 

2007)), i.e. its mass distribution allows the dynamic substitution of the rod’s mass by two point 

masses, also, 
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where, mA and mB are point masses; m2 is the mass of rod 2; IS2 is the axial moment inertia of the rod 

about the centre of mass S2 of the link; lAS2 and lBS2 are the distances between the centres of the joints A 

and B and the centre of mass S2 of link 2, respectively.  
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Fig. 1. Balanced and torque compensated off-set slider-crank mechanism. 

 

Thus, the dynamic model of the rod represents a weightless link with two point masses mA and mB 

situated in the centres of corresponding joints. This dynamic model is fully equivalent to the real rod.    

We now require rotating masses to be balanced about point O. Therefore, the displacement of the 

counterweight mounted on follower 6 is selected in such a manner that the inertia force of the follower 

6 with counterweight will be opposite to the inertia force of the masses m3 and mB carried out 

reciprocating motion:  
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where m3 is the mass of the slider 3, m6 the mass of follower 6 with counterweight, 
6S

x  the 

acceleration of the follower 6 and 
B

x  the acceleration of the slider. 

Therefore, in order to generate a prescribed reciprocating motion of follower 6 with acceleration 

6S
x , the cam 4 is used. Then, by means of a counterweight, the centre of mass of crank 1 plus the cam 

4 and point mass mA is brought to the centre of the pivot O. 

After such a redistribution of moving masses, the shaking force and shaking moment are cancelled 

and the slider-crank mechanism transmits no inertia loads to surrounding. However, it is known that 

the added masses destined to balance the inertia force increase the input torque of the mechanism. For 

minimisation of the input torque of mechanism, one uses another technique which consists in adding a 

cam-spring compensation device.     

The above-mentioned literature review shows that these two problems, i.e. inertia force balancing 

and torque compensations, are studied separately and it is considered that they are not coupled. Thus, 

according with the known design approaches, two devices will be developed and coupled with the 

slider-crank mechanism. 

It will be show that the design of these two problems can be considered together and the spring 

used for maintaining the contact between the counterweight and the cam may also be used for 

balancing the input torque. For this purpose, we use the elastic force of spring 8 designed for 

maintaining contact between follower 6 and cam 4. In other words, we will use the spring 8 for the 

generation of a complementary moment on the input crank.   

Let us now consider the input torque compensation. 

The input torque  of the dynamically balanced mechanism with the spring can be written under 

the form: 
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where L = T – V is the Lagrangian of the system, T is kinetic energy and V its potential energy. 

Neglecting the mass of the spring and follower 7, T and V can be written as: 
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 25.0 kV   , (5) 

where  

-    is a constant for steady-state conditions, 
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- 
2S

x is the velocity of the centre of masses of element 2 and 
2

  its angular velocity 

- k is the spring constant, 

-   is the displacement of the end of the spring from its equilibrium position, 

- LOA is the distance between joint centres O and A, 

- mcp is the mass of the counterweight mounted on the element 1, 

- rcp is the dimensionless position of this counterweight ( cpAOAOScp
mmllmr /)/(

11
 ), 

- m1 is the mass of the element 1 plus the cam 4 and IS1 their global axial moment of inertia, 

- r1 is the dimensionless position of the global mass centre of these elements (
OAOS

llr /
11

 ). 

Thus, the first and second terms of the Lagrange equation (3) become: 
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taking into account that 
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LAB being the distance between joint centres A and B. 

Therefore, the input torque can be deduced: 
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In order to avoid torque fluctuation, the spring has to create a force that makes the input torque 

constant. In many cases, when a mean value of the torque moment is equal to zero, as in the case of 

unloaded slider-crank mechanism, this constant is equal to zero. Thus, in such a case, the 

compensation of the input torque is equivalent to its cancellation. From the point of view of the energy 

fluctuation, after such a compensation, the periodic variations of the input torque is cancelled and the 

required input torque is equal to zero, i.e. in the stationary operating mode, the generation of motion 

may be accomplished by only a very small input torque, which is needed for overcoming friction.      

Thus, under the condition that the input torque is equal to zero with the cam-follower system, 

equation (9) admits the integral: 
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where A is an integration constant. Note that the value of A represents two times the sum of the kinetic 

energy stored in the mechanism (without rod 1 and the cam 5) plus the potential energy in the spring. 

For the continuity of contact between the cam and the follower, the force created by the spring has 

to be always superior to the inertia force of the follower 6 with the counterweight, i.e. 
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Also,  
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From expression (8), the value of  may also be computed: 
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Combining equations (12) and (13) leads to, 
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In order equation (17) to be valuable for any value of , constant A should be equal to: 
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To avoid resonance, the spring should be stiff enough so that the lowest natural frequency of the 

system is considerably higher than the highest significant harmonic of the output motion of the 

follower (Angeles and Wu 2001). After the appropriate spring constant is selected, the displacement of 

the spring can be determined from equations (13) and (15), namely: 
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Thus here we find the cam profile for torque compensation.  

The next part presents an illustrative example of the proposed approach. The simulations have 

been carried out by using ADAMS software.  

 

3. Illustrative example 

 

3.1. Shaking force and shaking moment balancing 

 

The following parameters of mechanism’s links are specified for the simulations: LOA = 0.292 m; 

LAB = 0.427 m; r1 = 0.5; 
By  = 0.1 m; m1 = 2 kg; m2 = 3 kg; m3 = 4 kg; IS1 = 0.03 kg/m

2
, IS2 = 0.14 

kg/m
2
. The period of the mechanism is fixed to 1 s. 

The shaking forces and shaking moment of the above-mentioned mechanism are represented in 

Fig. 2 (full line). 

By selecting 2.0
OAcpcp

LrL m, we obtain 25.3
cp

m kg. This counterweight will be mounted on 

the input crank. The second counterweight is carried out the reciprocating motion. In order to reduce 

the size of the cam, the displacement of the centre of mass S6 of link 6 is three times smaller than the 

displacement of point B. Therefore m6=13.5kg. Fig. 3 shows the obtained cam profile. The variations 

of the shaking forces and shaking moment of the mechanisms with redistributed moving masses are 

given in Fig. 2 by dashed lines. The simulation results show that after balancing the shaking forces and 

moment are cancelled. 

 

3.2. Input torque compensation 

 

The parameters are identical to those used in the previous part. The constant spring is fixed to k = 

10 kN/m. The joint between the cam and the follower has been modeled by a contact between two 

solid bodies. The linear spring 8 is designed in such a manner that it ensures a permanent contact in 

the cam mechanisms. Thus, the displacements of the follower 7 are determined from equation (16) and 

the obtained cam profile is shown in Fig. 4.  

The input torques before and after compensation are shown in Fig. 5.   

Thus we can note that the suggested approach allows not only to carry out complete shaking force 

and shaking moment balancing of the of-set slider crank mechanism but also it assumes its input 

torque compensation.  

 

4. Conclusions 

 

Fast-moving machinery with rotating and reciprocating masses is a significant source of variable 

dynamic loads. A major theme in machine dynamics and machine design is seeking to minimize the 

fluctuating forces that such machinery applies to its environment via its mount. Another theme, which 

is also very important in machine dynamics, is the minimization of the input torque fluctuation caused 

by the variable dynamic loads. These two problems are known and many methods have been 

developed and documented. However, these themes are considered separately, as two decoupled 

problems.   
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In this paper, for the first time, simultaneous shaking force/shaking moment balancing and torque 

compensation in slider-crank mechanisms is considered. The shaking force and shaking moment are 

cancelled via a cam mechanism carrying a counterweight. Then, the spring designed for maintaining 

contact in this balancing cam mechanism is used for torque compensation. For this purpose, the spring 

is jointed with a second cam mounted on the input crank. The proposed design concept allows the 

development only one devise for solution of the both mentioned problems.  

The suggested solution is illustrated by simulations carried out for an off-set slider-crank 

mechanism.  

 

  
(a) Fx : Shaking force with respect to the x axis. (b) Fy : Shaking force with respect to the y axis. 

 
(c) M : Shaking moment 

Fig. 2. Variations of the shaking forces and shaking moment before (full line) and after (dashed line) 

balancing. 

 

 

 
 

Fig. 3. Profile of the cam for the displacement of link 6 assuming the inertia forces balancing. 
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Fig. 4. Profile of the cam for the displacement of link 7 assuming the torque compensation. 

 

 

 
 

Fig. 5. Input torque before (full line) and after (dashed line) compensation. 
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