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Generalized traveling waves on complete Riemannian manifolds

Henri Berestycki 1 Mauricio Labadie 2 François Hamel 3

March 20, 2010

Abstract

In the article of H. Berestycki and F. Hamel, On a general definition of transition waves, there is
a generalization of the classical definition of a transition wave in Euclidean spaces (e.g. a travelling
wave or an invasive front) to the case where the level sets of the wave are no longer planes but
surfaces. We will prove that the same results and properties on general transition waves that appear
in the cited article hold in the case of a non-compact complete Riemannian manifold, namely: (1)
the wave is associated to a generalized front, which moves “close” to the level sets of the wave; (2)
there is a mean propagation speed of the wave, which is independent of the choice of the associated
front; (3) in the case of an invasion the wave is an increasing function in time.

Keywords: Travelling waves, Reaction-diffusion equations, parabolic equations on manifolds, complete
Riemannian manifolds.

AMS subject classifications: 35A18, 35K57, 58Jxx, 34C40.

1 Definition of general travelling waves on manifolds

1.1 Complete Riemannian manifolds

Let M be a n-dimensional, C∞ Riemannian manifold, and let gij(ξ) be its metric in the local coordinates
ξ ∈ R

n. We will suppose that M is closed, connected, without boundary, unbounded (i.e. non-compact)
and complete. Recall that a manifold M is complete if any of the following statements hold (see Bishop
and Crittenden [4], Theorem 5, p. 154):

1. M is complete as a metric space, i.e. any Cauchy sequence in M has a limit in M.

2. All bounded closed subsets of M are compact.

3. All geodesics are infinitely extendible.
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These conditions are equivalent, and they imply the next result:

(∗) Any x, y ∈ M can be joined by a geodesic whose arc length equals the geodesic distance d(x, y).

The geodesic distance is defined as:

d(x, y) := inf{ |γ| : γ ∈ G } ,

where G is the set of all continuous and piecewise C∞ curves from x to y, and |γ| is the arc length of
a curve γ. Moreover, the geodesic distance is a continuous functions, and the topology it generates is
equivalent to the topology of M as a manifold (see Bishop and Crittenden [4], pp. 124-125).

1.2 Reaction-diffusion equations on manifolds

From now on, we will work on a manifold M with the properties stated in Section 1.1.

Consider the scalar reaction-diffusion equation

{

∂tu = D∆Mu + F (t, x, u) ; t ∈ R, x ∈ M ,
u(0, x) = u0(x) ; x ∈ M .

(1)

∆M is the Laplace-Beltrami operator, which in local coordinates takes the form (note that we use the
sum convention)

∆Mu =
1√
g

∂j [
√

g gij ∂iu ] , (2)

where ∂i := ∂ξi
, (gij) = (gij)

−1 and g = det(gij). Another way of expressing the Laplace-Beltrami
operator is

∆Mu = gij∂iju +
1√
g
∂j [ g

ij√g ]∂iu

= gij∂iju − gijΓk
ij∂ku ,

where ∂ij = ∂2
ξiξj

and

Γk
ij =

1

2
gkl[∂jg

il + ∂ig
jl − ∂lg

ij ]

are the Schwartz-Christoffel symbols.

The assumptions on the nonlinearity F (t, x, u) are:

• Either F is C1 and both F and ∂uF are globally bounded, or

• Either F is bounded, continuous in (t, x) and locally Lipschitz continuous in u, uniformly in (t, x).

We can also suppose that F does not depend on the variables (t, x), i.e. F = F (u).



Traveling waves on manifolds 3

1.3 Fronts, waves and invasions

For any two subsets A, B ⊂ M denote

d(A, B) := inf{ d(x, y) : x ∈ A, y ∈ B} .

Definition 1 Generalized profile
A generalized profile is a family (Ω±

t ,Γt, )t∈R of subsets of M with the following properties:

1. Ω−
t and Ω+

t are non-empty disjoint subsets of M, for any t ∈ R.

2. Γt = ∂Ω−
t ∩ ∂Ω+

t and M = Γt ∪ Ω−
t ∪ Ω+

t , for any t ∈ R.

3. sup{ d(x,Γt) : t ∈ R, x ∈ Ω−
t } = sup{ d(x,Γt) : t ∈ R, x ∈ Ω+

t } = +∞

Suppose that there exist p−, p+ ∈ R such that F (t, x, p±) = 0 for all t ∈ R and all x ∈ M. Then
u ≡ p± are solutions of (1).

Definition 2 Generalized front
Let u(t, x) be a time-global classical solution of (1) such that u 6≡ p±. Then u(x, t) is a generalized

front between p− and p+ if there exists a generalized front (Ω±
t ,Γt, )t∈R such that

|u(t, x) − p±| → 0 uniformly when x ∈ Ω±
t and d(x,Γt) → +∞.

Observe that the generalized profile (Ω±
t ,Γt, )t∈R is not uniquely determined. However, it is important

to bear in mind that any generalized front u(t, x) is by definition associated to a certain generalized profile.

Definition 3 Generalized invasion
Let u(t, x) be a generalized front. We say that p+ invades p− or that u(t, x) is a generalized invasion

of p− by p+ (resp. p− invades p+ or that u(t, x) is a generalized invasion of p+ by p−) if

(i) Ω+
t ⊂ Ω+

s (resp. Ω−
s ⊂ Ω−

t ) for all t ≤ s.

(ii) d(Γt,Γs) → +∞ when |t − s| → +∞.

Remark that if p+ invades p− (resp. p− invades p+) then u(t, x) → p± when t → ±∞ (resp. when
t → ∓∞), locally uniformly in M with respect to the geodesic distance d(·, ·).

Example 1 Let us consider the reaction diffusion equation (1) in M = R
n with D = 1. In this case the

Laplace-Beltrami operator ∆M is the classical Laplacian ∆ = ∂ii, and (1) takes the form
{

∂tu = ∆u + F (u) ; t ∈ R, x ∈ R
n ,

u(0, x) = u0(x) ; x ∈ R
n .

. (3)

If we are looking for generalized travelling waves of the form u(t, x) = φ(x · e− ct), with e ∈ R
n is a unit

vector and c > 0, the natural choice for the generalized front is

Γt = {x ∈ R
n : x · e − ct = 0} , Ω±

t = {x ∈ R
n : ±(x · e − ct) > 0} .

In this framework, (1) becomes
cφ′ + φ′′ + F (φ) = 0 .
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Example 2 Consider the parametrization

S1 × R −→ M ⊂ R
3

(ξ, z) 7−→ (x, y, z) = (r cos ξ , sin ξ, z)

where ξ ∈ [0, 2π) and r > 0 is fixed. The Laplace-Beltrami operator is

∆M =
1

r2
∂ξξ + ∂zz .

If we want to study travelling waves in the axial direction z, it is a natural guess to consider u(t, x) =
φ(z − ct). In this case (1) takes the same form as in Example 1, i.e.

cφ′ + φ′′ + F (φ) = 0 ,

and the corresponding front is

Γt = {(x, y, z) ∈ M : z − ct = 0} , Ω±
t = {(x, y, z) ∈ M : ±(z − ct) > 0} .

From now on, for the sake of simplicity, we will call a profile any generalized profile, a front any
generalized front, and a invasion any generalized invasion.

Definition 4 Global mean speed
A front u(t, x) has global mean speed c > 0 if the profile (Ω±

t ,Γt, )t∈R is such that

d(Γt,Γs)

|t − s| → c when |t − s| → +∞.

In Example 1 we have
Γt = {x ∈ R

n : x · e − ct = 0} ,

which implies that
d(Γt,Γs) = c|t − s| .

In consequence, the velocity of propagation of the profile (Ω±
t ,Γt, )t∈R coincides with its global mean

speed.

Remark 1 All these definitions hold also in the case of a reaction-diffusion equation or system on a
growing manifold Mt (see Labadie [7] and Plaza et al [10] for the definition and properties of reaction-
diffusion equations on growing manifolds).

2 Properties of fronts on manifolds

For any x ∈ M and any r > 0 define

B(x, r) = { y ∈ M : d(x, y) ≤ r } ,

S(x, r) = { y ∈ M : d(x, y) = r } .
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Theorem 1 Level sets
Let p− < p+ and suppose that u(t, x) is a time-global solution of (1) such that

p− < u(t, x) < p+ for all (t, x) ∈ R ×M.

1. Suppose u(t, x) is front between p− and p+ (or between p+ and p−) with the following properties:

(a) There exists τ > 0 such that sup{ d(x,Γt−τ ) : t ∈ R, x ∈ Γt } < +∞, and

(b) sup{ d(y, Γt) : y ∈ Ω±
t ∩ S(x, r) } → +∞ when r → +∞, uniformly in t ∈ R and x ∈ Γt.

Then:

(i) sup{ d(x,Γt) : u(t, x) = λ } < +∞ for all λ ∈ (p−, p+).

(ii) p− < inf{u(t, x) : d(x,Γt) ≤ C } ≤ sup{u(t, x) : d(x,Γt) ≤ C } < p+ for all C ≥ 0.

2. Conversely, if (i) and (ii) hold for a certain profile (Ω±
t ,Γt, )t∈R and there exists d0 > 0 such that

for all d ≥ d0 the sets

{ (t, x) ∈ R ×M : x ∈ Ω±
t , d(x,Γt) ≥ d }

are connected, then u(t, x) is a front between p− and p+ (or between p+ and p−).

Theorem 2 Uniqueness of the global mean speed
Let p− < p+ and suppose that u(t, x) is a front between p− and p+, where its associated profile

(Ω±
t ,Γt, )t∈R satisfies (b) in Theorem 1. If u(t, x) has a global mean speed c > 0 then it is independent of

the profile. In other words, if for any other profile (Ω̃±
t , Γ̃t, )t∈R satisfying (b) the front u(t, x) has global

mean speed c̃, then c̃ = c.

Theorem 3 Monotonicity
Let p− < p+ and suppose F (t, x, u) satisfies the following conditions:

(α) s 7→ F (s, x, u) is non-decreasing for all (x, u) ∈ M × R.

(β) There exists δ > 0 such that q 7→ F (t, x, q) is non-increasing for all q ∈ R \ (p− + δ, p+ − δ).

Let u(t, x) be a invasion of p− by p+ and assume (as in Theorem 1) that:

(a) There exists τ > 0 such that sup{ d(x,Γt−τ ) : t ∈ R, x ∈ Γt } < +∞, and

(b) sup{ d(y, Γt) : y ∈ Ω±
t ∩ S(x, r) } → +∞ uniformly in t ∈ R and x ∈ Γt when r → +∞.

Then:

1. p− < u(t, x) < p+ for all (t, x) ∈ R ×M.

2. u(t, x) is increasing in time, i.e. u(t + s, x) > u(t, x) for all s > 0.
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3 Proofs

3.1 Proof of Theorem 1

Proposition 1 sup{ d(x,Γt) : u(t, x) = λ } < +∞ for all λ ∈ (p−, p+).

Proof: Suppose it is not true. Then there is a λ ∈ (p−, p+) and a sequence (tn, xn)n∈N in R×M such
that u(tn, xn) = λ and d(xn,Γtn

) → +∞ when n → +∞.

Up to extraction of a subsequence, either xn ∈ Ω−
tn

for all n, or either xn ∈ Ω+
tn

for all n. Since u(t, x)
is a generalized wave then in the first case u(tn, xn) → p−, whereas in the second case u(tn, xn) → p+,
hence in any case we reach a contradiction. �

Proposition 2 p− < inf{u(t, x) : d(x,Γt) ≤ C } ≤ sup{u(t, x) : d(x,Γt) ≤ C } < p+ for all C ≥ 0.

Proof: Suppose it is not true. Then there exist C > 0 and a sequence (tn, xn)n∈N in R×M such that
d(xn,Γtn

) ≤ C and u(tn, xn) → p− or p+ when n → +∞. Since both cases can be treated with similarly
let us only prove the case

u(tn, xn) → p− when n → +∞ . (4)

Since d(xn,Γtn
) ≤ C for all n, Property (a) implies that there exist τ > 0 and a sequence (x̃n)n∈N such

that x̃n ∈ Γtn−τ for all n and
sup{ d(xn, x̃n) : n ∈ N } < +∞ .

From the definition of a front it follows that there exists d > 0 such that

d(y, Γt) ≥ d implies that u(t, y) ≥ p− + p+

2
for all (t, y) ∈ R × Ω+

t .

From Property (b) there exists r > 0 such that, for each n, there exists yn ∈ Ω+
tn−τ satisfying

d(x̃n, yn) = r and d(yn,Γtn−τ ) ≥ d .

Therefore

u(tn − τ, yn) ≥ p− + p+

2
for all n. (5)

On the other hand, the function v(t, x) := u − p+ is non-negative. Moreover, recalling F (t, x, p−) = 0 it
follows that v satisfies the nonlinear equation

∂tv = D∆Mv + F (t, x, u) in R ×M.

This implies that v satisfies the linear equation

∂tv = D∆Mv + b(t, x)v in R ×M,

where

b(t, x) =











F (t,x,u(t,x))−F (t,x,p−)
u(t,x)−p−

= F (t,x,u(t,x))
u(t,x)−p−

, if u(t, x) 6= p−,

Θ, if u(t, x) = p−,

• Θ = ∂uF (t, x, p−) if F is C1 in u, uniformly in (t, x), and both F and ∂uF are globally bounded, or
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• Θ = K, if F (t, x, ·) is Lipschitz continuous and bounded in u, uniformly in (t, x).

In both cases b(t, x) is at least bounded and measurable. Therefore we can apply Harnack’s inequality
(Lemma 1) to v(t, x) and obtain that there exists C1 > 0 such that

u(tn − τ, yn) − p− = v(tn − τ, yn) ≤ C1v(tn, xn) = C1[u(tn, xn) − p−] .

It is important to remark that C1 depends on τ but is independent of n. In consequence, we can take
the limit n → +∞ and use (4)-(5) to obtain

p− − p+

2
≤ 0 ,

which is a contradiction. �

We suppose here that Propositions 1 and 2 hold, and that there exists d0 > 0 such that for all d ≥ d0

the sets

{ (t, x) ∈ R ×M : x ∈ Ω±
t , d(x,Γt) ≥ d }

are connected.

Define

m− := lim inf{u(t, x) : x ∈ Ω−
t , d(x,Γt) → +∞} ,

M− := lim sup{u(t, x) : x ∈ Ω−
t , d(x,Γt) → +∞} .

We affirm that m− = M−. Indeed, if m− < M− then λ := (m− + M−)/2 ∈ (m−, M−). Moreover,
by hypothesis p− ≤ m− ≤ M− ≤ p+, which implies that λ ∈ (p−, p+). Therefore, using Property (i) it
follows that there exists C > 0 such that

d(x,Γt) < C for all (t, x) ∈ R ×M with u(t, x) = λ.

On the other hand, by definition of lim inf and lim sup there exists two points (t1, x1), (t2, x2) ∈ R × Ω−
t

such that

u(t1, x1) < λ < u(t2, x2) and d(xi,Γti
) ≥ max{C, d0} for i = 1, 2.

Now recall that by hypothesis the set

{ (t, x) ∈ R ×M : x ∈ Ω−
t , d(x,Γt) ≥ max{C, d0} }

is connected. Therefore, since u(t, x) is continuous there exist

(t, x) ∈ R × Ω−
t such that d(x,Γt) ≥ max{C, d0} and u(t, x) = λ,

which contradicts the definition of C0.
Therefore m− = M−, and in consequence u(t, x) has a limit, i.e.

u(t, x) → m− uniformly in x ∈ Ω−
t when d(x,Γt) → +∞ .
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Similarly, switching all − signs by + we obtain that

u(t, x) → m+ uniformly in x ∈ Ω+
t when d(x,Γt) → +∞ .

We now affirm that p− = min{m−, m+} and p+ = max{m−, m+}. Indeed, if p− < min{m−, m+}
then there exist ε > 0 and C > 0 such that

u(t, x) ≥ p− + ε > p− for all (t, x) with d(x,Γt) ≥ C.

But by Property (ii) we also have that

inf{u(t, x) : d(x,Γt) ≤ C } > p− .

In consequence,

inf{u(t, x) : (t, x) ∈ R ×M} > p− ,

which contradicts the fact that the range of u(t, x) is the whole interval (p−, p+).

In conclusion, p− = min{m−, m+}, and analogously we can show that p+ = max{m−, m+}.

Finally, note that if m− = p− and m+ = p+ then u(t, x) is a front between p− and p+, whereas if
m− = p+ and m+ = p− then u(t, x) is a front between p+ and p−.

This concludes the proof of Theorem 1.

3.2 Proof of Theorem 2

Let p− < p+ and suppose that the front u(t, x) has global mean speed c > 0 with respect to the profile
(Ω±

t ,Γt, )t∈R. Let (Ω̃±
t , Γ̃t, )t∈R be another profile for u(t, x) satisfying (b) in Theorem 1. We have to

prove that u(t, x) has also a global mean speed with respect to the new front (Ω̃±
t , Γ̃t, )t∈R, and that it is

precisely c.

Proposition 3 There exists C > 0 such that

d(x, Γ̃t) ≤ C for all t ∈ R and all x ∈ Γt . (6)

Proof: If (6) does not hold then there is a sequence (tn, xn)n∈N such that

xn ∈ Γtn
and d(xn, Γ̃tn

) → +∞ when n → +∞ . (7)

Up to extraction of a subsequence, either xn ∈ Ω̃−
tn

for all n, or either xn ∈ Ω̃+
tn

for all n. Since both

cases can be proven similarly, we will suppose that xn ∈ Ω̃−
tn

for all n.
Since u(t, x) is a front then there exists A > 0 such that

|u(t, x) − p+| ≤ p+ − p−

2
for all (t, x) ∈ R × Ω+

t with d(x,Γt) ≥ A. (8)
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Property (b) implies that for each n there exists r > 0 and yn ∈ Ω+
tn

such such that

d(xn, yn) = r and d(yn,Γtn
) ≥ A . (9)

Note that the uniformity of the limit in (b) implies that r > 0 is independent of n. Therefore, using (7)
and (9) it follows that

d(yn, Γ̃tn
) → +∞ when n → +∞ .

Moreover, if n is sufficiently big then yn ∈ Ω̃−
tn

because, should yn ∈ Ω̃+
tn

, then using Γ̃tn
= ∂Ω̃−

tn
∩∂Ω̃+

tn

we would obtain

d(xn, Γ̃tn
) ≤ d(xn, Ω̃+

tn
) ≤ d(xn, yn) = r ,

which contradicts (7).

In the light of this we have that u(tn, yn) → p− when n → +∞. But we also have that yn ∈ Ω+
tn

, so
using (8)-(9) we obtain

|u(tn, yn) − p+| ≤ p+ − p−

2
for all n.

In consequence, making n → +∞ it follows that

|p− − p+| ≤ p+ − p−

2
,

which is a contradiction. In conclusion, (6) holds. �

Now let ε > 0. Then for any two times t, s ∈ R:

• There exist x ∈ Γt and y ∈ Γs such that d(x, y) ≤ d(Γt,Γs) + ε.

• There exist x̃ ∈ Γ̃t and ỹ ∈ Γ̃s such that d(x̃, ỹ) ≤ d(Γ̃t, Γ̃s) + ε.

• d(x, x̃) ≤ d(x, Γ̃t) + ε and d(y, ỹ) ≤ d(y, Γ̃s) + ε.

Therefore, by virtue of (6) we have

d(x̃, ỹ) ≤ d(x̃, x) + d(x, y) + d(y, ỹ)

≤ (C + ε) + (d(Γt,Γs) + ε) + (C + ε)

≤ d(Γt,Γs) + 2C + 3ε .

and in consequence

d(Γ̃t, Γ̃s) ≤ d(Γt,Γs) + 2C + 3ε .

Since ε > 0 was arbitrary then

d(Γ̃t, Γ̃s) ≤ d(Γt,Γs) + 2C for all t, s ∈ R,

which implies that

lim sup
|t−s|→+∞

d(Γ̃t, Γ̃s)

|t − s| ≤ lim sup
|t−s|→+∞

d(Γt,Γs)

|t − s| = c . (10)
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Now observe that interchanging the roles of the sets Ω±
t and Ω̃±

t it can be shown that there exists C̃ > 0
such that

d(x̃,Γt) ≤ C̃ for all t ∈ R and all x̃ ∈ Γ̃t ,

i.e. the “tilde” version of (6). In the light of this, it can be shown as well that

d(Γt,Γs) ≤ d(Γ̃t, Γ̃s) + 2C̃ for all t, s ∈ R,

and in consequence

c = lim inf
|t−s|→+∞

d(Γt,Γs)

|t − s| ≤ lim inf
|t−s|→+∞

d(Γ̃t, Γ̃s)

|t − s| . (11)

From (10) and (11) we deduce that the limit

lim
|t−s|→+∞

d(Γ̃t, Γ̃s)

|t − s|

exists and is equal to c.

This concludes the proof of Theorem 2.

3.3 Proof of Theorem 3

Proposition 4 p− < u(t, x) < p+ for all (t, x) ∈ R ×M.

Proof: Define

m := inf{u(t, x) − p− : (t, x) ∈ R ×M}

and suppose m < −δ < 0. Let (tn, xn)n∈N be a sequence in R ×M such that

u(tn, xn) − p− → m when n → ∞ .

Since u(t, x) is a front and

u(tn, xn) → m + p− < p− < p+

we have that the sequence d(xn,Γtn
) is bounded (otherwise u(tn, xn) would converge to either p− or p+

by definition). From Property (a) it follows that, for any n ∈ N, there exists a point x̃n ∈ Γtn−τ such that
the sequence d(xn, x̃n)n∈N is bounded. Since u(t, x) is a front there exists d > 0 such that u(t, x) ≥ p−

whenever d(x,Γt) ≥ d.

From Property (b) there is a sequence (yn)n∈N such that, for any n ∈ N:

• yn ∈ Ω+
tn−τ ,

• d(yn, x̃n) = r,

• d(yn,Γtn−τ ) ≥ d.
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Using this properties we have that

u(tn − τ, yn) ≥ p− for all n ∈ N. (12)

Define
w(t, x) := u(t, x) − p− + m ≥ 0 .

If n ∈ N is big enough then it follows from condition (β) that w satisfies

∂tw ≥ D∆Mw + F (t, x, u) ≥ D∆Mw + F (t, x, w) for all t ≥ tn.

Therefore, using the same argument of Proposition 2 we can show that there exists a function b ∈
L∞(R ×M) such that w satisfies the linear equation

∂tw ≥ D∆Mw + b(t, x)w in R ×M.

As before, we apply Harnack’s inequality (Lemma 1) to w(t, x) and obtain that there exists C1 > 0,
independent of n, such that

w(tn − τ, yn) − p− = u(tn − τ, yn) − p− − m ≤ C1v(tn, xn) = C1[u(tn, xn) − p− − m] .

Making n → +∞ and using (4)-(5) it follows that the left-hand side converges to

p+ − p− − m > 0 ,

whereas the right-hand side converges by definition to zero. In consequence, we have obtained a contra-
diction.

We have thus shown that m ≥ 0, which implies that p− < u(t, x) for all (t, x) ∈ R×M. The inequality
u(t, x) < p+ can be proven with the same arguments. �

Remark 2 Decreasing δ > 0 if necessary we can assume that 2δ < p+ − p−. Moreover, from Definition
2 there exists A > 0 such that for all (t, x) ∈ R ×M:

• If x ∈ Ω−
t and d(x,Γt) ≥ A then u(t, x) ≤ p− + δ.

• If x ∈ Ω+
t and d(x,Γt) ≥ A then u(t, x) ≥ p+ − δ/2.

Since p+ invades p− there exists s0 > 0 such that

Ω+
t+s ⊂ Ω+

t and d(Γt+s,Γt) ≥ 2A for all t ∈ R and all s ≥ s0. (13)

Let t ∈ R, s ≥ s0 and x ∈ Ω be fixed. On the one hand, if x ∈ Ω+
t then (13) implies that x ∈ Ω+

t+s

and d(,Γt+s) ≥ 2A because any continuous path from x to Γt+s meets Γt. On the other hand, if x ∈ Ω−
t

and d(,Γt) ≤ 2A then using (13) it follows that d(,Γt+s) ≥ A and x ∈ Ω+
t+s. In both cases we obtain

that
us(t, x) := u(t + s, x) ≥ p+ − δ/2 ≥ p+ − δ .
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Proposition 5 Define

ω−
A := { (t, x) ∈ R ×M : x ∈ Ω−

t and d(x,Γt) ≥ A } .

Then for all s ≥ s0 we have

us(t, x) ≥ u(t, x) for all (t, x) ∈ ω−
A .

Proof: Fix s ≥ s0 and define

ε∗ := inf{ ε > 0 : us ≥ u − ε in ω−
A } (14)

Since u(t, x) is bounded it follows that ε∗ ≥ 0 is well defined.

We claim that ε∗ = 0. Indeed, let us suppose that ε∗ > 0. Then there exists a sequence

0 < ε1 < ε2 < · · · < εn

such that εn < ε∗ for all n ∈ N and εn → ε∗. Moreover, using (14) we have, for each n ∈ N, a point
(tn, xn) ∈ ω−

A such that
u(tn + s, xn) < u(tn, xn) − εn .

Observe that the sequence d(xn,Γtn
) is bounded. If it is not, we can find a subsequence such that

d(xn,Γtn
) → +∞, which implies that

u(tn, xn) − p− → 0 . (15)

But on the other hand we have

u(tn, xn) − p− > u(tn + s, xn) + εn − p− ≥ εn ,

and in consequence
u(tn, xn) − p− → ε∗ > 0

which contradicts (15).

Since d(xn,Γtn
) is bounded, from assumption (a) there exists a sequence of points x̃n ∈ M such that

x̃n ∈ Γtn−τ and
sup{ d(xn, x̃n) : n ∈ N } < +∞ .

By hypothesis p+ invades p−, which implies that Ω−
tn−t ⊃ Ω−

tn
for all t ≥ 0. In consequence, using that

xn ∈ Ω−
tn

and d(xn,Γtn
) ≥ A it follows that xn ∈ Ω−

tn−τ and d(xn,Γtn−τ ) ≥ A for all n ∈ N. Therefore,

we can find a sequence yn ∈ Ω−
tn−τ such that

A = d(yn,Γtn−τ ) = d(xn,Γtn−τ ) − d(xn, yn) .

Hence

d(xn, yn) = d(xn,Γtn−τ ) − A

≤ d(xn, x̃n) − A < +∞ .
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Since the sequence d(xn, yn) is bounded we can construct a sequence of continuous paths in M

Pn := γn([0, 1]) , γn : [0, 1] → Ω−
tn−τ

such that γn(0) = xn and γn(1) = yn for all n ∈ N. Moreover, the completeness of the manifold M alows
us to choose the paths Pn such as their length is precisely d(xn, yn) and

d(γn(σ),Γtn−τ ) ≥ A for all σ ∈ [0, 1].

In consequence, using Remark 2 we can infer that

u(tn − t, γn(σ)) ≤ p− + δ for all σ ∈ [0, 1], n ∈ N and t ≥ 0.

In the light of this we obtain that

u(tn − τ, xn) − ε∗ < u(tn − τ, xn) ≤ p− + δ .

Moreover, from Lemma 3 we have that u(t, x) is uniformly continuous, which implies that there exists a
small ρ independent of n ∈ N such that

u(t, x) − ε∗ < p− + δ

for all (t, x) ∈ R ×M satisfying

t ∈ (tn − τ − ρ, tn − τ + ρ) and d(x, xn) < ρ .

Let us focus in the region where u − ε∗ ≤ p− + δ. On the one hand, since F (t, x, ·) is non-increasing
in this region it follows that

∂t(u − ε∗) = D∆(u − ε∗) + F (t, x, u)

≤ D∆(u − ε∗) + F (t, x, u − ε∗) .

On the other hand, due to the fact that F (·, x, q) is non-decreasing for all (x, q) ∈ M× R we have that

∂tu
s = D∆us + F (t + s, x, us)

≥ D∆us + F (t, x, us) .

Therefore, we can use the arguments in Proposition 2 to obtain that there exists b(t, x) ∈ L∞(R×M)
such that the function

v := us − (u − ε∗) ≥ 0

satisfies the linear inequality
∂tv ≥ D∆Mv + b(t, x)v .

In consequence, applying Lemma 1 we obtain that there exists a constant C1 > 0 such that

v(tn − τ, yn) ≤ C1v(tn, yn) .

On the one hand, if we recall that yn ∈ Ω−
tn−τ and d(yn,Γtn−τ ) we obtain that

v(tn − τ, yn) = us(tn − τ, yn) − u(tn − τ, yn) + ε∗

≥ (p+ − δ) − (p− + δ) + ε∗

> ε∗ > 0.
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But on the other hand we have that

v(tn, yn) = u(tn + s, yn) − u(tn, yn) + ε∗

< −εn + ε∗ → 0 .

This contradiction implies that ε∗ = 0, and the proof of the proposition is complete. �

Proposition 6 us ≥ u in R ×M for all s ≥ s0.

Proof: Fix s ≥ s0. From Proposition 5 we have that us(t, x) ≥ u(t, x) for all (t, x) ∈ ω−
A , but the

inequality is also valid when (t, x) ∈ R ×M \ ω−
A . Indeed, this can be proven using the same argument

of Proposition 5, taking into that F (t, x, )̇ is non-increasing in [p+ − δ, +∞) and that us(t, x) ≥ u(t, x)
when (t, x) 6∈ ω−

A . �

Proposition 7 Define
s∗ := inf{s > 0 : uσ ≥ u for all σ ≥ s} .

Then s∗ = 0.

Proof: By definition 0 ≤ s∗ ≤ s0. Let us assume that s∗ > 0 in order to reach a contradiction. Since
us∗ ≥ u in R ×M we have two possibilities:

• Case 1. inf{us∗

(t, x) − u(t, x) : d(x,Γt) ≤ A} > 0.

• Case 2. inf{us∗

(t, x) − u(t, x) : d(x,Γt) ≤ A} = 0.

We will show that none of these two cases can hold.

Proof of Case 1.

By Lemma 3 it follows that ∂tu is globally bounded, which implies that there exists η0 such that

us∗−η(t, x) ≥ u(t, x) for all η ∈ [0, η0] and all (t, x) satisfying d(x,Γt) ≤ A. (16)

We claim that
us∗−η ≥ u for all η ∈ [0, η0] and all x ∈ ω−

A . (17)

Indeed, let x ∈ Ω−
t . If d(x,Γt) = A then (16) implies that us∗−η(t, x) ≥ u(t, x), whereas if d(x,Γt) > A

then by Remark 2 it follows that u(t, x) ≥ p− + δ. This implies that we can repeat the same arguments
presented in Proposition 5 to prove that the claim holds.

On the other hand, by Remark 2 we also obtain that

us∗

(t, x) ≥ u(t, x) ≥ p− − δ/2 if x ∈ Ω+
t and d(x,Γt) ≥ A.

In consequence, using the a priori bounds of Lemma 3 and decreasing η0 if necessary, we have that

us∗−η(t, x) ≥ p− − δ for all η ∈ [0, η0] and all x ∈ Ω+
t such that d(x,Γt) ≥ A. (18)
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In consequence, form (17), (16) and (18) it follows that

us∗−η(t, x) ≥ u(t, x) for all (t, x) ∈ R ×M.

Since this contradicts the minimality of s∗, Case 1 cannot hold.

Proof of Case 2.

By definition of the infimum, there exists a sequence (tn, xn) ∈ R ×M such that

d(xn,Γtn
) ≤ A and us∗

(tn, xn) − u(tn, xn) → 0 when n → +∞.

Let us again remark that us∗

is a supersolution of (1) and us∗ ≥ u. Therefore, applying Harnack
inequality to the difference there exists C1 > 0 such that

0 ≤ us∗

(tn − s∗, xn) − u(tn − s∗, xn) ≤ C1[u
s∗

(tn, xn) − u(tn, xn)] .

Therefore, using us∗

(tn − s∗, xn) = u(tn, sn) it follows that

u(tn, xn) − u(tn − s∗, xn) → 0 when n → +∞.

Moreover, by induction we can show that

u(tn, xn) − u(tn − ks∗, xn) → 0 when n → +∞, for all k ∈ N.

Now fix ε > 0. By Definition 2 and Proposition 4 there exists Bε > 0 such that

p− < u(t, x) ≤ p− + ε for all x ∈ Ω−
t satisfying d(x,Γt) ≥ Bε.

Since p+ invades p− then for all s ≤ t it follows that Ω−
s ⊃ Ω+

t , and also that d(Γs,Γt) → +∞ when
|t − s| → +∞. These two properties and the boundedness of the sequence d(xn,Γtn

) imply that there
exists m ∈ N such that

xn ∈ Ω−
tn−ms∗ and d(xn,Γtn−ms∗) ≥ Bε for all n ∈ N.

Therefore, for all n ∈ N we obtain that

p− < u(tn − ms∗, xn) ≤ p− + ε .

In consequence,
u(tn, xn) − p− → 0 when n → +∞. (19)

From Definition 2 and Remark 2 there exist two positive real numbers B and 2δ < p+ − p− such that

p+ − δ/2 ≤ u(t, x) < p+ for all x ∈ Ω+
t satisfying d(x,Γt) ≥ B.

Using Hypothesis (a) and the boundedness of the sequence d(xn,Γtn
) we can construct a sequence x̃n

such that
x̃n ∈ Γtn−τ for all n ∈ N and sup{d(xn, x̃n) : n ∈ N} < +∞.

Moreover, by Hypothesis (b) there exist r > 0 and a sequence yn such that

yn ∈ Ω+
tn−τ , d(yn, x̃n) = r and d(yn,Γtn−τ ≥ B for all n ∈ N.

In consequence, we have that

p+ − δ/2 ≤ u(tn − τ, yn) < p+ for all n ∈ N.

Let us recall some important facts:
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• u(t, x) and p− are both solutions of (1).

• F (t, x, q) is locally Lipschitz and continuous in q, uniformly in (t, x).

• The sequence d(xn, yn) is bounded.

Using these facts and Harnack inequality on the function

v := u − p− > 0

we obtain that there is a C1 > 0 such that

v(tn − τ, yn) ≤ C1v(tn, xn) .

On the one hand we know that v(tn, yn) → 0 because of (19), but on the other hand we have that

v(tn − τ, yn) = u(tn − τ, yn) − p−

≥ p+ − δ/2 − p−

> δ/2 > 0 .

Thus we have reached a contradiction, which implies that Case 2 cannot hold. �

Proposition 8 If s > 0 then us(t, x) > u(t, x) for all (t, x) ∈ R ×M.

Proof: Choose any s > 0 and assume there is a point (t0, x0) ∈ R×M such that us(t0, x0) = u(t0, x0).
Since us is a supersolution of (1) and us ≥ u, using the maximum principle we obtain that us(t, x) = u(t, x)
for all (t, x) ∈ (−∞, t0] ×M.

Consider an arbitrary point (t, x) ∈ (−∞, t0] ×M. Then for any k ∈ N we have that

0 ≤ u(t, x) − p− = u(t − ks, x) − p− .

If we recall that u(t, x) is a invasion of p− by p+ and take the limit k → +∞ it follows that u(t, x) ≡ p−,
which contradicts Proposition 4. �

This concludes the proof of Theorem 3.

4 Parabolic equations on Riemann manifolds

Let L be a second-order, negative-semidefinite, elliptic differential operator with continuous coefficients,
whose expression in local coordinates is (using sum convention)

Lu = aij(t, ξ)∂iju + bi(t, ξ)∂iu + c(t, ξ)u .

We will also assume global boundedness of the coefficients of L, i.e. the coefficients aij(t, ξ), bi(t, ξ) and
c(t, ξ) have upper bounds that are independent of the chosen parametrization for the local coordinates.
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Lemma 1 Harnack inequality
Let T > 0 and suppose that u(t, x) ∈ C2((0, T ) ×M) solves

{

∂tu − Lu ≥ 0 in (0, T ) ×M,
u ≥ 0 in (0, T ) ×M.

(20)

Let K be a compact subset of M and choose τ ∈ (0, T ). Then for each t ∈ (τ, T ) there exists a constant
C > 0 (depending only on K, τ and the coefficients of L) such that

sup
K

u(t − τ, ·) ≤ C inf
K

u(t, ·) . (21)

Proof: Suppose there exists a parameterization φ : U ⊂ R
n → M such that K ⊂ φ(U). Then we can

consider the problem (20) in (0, T )×U , and hence we can use Harnack’s inequality in R
n to deduce that

there exists C > 0 such that the inequality (21) holds (see Evans [5], Theorem 10, p. 370 and Lieberman
[9], Theorem 6.27, p. 129).

For a general K, take a compact finite cover K1, . . . ,Kd such that for each i = 1, . . . , d there exists a
chart φi : Ui ⊂ R

n → M satisfying Ki ⊂ φi(Ui). Now we apply the previous argument to each Ki find
a constant Ci (i = 1, . . . , d) for which inequality (21) holds in Ki. Choosing C = max{C1, . . . , Cd} we
obtain the result. �

Let p− < u(t, x) < p+ for all (t, x) ∈ R×M, and suppose F (t, x, u) satisfies the following conditions:

• s 7→ F (s, x, u) is nonincreasing for all s ∈ R.

• There exists δ > 0 such that q 7→ F (t, x, q) is nonincreasing for all q ∈ R \ (p− + δ, p+ − δ).

Lemma 2 Strong maximum principle
Let u(t, x) and p(t, x) two solutions of

∂tu = Lu + F (t, x, u) in R ×M (22)

such that u(t, x) ≥ p(t, x) for all (t, x) ∈ R × M. If there is a point (t0, x0) ∈ R × M such that
u(t0, x0) = p(t0, x0) then u(t, x) = p(t, x) for all (t, x) ∈ [0, t0] ×M.

Proof: Let (t0, x0) ∈ R × M be such that u(t0, x0) = p(t0, x0). Using a parameterization φ : Ū ⊂
R

n → M with (t0, x0) ∈ φ(U), we can consider equation (22) and the solutions u(t, x), p(t, x) in U ⊂ R
n,

a smooth domain containing (t0, y0) = φ−1(t0, x0).
By hypothesis we have u(t, x) ≥ p(t, x) for all (t, y) ∈ R× Ū and u(t0, y0) = p(t0, y0). Therefore, using

the strong maximum principle in R
n it follows that u(t, y) = p(t, y) for all (t, y) ∈ [0, t0] × Ū .

Now define the set
C = { (t, x) ∈ R ×M : u(t, x) = p(t, x) } .

C is closed because u(t, x) and p(t, x) are continuous, and we have just shown that it is also open. In
consequence, since M is connected, C = [0, t0] ×M. �

Remark 3 If the solution of equation (22) is unique then Lemma 2 holds for all times:

u(t, x) = p(t, x) for all (t, x) ∈ R ×M.
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Lemma 3 A priori estimates
If u(t, x) ∈ C2(R ×M) is solution of the equation

∂tu = Lu + F (t, x, u) in R ×M

and F is bounded then ∂tu and ∇xu are globally bounded.

Proof: Using the hypothesis of global boundedness of the coefficients of L we can assume that M
is an open subset of R

N . For Euclidean domains there are well-known a priori estimates for parabolic
equations, namely, if the coefficients are in Lp then the solution is in Lp as well. For a proof of this
general fact see e.g. Ladyženskaja et al [8] (Chapters 1 and 4) and Solonnikov [11]. �
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