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1 Introduction 

It has been well recognised that variational inequalities offer the right 
framework to consider numerous applied problems in various areas such 
as economics and engineering. Throughout the paper we consider R" 
equipped with the usual Euclidean scalar product (., .). We start by 
considering a variational inequality VI(A, 'p) that is the problem of fhd- 
ing z E W" such that: 

(A@), v - Z) + V(W) - ~ ( 5 )  2 0, VZJ E Rn 
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In this formulation, A : R" -+ R" is a continuous map, p : R"" --+ B is a 
convex function. When the operator A under consideration is supposed 
to be coercive, existence results for the problem VI(A, p) are well known 
in the setting of reflexive Banach spaces. This study was initiated by 
G. Stampacchia in the 60's and we refer to the contributions of J.L. 
Lions [15], Brkzis [4] and Kinderlehrer & Stampacchia [12] for various 
results and references therein. 

In the first part of this paper we develop an original approach es- 
sentially based on the use of the Brouwer topological degree to prove 
some results related to the existence of a solution to problem W(A, cp). 

Then, we study a &st order evolution variational inequality, that 
is a differential inclusion of the form: fkd a T-periodic function u E 
Co([O,T];Rn) such that: 

du 
-(t) + F ( u ( t ) )  - f ( t )  E -dp (u ( t ) ) ,  a.e. t E [O,T], dt 

where F : R" --+ R" is a continuous map, p : R" --+ B is a con- 
vex function, f E Co([O, +m);R") is such that: % E L:,,(O, +m; a"), 
T > 0 is a prescribed period and dcp is the convex subdifferential oper- 
ator. This problem is studied by means of a continuation method. It 
is well known that the Brouwer topological degree plays a fundamental 
role in the theory of ordinary differential equations (ODE). M.A. Kras- 
nosel'skii [13], [14] and H. Amann [3], developed a continuation method 
to compute this Brouwer topolgical degree associated to some gradient 
mapping (called the method of guiding function). This approach was 
useful for the study of the existence of periodic solutions for ODE'S. 
Roughly speaking, if on some balls of R" the Brouwer topological de- 
gree of the Poincark translation operator (see e.g. [17]) associated to the 
ODE is different from zero, the problem has at least one periodic solu- 
tion (for more details, references and possible extensions to the Leray- 
Schauder degree, we refer to the monograph of J. Mawhin [17]). With 
the emergence of many engineering disciplines and due to the lack of 
smoothness in many applications, it is not surprising that these classical 
mathematical tools require natural extension (for both analytical and 
numerical methods) to the class of unilateral dynamical systems. It is 
well known that the mathematical formulation of unilateral dynamical 
systems involves inequality constraints and hence contains natural non- 
smoothness. In mechanical systems, this non-smoothness could have its 
origin in the environment of the system studied (e.g. case of contact) 
in the dry friction, or in the discontinuous control term. Recently, new 
analytical tools have been developed for the study of unilateral evolution 
problems (see e.g. [l], 121, [7], [8], [9] and references cited therein). The 
study of periodic solutions for evolution variational inequalities is also 
important. The Krasnol'skii's original approach for ODE, has known 
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some extensions in order to obtain continuation methods for differential 
inclusions (see the article of L. G6rniewicz [lo] for more details and ref- 
erences). In the fourth section, we will be concerned with the existence 
of a T-periodic solution u E Co([O, T];Rn) such that: 

$ E P ( 0 ,  T; R"); 

u(0) = u(T); 
(%w + F(u(t))  - f(% 21 - 4 4 )  + cp(w) - cp(u(t)) L 0, 

Vw E B", a.e. t E [O,T]. 

u is right-differentiable on [0, T); 

(1) 

Here F : B" -+ R" is a continuous map, cp : R" -+ R is a convex function, 
f E Co([O, +m[; a") is such that: E L:,,(O, +w; Wn) and T > 0 is a 
prescribed period. 

We prove (Corollary 5.1) that if F and cp satisfy some growth condi- 
tion (see (36)), then problem (1) has at least one periodic solution. This 
approach is also applied to obtain the existence of a T-periodic solution 
of a second order dynamical system of the form: 

Mq(t )  + CQ(t) + Kq(t) - F ( t )  E -Hlaa(H;Q(t)), (2) 

where q E R" is the vector of generalized coordinate, : Bz -+ R 
is a convex function, M E RmX" is a symmetric and positive definite 
matrix, C E Rmxm and K E EXmx" are given matrices and HI E Rmxz 
is a given matrix whose coefficients are determined by the directions of 
friction forces. The function F E Co([O,+w);R") is such that E 
L:,,([O, +w); Rm). The term H1a@(HT.) is used to model the convex 
unilateral contact induced by friction forces. The paper is organized 
as follows: Section 2 contains some background materials on properties 
of the Brouwer topological degree and the concept of resolvent operator 
associated to a subdifferential operator. In Section 3, using an equivalent 
fixed point formulation as well as the Brouwer topological degree, we give 
some existence results for finite variational inequalities. In Section 4, we 
introduce the Poincar6 operator associated to problem (1). Section 5 is 
devoted to the existence of a periodic solution of problem (1). In Section 
6, we show that ow approach could be applied to a special second order 
problem (2). 

2 Brouwer topological degree and the resolvent op- 
erator P& 

It is well known that the degree theory is one of the most powerful tool 
in nonlinear analysis for the study of zeros of a continuous operator. 
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Let Cl C Rn be an open and bounded subset with boundary dCl and 
f E C1(R;R") n Co((M,R"). The Jacobian matrix of f at x E Cl is 
defined by f'(x) = (azifj(x))lli,jln and the Jacobian determinant off 
at x E Cl is defined by 

Jf(z) = det(f'(x)). 

We set 
Af(R) = {X E R : J~(x) = 0). 

Observing that if f - l ( O )  n Af(s2) = 0 and 0 $ f(aCl), then the set 
f-'(O) is finite. The quantity CzEf-l(0) sign (Jf(x)) is therefore defined 
and is called the Brouwer topological degree of f with respect to R and 
0 and is denoted by deg(f, C l , O ) .  More generally, if f E CO((M;Rn) and 
0 @ f(dR), then the Brouwer topological degree of f with respect to Cl 
and 0, denoted by deg(f, C l , O ) ,  is well defined (see [16] for more details). 

In the sequel, the scalar product on R" is denoted as usual by (., .) and 
1 1 - 1 1  the associated norm. For r > 0, we set B, := {z E R" : llxll < r } ,  and 
respectively a, = {x E R" : 11x11 I r } ,  for the open (respectively closed) 
unit ball with radius r > 0. As usual, we use the notation am, to denote 
the boundary B,\ i, of B,, that is {x E B" : llxll = r } .  I f f  : a, + R" 
is continuous and 0 4 f(aB,), then the Brouwer topological degree of f 
with respect to B, and 0 is well-defined (see e.g. [IS]) and denoted by 
deg(f, B,, 0).  Let us now recall some properties of the topological degree 
that we will use later. 

P1. If 0 4 f(aB,) and deg(f,B,,O) # 0, then there exist x E B, 
such that f(x) = 0. 

P2. Let cp : [0,1] x a,. + R"; (A, x) --+ p(X, z), be continuous such 
that, for each X E [0,1], one has 0 4 cp(X, am,), then the map X + 
deg(cp(X, .),B,,O) is constant on [0,1]. 

P3. Let us denote by idRn the identity mapping on B". We have 

deg(idRn,B,,O) = 1. 

P4. If 0 4 f(aB,) and a > 0,  then 

P5. If 0 4 f(aB,) and f is odd on B, (i.e., f(-z) = -f(x), Vx E 
B,), then deg(f,B,,O) is odd. 
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P6. Let f(x) = Ax - b, with A E RnX" a nonsingular matrix and 
b E R". Then deg(f, A-'b + B,, 0 )  = sign(det A )  = fl .  

Let V E C1 (R"; R) and suppose that there exists TO > 0 such that for 
every r 2 T O ,  0 $ VV(dB,). Then deg(VV,B,,O) is constant for r 2 TO 

and one defines the index of V at infinity "ind(V, 00)" by 

ind(V, GO) := deg(VV, B,, 0), Vr L TO.  

Let cp : R" + R be a convex mapping. It is well known that a) cp is 
continuous on R"; b) For all x E R", the convex subdifferential of cp at 
x is a nonempty compact and convex subset of Rn and defined by: 

dcp(x> = {w E R" : cp(v) - cp(x) L (w, 21 - ti), vu  E R"}; 

c) For all x E R", the directional derivative of cp at x E R" in the 
direction [ E R", i.e., 

exists (see e.g. [ll] page 164). Since the subdifferential operator dcp 
associated to cp, is maximal monotone (Brezis [5]), the operator ( I  + 
Xdcp)-l denoted by  FA,^ is a contraction eveywhere defined on R", that 
is, 

This operator  PA,^ is called the resolvent of order X > 0 associated to 
dcp and for simplicity, we note Pp instead of when the parameter 
X = 1. Let A : R" + Rn be a continuous mapping and consider the 
inequality problem: Find % E R" such that 

I lPA,&) - PX,,(Y)ll I llx - Yll, vx, Y E R". 

(A(%),v - 3) + P(V) - ( ~ ( 5 )  2 0, VU E R". (3) 

Clearly problem (3) is equivalent to the nonlinear equation: Find 5 E R" 
such that 

% - Pp(% - A(%)) = 0. (4) 
In view of property P1 recalled earlier, it is important to compute the 
degree of the operator idRn - Pv o (idRn - A). 

Remark 2.1. If % is a solution of problem (3), then 

(m9,t) + v'(5;t) 2 0, V t  E R" 

Indeed, let 5 be a solution of (3). Let [ E R" and a > 0 be given. 
Setting u = a: + a[ in (3), we get 

4 + cp@ + 4) - w(%) 2 0. 
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Thus, for all CY > 0, we have 

Samir Adly, Daniel Goeleven, Michel Th6ra 

Taking the limit as CY 1 0  we obtain 

(A(%), s> + v'@; 0 2 0. 

Example 2.1. Let cp : W + W be the function defined by 

cp(x) = 1x1, vx E R. 

We have 
if x > O  

dcp(x)= [- l , l]  if x = O  { 1, if x < O  

z - 1  if x > l  

a : + l  if x s - 1 .  
pP(x) = ( ~ + a c p ) - ' ( x )  = 0 if x E [-1,1] 

and 

I n 

Figure 1 Example 2.1 

Setting A(x) = 22, we get 

if 1x1 1 
z-PP(x-A(z) )=  2z-1 if z > l  i" 2 x f l  if z s - 1 .  

We see that the operator idw - PP o (idw - A) has a unique zero on W. 
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Proposition 2.1. Let L > 0 be given and assume that the mapping 
G : [O,L] x Rn + R" defined by (A,y) H G(A,y) is continuous o n  
[0, L] x R". Then, the mapping 

is continuous o n  [O,L] x R". 
Proof: Let {y,} c R" and {A,} c [0, L] be given sequences converg- 

ing respectively to y* E R" and A, --f A* E R as n + +oo. We claim that 
the sequence { P x ~ , ~ ( G ( A , , ~ ~ ) ) }  tends to Pp,,(G(A*,y*)) as n ---f +oo. 
Indeed, setting 2, := P~,,,(G(A,,y,)) and z* := P~*,lP(G(A*,y*)), we 
have 

and 

(x* - G(A*,y*),w - z*) + A*c~(w)  - A*(P(z*) 1 0, VW E R". (6)  

Let us first check that the sequence {xn} is bounded. Indeed, suppose 
on the contrary that the sequence { IIxnll} is unbounded. Setting v := 0 
in (5), we obtain 

and thus 

It results that for n large enough, IIzCnll # 0 and 

As for n large enough, 2- E (0,1] we use the convexity of (p, to obtain Ilxn II 

Thus, 

From (7), we get 
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The sequence {a} remains in the compact set dB1 and from the con- 
tinuity of cp, we derive that the sequence { c p ( & ) }  is bounded in R. 
Hence, 

Taking now the limit as n --+ +m in (8 ) ,  we obtain the contradiction 
1 5 0. The sequence {x,} is thus bounded. Setting v := x* in (5 )  and 
v := x, in (6), we obtain the relations 

(z, - G ( k ,  yn), xn - x*) - Xn~p(x*) + Xn~p(zn) I 0 (9) 

and 

Thus 

-(x* - G(X*, y*), Z, - x*) - X*C~(Z,) + X*(P(Z*) I 0. (10) 

1 1 %  - x*Il2 5 IIG(Xn,yn) - G(X*,y*)llllGL - x*II 
+(A, - X*)(p(x*) + (A* - X")cp(GL). (11) 

Using the continuity of cp and the boundeness of {x"}, we get that the 
sequence { c p ( ~ ~ ) } ~  is bounded in R. Moreover IlG(X,, yn)-G(X*, y*)ll --+ 
0 and (A, - A*) + 0 in R as n -+ +m. Relation (11) yields that 
xn -+ x* in R" as n --+ fm. Hence the operator (X,y) H P A , ~ ( G ( X , ~ ) )  
is continuous, which completes the proof. 

Proposition 2.2. Suppose that A : R" + R" is continuous and cp : 
R" + R is a convex function. If there exists a continuous mapping 
H : R" -+ R" and r > 0 such that 

(A(x), H ( z ) )  + cp'(x; H ( x ) )  < 0, Vx E dB,. (12) 

Then 

deg(H,B,,O) = (-l)"deg(idwn - P , ( i d p  - A),B,,O). 

Proof: Let h : [0,1] x &. + R"; (A, y) H h(X, y) := y -  PA,^(^ - 
XA(y) + (1 - X)H(y)). Proposition 2.1 ensures that h is continuous. Let 
us now check that h(X,z) # 0, Vx E dB,. Indeed, suppose on the 
contrary that there exists x E 8B, and X E [0,1] such that h(X, x) = 0, 
that is 

2 = PA,,(. - XA(x) + (1 - X)H(x)) .  

We first remark that X # 0. Indeed, if we suppose, on the contrary, that 
X = 0, then x = Po(x + H ( x ) )  = x + H ( x ) .  This yields H ( x )  = 0 which 
contradicts assumption (12). Thus X > 0 and 

(XA(x) - (1 - X)H(Z) ,W - X) + XP(V) - Xcp(x) 2 0, VW E R". 

8
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It results that (see Remark 2.1): 

(AA(x) - (1 - A)H(x), c )  + X ~ ' ( X ;  [) 2 0, V t  E EX". 

Setting 5 := H ( x ) ,  we obtain 

X[(A(x), H ( x ) )  + ( ~ ' ( x ;  H(x))l 2 (1 - X ) l l H ( ~ ) 1 1 ~  2 0,  

which contradicts assumption (12). Therefore, 

deg(idp - Pp(idp - A),B,,O) = deg(h(l,.),B,,O) 
= deg(h(0, .),% 0) 

= deg(-H, B,, 0 )  
= (-l)ndeg(H,B,,O), 

= deg(idp - Po(idRn + H ) ,  B,, 0 )  

which completes the proof. 0 

3 Some existence results for finite variational inequal- 
it ies 

As a direct consequence of Proposition 2.2, we have the following exis- 
tence results for finite dimensional variational inequalities. 

Theorem 3.1. Suppose that 1) A : R" -+ R" is a continuous operator; 
2) cp : Rn + R is a convex function; 3) there exists T > 0 such that 

( A ( x ) ,  X) - (P'(x; -x) > 0 ,  VX E dB,. 

Then there exists 3 E B, such that 

(A(Z), Y - 3) + P(Y) - ~ ( 3 )  2 0, VY E R". 

Proof: Just apply Proposition 2.2 with H := - i d p .  Indeed, here 
we have 

( A ( x ) ,  H ( x ) )  + cp'(x; W X ) )  = -W), 4 + c p ' k  -XI. 

0 

Theorem 3.2. Suppose that 1) A : R" + R" is continuous; 2) cp : R" -+ 
J R  is convex and Lipschitz continuous with Lipschitz constant K > 0, i.e., 

I cp(xt.> - cp(Y) I5 Kllx - Yll,  VX,Y E JR"; 

9
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3) there exists r > 0 such that 

Samir Adly, Daniel Goeleven, Michel Th&a 

llA(x)ll > K,  vx E m, 
and 

deg(4 B,, 0) # 0. 

Then there exists % E B, such that 

(A(%), w - Z) + V(V) - p(%) 2 0, VW E W". 

Proof: Just apply Proposition 2.2 with H := -A. Indeed, we have 

(A(x), Wxt.))  + c p k  Wz)) = -llA(4IlZ + c p k  - N X ) )  

5 -llN4ll2 + Kll4)II 
= Il@>ll(K - IlA(x>II). 

Therefore, 

(A(%), H ( z ) )  + cp'(x; H ( z ) )  < 0, Vx E dB,. 

Proposition 2.2 ensures that 

deg(idwn -Pp (idp -A), B,, 0) = (- l)"deg(H, B,, 0) = deg(A, B,, 0) # 0. 

Hence, there exists Z E B, such that % = Pq(% - A(Z)). The conclusion 
follows. 

Theorem 3.3. Suppose that 

1) A : Rn --+ Rn is continuous and there exists T > 0 such that 

Vx E aB, and deg(idp + A,B,,O) # 0. (Ax,x) > 0, 

2) cp : R" --t B is a convex function satisfying, 

v'(z; --z - AX) 5 0, VX E 13BT; 

Then there exists Z E B, such that 

(A(%), w - Z) + V ( W )  - v(Z) 2 0, VW E B". 

Proof: Just take H := -idRn - A in Proposition 2.2. Indeed, we 
have 

10
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According to Proposition 2.2, we have 

deg(idp - P,(idRn - A),B,,O) = (-l)"deg(H,B,,O) 
= deg(idwn + A, B,, 0) # 0. 

Hence, there exists Z E B, such that 2 = Pp(Z - A(%)). The conclusion 
follows. 0 

Corollary 3.1. Let f E R" be given. Suppose that 1) A E R"'" is a real 
nonsingular matrix; 2 )  cp : R" + R is convex and Lipschitz continuous 
with Lipschitz constant K > 0. Then there exists Z E R" such that 

(A% - f ,  v - Z) + V(V) - p(Z) 2 0, VV E R". 

Proof: The result is a consequence of Theorem 3.2 with A defined 
bY 

A(x) = AX - f ,  VX E R". 
The matrix A is nonsingular and thus there exists c > 0 such that 
llAx/l 2 cIIxII, Vx E R". Let us choose 

We see that if llxll = T ,  then 

On the other hand, we remark that 

h(X,x)  :=Ax - Xf # 0, VX E [O,l],x E 8BT. 

Indeed, suppose on the contrary that there exists X E [0, 11 and x E 8J3, 
such that Ax = Xf. Then 

and we obtain the contradiction r I IIA-lfll. Thus 

deg(A. - f , & , O )  = deg(h(1,.),BT,0) 
= deg(h(0, .),B,, 0) 
= deg(A.,B,,O) 
= sign (det A) 

# 0, 

which completes the proof. 
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4 The Poincar6 operator 

Samir Adly, Daniel Goeleven, Michel T h h a  

Let us first recall some general existence and uniqueness result (see e.g. 
[W. 
Theorem 4.1. Let cp : R" + R be a convez function. Let F : R" + R" 
be a continuous operator such that for some w E R, F + w I  is monotone, 
i.e., 

Suppose that f : [0, +oo) + R" satisfies 

2 - F(YI7a: - Y )  2 -WIIX - YII 7 VX, Y E R". 

df f E CO([O,+ca);R"), E L:,,(O,+oo;R"). 

Let uo E R" and 0 < T < +ca be given. There exists a unique u E 
C o ( [ 0 7 T ] ; R n )  such that 

$ E L m ( 0 7 T ; R n ) ;  (13) 
(14) 

u(0) = 210; (15) 

(16) 

u is right-differentiable on [0, T ) ;  

($0) + F ( u ( t ) )  - f w 7  - u@)) + dv) - cp(4t)) 2 07 
Vw E R", a e .  t E [O,T]. 

Remark 4.1. Suppose that F : R" + R" is of the type 

F ( x )  = AX + W ( X )  + FI(Z) ,  VX  E R", 

where A E W"'" is a real matrix, !€J E C1(R";R) is convex and F1 is 
Lipschitz continuous, i.e., 

IIFl(X) - Fl(Y)ll 5 kllX - 41, VX,Y E W", 

for some constant k > 0. Then F is continuous and F + w I  is monotone 
provided that 

w 2 SUP (-AX, X )  + k. 
11~11=1 

We note that if F is k-Lipschitz, then F + k I  is monotone. 

Remark 4.2. i) The variational inequality in (16) can also be written 
as the differential inclusion 

du 
-(t) dt + F ( u ( t ) )  - f ( t )  E -&(u(t)), a.e. t E [O, TI, (17) 

ii) Let u : [O,T] + R be the unique solution of (13)-(16). Then 

12
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Let T > 0 be given. Theorem 4.1 enables us to define the one pa- 
rameter family {S ( t )  : 0 5 t 5 T }  of operators from W" into R", as 
follows: 

vy E W", S(t)y = u(t), (18) 

u being the unique solution on [O,T] of the evolution problem (13)-(16). 
Note that 

vy E W", S(0)y = y. 

Lemma 4.1. (see e.g. [18]) Let T > 0 be given and let a ,  b E L ' (0 ,T ;B)  
with b( t )  2 0 a.e. t E [O,T]. Let the absolutely continuous function 
w : [O,T] + W+ satisfies 

dw 
d t  

where 0 5 a < 1. Then 

(1 - a)-(t) 5 a( t )w( t )  + b(t)w"(t), a.e. t E [O,T], 

Theorem 4.2. Suppose that the assumptions of Theorem 4.1 hold. Then 

IlS(t)v- S(t)zll I ewtJly--211,Vy,z E R",t E [o,T]. 

and 

13
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Since by assumption, F + wI is monotone, it results that 

d .  
-IIS(t)z - S(t)y1I2 F 2 w l l ~ ( t ) z  - S(t)y(12, a.e. t E [o,T]. dt (19) 

Using Lemma 4.1 with w(.) := IIS(.)z - S(.)~11~, u( . )  := 2w, b( . )  = 0, 
a = 0, we get 

IIS(t)z - S(t)yI12 I llz - y112e2wt, V t  E [o,T]. 

The conclusion follows. 0 

Let us now consider the Poincark operator S(T)  : R" --+ Rn given by 
y H S ( T ) y .  Theorem 4.2 ensures that S(T)  is Lipschitz continuous, i.e., 

IIS(T)Y - S(T)~II F ewTIIy - 211, V y ,  z E R". 

Remark 4.3. i) Note that if F is continuous and monotone, then The- 
orem 4.2 holds with w = 0. In this case, the Poincark operator S(T)  is 
nonexpansive , i . e . , 

IIS(T)Y - S(T)zII I IIY - 4 ,  VY,Z E R". 

ii) If F is continuous and strongly monotone, i.e., there exists a > 0 such 
that 

- F ( Y ) ,  X - Y> 2 allz - Y1I2, VX, Y E R", 
then Theorem 4.2 holds with w = -a < 0 and the Poincark operator 
S(T)  is a contraction. 

According to (18), the unique solution of the problem (13)-(16) sat- 
isfies, in addition, the periodicity condition 

u(0) = u(T) 

if and only if y is a fixed point of S(T) ,  that is 

S(T)Y = Y .  

Thus the problem of the existence of a periodic solution for the evolution 
problem (13)-(14), (16) reduces to the existence of a fixed point for S(T). 

5 Periodic solutions 

Definition 5.1. Let R c R" be a given subset of R". We say that 
V E C1 (R"; R) is a guiding function for (17) on R provided that 

( F ( x )  - f ( t ) ,  VV(X)) + v'(x; VV(X)) < 0, V X  E R, t E [0, TI. (20) 

14
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Remark 5.1. i) Suppose that there exists a guiding function 
V E C1(W";W) for (17) on dB, (r > 0), i.e., 

(F(x) - f(t), VV(X)) + (P'(x; VV(X)) < 0, V X  E dB,, t E [0, TI. 

Then for any r E [0, TI, we have 

deg(VV,B,,O) = (-l)"deg(idwm - P,(idw - F + f(r)),B,,O). (21) 

Relation in (21) is a consequence of Proposition 2.2. 

for (17) on 

Then for r 2 R and any r E [0, TI, we have 

ii) Suppose that there exists a guiding function V E C1(R";R) 

f l ~  := {X E R" : 11~11 2 R} (R > 0). 

ind(V,m) = (-l)"deg(idw - P,(id~n - F + f (r)) ,B, ,O).  

Proposition 5.1. Suppose that there exists R > 0 such that 

( F ( x )  - f(t) ,  VV(2)) < 0, VX E W", 1 1 ~ 1 1  2 R, t E [O, TI. (22) 

Then for  r 2 R and any r E [0, TI, we have 

ind(V, a) = deg(f(.r) - F, B,, 0). 

Proof: Let r 2 R be given and let h : [0,1] x I&. + W" be the 
mapping defined by (A, y) H h(X, y) := XVV(y) + (1 - X)(f(O) - F(y)). 
We claim that h(X, y) # 0, Vy E 8B,, X E [0,1]. Indeed, suppose by 
contradiction that 

for some y E dB, and X E [0,1]. Then 

If X = 0, relation (23) implies that f ( r )  - F(y)  = 0, and since y E dB, 
and r 2 R, we derive a contradiction &om relation (22). Hence, X # 0 
and relation (23) yields (VV(y),f(r) - F(y))  < 0 and a contradiction 
to (22). Thus, 

15
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Theorem 5.1. Suppose that f E Co([O, +m); R") and $$ E L:,,(O, +m; 
Rn). Let cp : R" -+ R be a convex function. Let F : R" -+ R" be a 
mapping satisfying the conditions of Theorem 4 . 1 .  Suppose that there 
exist constants c1 > 0, c2 > 0,  c3 > 0, (71 1 0, C2 2 0 and a function 
W E C1 (R"; R) such that 

Samir Adly, Daniel Goeleven, Michel Th6ra 

c111x112 5 W ( x )  I c31(x112, v x  E R", (24) 

C 2 l l V W ( X ) ( l 2  I W ( x ) ,  v x  E Rn (25) 

and 

( F ( x ) ,  VW(x))+cp'(x; V W ( x ) )  I C~IIVW(X)~~~+C~IIVW(X)II, 'da: E R". 

Let T > 0 be given. Assume that there exists a (guiding) function 
(26) 

V E C1(Rn;R) and R > 0 such that 

( F ( x )  - f ( t ) ,  V V ( x ) )  +(P'(z; V V ( x ) )  < 0 ,  V X  E R", 1 1 ~ 1 1  2 R, t E [0, TI. 
(27) 

Then there exists ro > R such that for any r E [O,T], we have 

deg(idwn - S(T)(.),B,,O) = deg(idp - P , ( i d p  - F + f(T)),B,,O) 
= (-l)"ind(V, m), Vr L ro. 

Proof: Let us first remark that without any loss of generality, we 
may assume that C1 > 0. We set 

(1) We claim that if y E R", llyll = r with r 1 ro, then 

IlS(t)YII L R, vt E [O,TI. 

Suppose by contradiction that there exists t* E [0, TI such that IlS(t*)yll < 
R. We know that u(.) = S(.)y satisfies (17), i.e., 

(28) 
du 
-(t) + F(u(t))  - f ( t )  E -&(u(t)), a.e. t E [O,T], d t  

and thus 

d u  -(t*-t)+F(u(t*-t))-f(t*-t) E -dcp(u(t*-t)), a.e. t E [0, t*]. (29) 
d t  

Setting 
Y( t )  = u(t* - t ) ,  t E [O, t*], 

16
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we derive 
dY 
dt 

--(t) + F(Y(t)) - f(t* - t )  E -acp(Y(t)), a.e. t E [ O , t * ] .  (30) 

Thus, for every w E B" and almost every t E [0, t*], we have 

Hence, 

Thus, 

Using Lemma 4.1 with w(.) := W(Y(.)), u(.) := 2, b( . )  := 2- 2&72 + 
Ilf(t* - -)II) and a! := 3, we obtain for every t E [O, t*]  

Thus, for every t E [O,t*] 

17
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Since Y(t*) = u(0) = S(0)y = y and Y ( 0 )  = u(t*) = S(t*)y, we get 

Hence, llyll < T O ,  a contradiction. Let T 2 TO be given. 

(2) We claim that there exists E > 0 and T* E (O,T] such that 

( F b )  - f(t), VV(Y)) + d ( x ;  VV(Y)) < 0, 

vx E W", y E W", llyll = T,  112 - yII I E ,  t E [O, T*]. 
Indeed, recalling that the mapping ( z , [ )  H (p'(z;[) is upper semicon- 
tinuous (see e.g. [ll]), we note that the mapping (t,x,y) H ( F ( x )  - 
f(t), VV(y)) +'pl(x; VV(y)) is upper semicontinuous on [O, T] x B" x B" 
and if y E W", llyll = T L TO L R then (by condition (27)): 

( F ( Y )  - f(O)> VV(Y)) + 'P'(y; VV(Y)) < 0. 

Thus, for t > 0 close to 0, let us say t 5 T* and x closed to y, let us say 
115 - yII 5 E ,  E > 0, small enough , we have 

' 

( F ( x )  - f(0L VV(Y)) + d ( z ;  W Y ) )  < 0. 

(3) We claim that there exists T E (0, T*] such that 

IlS(t)y - yIJ 5 E ,  vy E dB,, vt E [O,T]. 
Indeed, by contradiction suppose that there exists sequences {tn} and 
{y,} with t, E [0, 51 (n E N, n L l), llynll = T- and such that IIS(t,)y,- 
ynll > 6. Taking a subsequence, if necessary, we may assume that t, --+ 

O+ and y, -+ y* E dB,. On the other hand, we have 

IlS(t,>Yn - Ynll = IlS(tn)Yn - S(t")Y* + S(t,)y* - Y"Il 
5 IlS(t")!h - S(t")Y*II + IlS(t")Y* - Ynll. 

Then, using Theorem 4.2, we obtain 

IIS(t")Y" - Ynll I -IIvn - y*ll + IlS(t,)y* - y,". 

18
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Using the continuity of the map t H S(t)y, we see that ~ ~ S ( t n ) y n - y n ~ ~  + 
0 ,  a contradiction. 
(4) Let HT : [0, 11 x C,. -+ w”; (A, y) -, H F ( A ,  y) := y - (1 - A)vv(~)  - 
S(AT)y. We claim that the homotopy H p  is such that 0 # Hp(A,  y), Vy E 
L&., X E [0,1]. By contradiction, suppose that there exists y E W”, 
llyll = T and A E [0,1] such that 

y - (1 - A)VV(y) - S(ArT)y = 0. 

S(AT)y - y = - (1-  A)VV(y) 

( S ( Q ) Y  - Y, W Y ) )  = -0 - ~)IlVV(Y)/l2 I 0. 

Then 

and thus 

(31) 

On the other hand, we know that 

d 
(ZS(t)Y, - W Y )  + cp(v> - cp(S(t)Y) 

2 ( -F(S(t)y)  + f ( t ) ,v  - S(t)y),Vv E Rn, a.e. t E [O,T]. (32) 

Thus 

(&)Y, V V b ) )  + cp’(S(t)y; VV(Z/)) 

L ( -F(S(t)y)  + f(t), W Y ) ) ,  a-e.7 t E [ O ,  TI. 

Therefore, 

(-F(S(S)Y) + f(s), VV(Y)) - cp’(S(s)y; VV(Y)) ds. 

Part (1) of this proof ensures that IlS(t)yll 2 R, Vt E [O,AT] c [O,T]. 
Part (3) of this proof garantees that IlS(t)y - yII 5 E ,  Vt  E [O,  AT] c 
[0, p]. Then using part (2) of this proof, we may assert that the map s H 

(F(S(s)y) - f(s), VV(y)) + y’(S(s)y; VV(y)) is upper semicontinuous 
and strictly negative on [0, AT]. Thus 

P A T  

and we obtain 

19
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This contradicts relation (31). 
(5) Thanks to part (4) of this proof, we may use the invariance by ho- 
motopy property of the topological degree and observe that 

Samir Adly, Daniel Goeleven, Michel Th&a 

deg(idp - S(T).,B,,O) = deg(HT(l,.),B,,O) 

= deg(HdO,.),B,,O) 
= deg(-VV, B,, 0) 
= (-l)"deg(VV, B,, 0). 

(6 )  Let H : [0,1] x I& + R"; (A, y) --+ H(X, y) := y - S((1- X)T+ XT)y. 
We claim that H(X, y) # 0, Vy E 8B,, X E [0,1]. By contradiction, 
suppose that there exists y E R", llyll = T and X E [0,1] such that 
y = S((1 - X)T + XT)y. Let us set h := (1 - X)T + AT. We have 

Y = m > Y  
and thus, 

On the other hand, 
V(Y> = V(S(h)Y). (33) 

(34) 
d 

( & w ) Y ,  - W Y )  + cp(v> - cp(S(t)Y) 

2 (-F(S(t)y) + f(t), v - S(t)y), Vv E R", a.e., t E [O,T]. 

Thus, 

2 (-F(S(t)y) + f(t), vv(s( t>Y)) ,  a.e.7 t E 10, TI. (35) 

Part (1) of this proof ensures that IlS(t)yll 2 R, V t  E [O,T]. The map 
s H (F(S(s)y)-f(s), VV(S(s)y))+cp'(S(s)y; VV(S(s)y)) is upper semi- 
continuous and (by condition (27)) strictly negative on [O,T]. Thus, 
using (35), we obtain 

r h  

20



A Continuation Method for a Class of ... 21 

This contradicts (33). 
(7) Thanks to part (6) of this proof, we may use the invariance by ho- 
motopy property of the topological degree and see that 

deg(idRn - S(T)., B,, 0) = deg(H(0, .), B,, 0) 

= deg(H(1, .I,&, 0) 
= deg(idwn - S(T)., B,, 0). 

In conclusion, for all r 2 TO,  we have 

deg(idwn - S(T).,B,, 0) = deg(idp - S(T)., B,, 0) 

deg(idwn - S(T).,B,,O) = (-l)"deg(VV,B,,O). 

Thus 
deg(idp - S(T).,B,,O) = (-l)Ynd(V, m). 

Finally, for any 7 E [0, TI, we have also (see Proposition 2.2 and Remark 
5.1): 

and 

(-l)"ind(V, m) = deg(idRn - P+,(idRn - F + f ( ~ ) ) ,  B,, 0). 

0 

Corollary 5.1. Suppose that f E Co([O, +GO); W") and E L:,,(O, +m; 
EX"). Let 'p : W" -+ W be a convex function. Let F : Rn + W" be a map- 
ping satisfying the conditions of Theorem 4.1. Suppose in addition that 
there exist constants C1 2 0,Cz 2 0 such that 

( F ( x ) , x )  + C P ' ( Z ; X )  I Ci11XIl2 + Czll~ll, VX E W". (36) 

Let T > 0 be given. Assume that there exists V E C1(R";W) and 
R > 0 such that 

( F ( x )  - f ( t ) ,  VV(X)) +'p'(~; VV(x) )  < 0,  

and 
ind(V, m) # 0. 

Then there exists at least one u E Co([O,T]; W") such that % E L"(0, T ;  

V X  E EXn, 1 1 ~ 1 1  2 R, t E [0, TI. 
(37) 

an>, 
u(0) = U p ) ;  (38) 

21



22 Samir Adly, Daniel Goeleven, Michel Th6ra 

Proof: We may apply Theorem 5.1 with W ( x )  = fllxl12. It results 
that for r > 0 large enough, we have deg(idp - S(T)., B,, 0) # 0 and 
the existence of a fixed point for the Poincar6 operator follows from the 

0 

Corollary 5.2. Suppose that f E Co([O,+co) ;Wn)  and E Lt,,(O, 
+co; R"). Let cp : R" + W be a convex and Lipschitz continuous func- 
tion. Let F : W" + R" be a mapping satisfying the conditions of The- 
orem 4.1 .  Suppose in addition that there exists @ E C1(Rn;W) such 
that 

existence property of the topological degree. 

ind(@,oo) # 0. 

F ( x )  = V@(x), Vx E R", 

and 
C 1 1 l ~ 1 l 2  5 C211V@(~)l12 5 @(.) I c311x112, v x  E W" 

for some constants c1 > 0, c2 > 0 and c3 > 0. Let T > 0 be given. 
There exists at least one u E Co([O, TI; R") such that f E L"(0, T ;  R"), 

u(0) = u p ) ;  (40) 

(41) 

(w + F(u( t ) )  - f (t) ,  v - uw) + cp(v) - cp(u(t)) 2 0, 
Vv E W", a.e., t E [O,T]. 

Proof: We may apply Theorem 5.1 with W = @ and V = -4. 
Indeed, let K > 0 denote the Lipschitz constant of cp. We have 

< 0,Vx E W", llxll 2 R, t E [O,T]. 
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Corollary 5.3. Suppose that f E Co([O,+w);W") and E L:,,(O, 
+w; Rn). Let cp : W" + W be a convex and Lipschitz continuous function 
and let T > 0 be given. Let A E WnXn be a real matrix and denote by 
o(A) the set of eigenvalues of A.  If 

Re(X) > 0, VX E o(A)  

then there exists at least one u E Co( [0, TI; Wn) such that E LO" (0, T ;  
an>, 

Proof: Our assumption l?,e(a(A)) c ] O ,  +w[ together with Lyapunov's 
Theorem ensure the existence of a positive definite matrix G such that 

G A  + A ~ G  = I .  

Let us now define V E C1(Wn; W) by 

1 
2 

V(X) := - - ( ( G +  G T ) z , x ) ,  V X  E W". 

Then 
VV(z) = -(G + GT)z ,  

and 

(AX,  VV(2)) = - (AX,  G x )  - (AX,  GT2) 
= -(x, ATGz) - (GAx, z) 

= -llX112. 

If we set C = (max,,[o,q Ilf(s)II + K)IIG + GTll and if K denotes the 
Lipschitz constant of cp, then we have 

(AX-f (t),VV(z))+V'(z;VV(z)) I -11z112+C11~11, VX E W n , t  E [O,T]. 

Thus, for R > 0 large enough, condition (37) is satisfied. It is also clear 
that condition (36) holds (see Remark 5.2) and that all assumptions of 
Theorem 4.1 are satisfied. Moreover 

ind(V, co) = ind(G + GT, oo) = sign det(G + GT)  # 0, 

since G + GT is positive definite and thus nonsingular. 
The conclusion follows from Corollary 5.1. 0 
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Remark 5.2. Suppose that cp : W" -+ W is Lipschitz continuous with 
Lipschitz constant K .  Then, 

i) If F has a linear growth, i.e., there exist c1 2 0 and c2 2 0 such 
that 
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IIF(z)ll I C111~11 + c2, vx E W", 

then condition (36) of Corollary 5.1 holds with C1 = CI and C2 = c2 +K. 
Vx E W", then condition (36) of Corollary 5.1 

holds with C1 = 0 and C2 = K .  
ii) If (F( z ) , z )  5 0, 

Examples 5.1. i) Let F : W" -+ W" and cp : B" -, W defined by 

F ( z )  = z and cp(z) = 11z(1,z E R". 

We have 
( F ( z ) ,  4 + (PYX; I ll4I2 + 1141. 

Hence condition (36) of Corollary 5.1 is satisfied with C1 = C2 = 1. 
ii) If we take F ( z )  = --z and cp(z) = 1 1 ~ 1 1 ,  then 

(Fb), 4 + (PYX; L -ll4I2 + 1141 I 1 1 ~ 1 1 .  
Hence condition (36) of Corollary 5.1 is satisfied with C1 = 0 and C2 = 1. 

6 Second order periodic dynamical system with fric- 
t ion 

Let us consider the following second order dynamical system with pe- 
riodic conditions: For (q0 ,qo)  E W m  x Rm, we consider the problem 
P(q0,qo)offindingafunctiont H q(t)  ( t  E [O,T])withq E C'([O,T];Rm), 
such that: 

(44) 

(45) 

(46) 

&I - E Lm(0, T; Rm), 
dt2 

dq - is right-differentiable on [0, TI, 
dt 

q(0) = q(T) and d(0) = m, 

. .  
In this problem @ : Wz -+ W is a convex function, M E W m X m  is a sym- 
metric and positive definite matrix, C E W m x m  and K E I t m X m  are given 
matrices and H I  E Wmxl  is a given matrix whose coefficients are related 
to the directions of friction forces. The function F E Co([O, +m); Rm) 
is such that $$ E L:,,(([O, +m);Wm). 
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The second order dynamical system (47) is useful for the study of 
many problems in unilateral mechanics. Indeed, the motion of various 
mechanical systems with frictional contact can be studied within the 
framework of equation (47). For such problems m is the number of 
degrees of freedom, M is the mass matrix, C is the viscous damping 
matrix and K is the stiffness matrix. The vector q E Rm is the vector 
of generalised coordinates. The term Hla@(H? .) is used to model the 
unilaterality of the contact induced by the friction forces. 

Since the matrix M is symmetric and positive definite, then problem 
(47) is equivalent to the first order variational inclusion: 

k( t )  + 
4 0 )  = 4n - f ( t )  E -dY+(t)), 

where the vector x = (zi) E R" (n = 2 m )  and the matrix A E RnXn is 

defined by 

and the convex function cp : R" + R is defined by 

cp(x) = (@ 0 H ? M 4 ) ( 2 2 ) .  (51)  

In this case, let us observe that the subdifferential of cp is given by: 

It is clear that A is continuous and A+wInxn is monotone provided that 
w 2 sup (-Ax, x). A direct consequence of Corollary 5.3, we obtain an 

existence result for second order periodic systems. 
112 II =1 

Theorem 6.1. If the jknction @ is convex and Lipschitz continuous and 
Re(a(A)) c]O, +m[, then there exists at least one q E C1(O, T ;  Wn) such 
that 9 E Lm(O,T;Rn) satisfying (46)-(47). 
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Remark 6.1. We note that the conclusions of Theorem 6.1 hold under 
the key assumption @ is convex and Lipschitz continuous. Let us now 
give a counterexample when @ is convex but not Lipschitz. Let us take 
m = 1, @ : W -+ W, z H @(z) = z2, M = C = K = H I  = 1 and 
F ( t )  = -t, 
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W E [0,1]. The differential inclusion (47) then reduces to 

q(t) + 2q(t) + q(t)  = t ,  
4 0 )  = QP), (53) 
4 0 )  = Q(1). 

We let the reader check that problem (53) has no solutions. 

Example 6.1. 

have 

where 

Let us take m = 1, @ : W + W; z H @(z) = IzI. In this case, we 

a@(z) = Sign(z) 

if z<O, 

if z > 0. 

We consider the following problem 

mq(t) + 4( t )  + kq( t )  - F ( t )  E -Sign(q(t)), t E [O, TI, 
d o )  = Q(n (54) 
Q(0) = m, 

with F E Co([O, +oo[;W) such that $ E L~,,([O,+oo[;R). The matrix 
A in (48) is given by 

0 -1 

We suppose that m, c, Ic > 0 and we set A = 2 - 4; and we have 

a(A) = 

We note that in both cases Re(o(A)) c]O, +m[ and hence by Theorem 
6.1, problem (54) has at least a solution. 
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