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Abstract

We constuct a sequential adaptive procedure for estimating the autoregressive

function at a given point in nonparametric autoregression models with Gaussian

noise. We make use of the sequential kernel estimators. The optimal adaptive con-

vergence rate is given as well as the upper bound for the minimax risk.

Key words: Adaptive estimation, kernel estimator, minimax, nonparametric autore-

gression.
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1 Introduction

Our problem is the following. Suppose we observe data from the model :

yk = S(xk)yk−1 + ξk , 1 ≤ k ≤ n , (1.1)

where xk = k/n, (ξk)k∈{1,...,n} are random variables independent and identically distributed

by standard Gaussian.

The model (1.1) is a generalization of autoregressive processes of the first order. In

Dahlhaus (1996a) the process (1.1) is considered with the function S having a para-

metric form. Moreover, the paper of Dahlhaus (1996b) studies spectral properties of the

stationary process (1.1) with the nonparametric function S.
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This paper deals with a nonparametric estimation of the autoregressive function S at

a fixed point z0 ∈]0; 1[, when the smoothness of S is unknown. Assume that the function

S belongs to a strong Hölder class but its regularity β is unknown. The goal is to find an

adaptive convergence rate for adaptive which we construct a sequential adaptive estimator.

Since β is unknown, this rate will differ here from the convergence rate obtained otherwise.

Many studies have been devoted to the search of optimal rate of convergence or an

asymptotically effecient estimator when one or more parameters of the model are as-

sumed to be unknown, in particular the regularity of the function to estimate. This case,

called adaptive, was first led to results on the adaptive minimax convergence rate as in

Efrŏımovich and Pinsker (1984) for a model of white Gaussian noise, Härdle and Marron

(1985) for a regression model and Efrŏımovich (1985) for estimating a density.

Belitser (2000a) considers the model (1.1) with Lipschitz conditions, proposes a re-

cursive estimator and study the problem non-adaptive of estimation. Using the quadratic

risk, the author establishes the convergence rate.

In Galtchouk and Pergamenshchikov (2005b) the authors describe a method for the

sequential problem of nonparametric estimation process with drift diffusion coefficient. In

Lepskĭı (1990) the author considers the adaptive problem in a model with white Gaussian

noise, he estimate the signal belonging to a given Hölderian class Σ(m+α, L), where m+α

and L are known constants. Fourdrinier, Konev and Pergamenchtchikov (2009) propose

a truncated sequential procedure which allows to consider the problem of estimating the

parameter of the autoregressive process of first order with dependent noise.

Galtchouk and Pergamenshchikov (2001) obtain an adaptive minimax convergence

rate, and adaptive estimator for the convergence rate of the drift diffusion, belonging to

Hölderian class.

In this paper we consider the adaptive case with β unknown. Our construction is

based on the method proposed in Lepskĭı (1990) and Galtchouk and Pergamenshchikov

(2001). The sequential procedure is the one found in Borisov and Konev (1977) but in

the parametric case. The procedure of Lepskĭı applies to estimators having the property

that the tail of the distribution has the same asymptotic behavior of a Gaussian random

variable, this procedure usually used in the i.i.d Gaussian case. For our problem the non

sequential kernel estimator does not have the above property, however the sequential

approach succeeds in the model (1.1) by performing the adaptive procedure of Lepskĭı.

For the constant H > 0 such that for 0 ≤ αH ≤ 1

τH−1∑

j=1

Q(uj) y
2
j−1 + αH Q(uτH

) y2
τH−1

= H ,
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where τH is the stopping time defined as follows

τH = inf{1 ≤ k ≤ n :

k∑

j=1

Q(uj) y
2
j−1 ≥ H}. (1.2)

Note

Ak =

k∑

j=1

Q(uj)y
2
j−1 with uj =

xj − z0
hn

.

Thus the kernel estimator is written as follows

S∗
H,hn

(z0) =
1

H

(
τH−1∑

j=1

Q(uj) yj−1 yj + αH Q(uτH
) yτH−1 yτH

)
1(An≥H), (1.3)

where the kernel Q(·) is the indicator function on the interval [−1; 1]. Such an estimator

is very convenient to calculate the quantity E |S∗
H,hn

(z0)− S(z0)|.
We describe in detail the statement of the problem is given in section 2. In section

3 we prove the result of an asymptotic lower bound of adaptive minimax risk. Section

4 is devoted to prove the asymptotic upper bound of risk to the kernel estimator (1.3).

Section 5 the appendix contains some technical results. Finally, we illustrate the obtained

results by numerical examples.

2 Statement of the problem

The problem is to estimate the S at a fixed point z0 ∈]0, 1[, i.e. the value S(z0). For

any estimate S̃n = S̃n(z0) (i.e. any measurable with respect to the observations (yk)1≤k≤n

function), the risk is defined on the neighborhood H(β)(z0, K, ε) by

Rn(S̃n) = sup
β∈[β

∗
;β∗]

sup
S∈H(β)(z0,K,ε)

N(β)ES|S̃n(z0)− S(z0)| , (2.1)

where N(β) =
( n

lnn

)β/(2β+1)

corresponds to the convergence rate of adaptive estimators

on class H(β)(z0, K, ε) and ES is the expectation taken with respect to the distribution

PS of the vector (y1, ..., yn) in (1.1) corresponding to the function S.

We consider the model (1.1) where S ∈ C1([0, 1],R) is the unknown function. Our goal

to estimate the autoregressive function S at a fixed point z0. To obtain a stable (uniformly

with respect to the function S ) model (1.1) we assume that for some fixed 0 < ε < 1 the

unknown function S belongs to the stability set

Γε = {S ∈ C1(]0, 1],R) : ‖S‖ ≤ 1− ε}, (2.2)
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where ‖S‖ = sup0<x≤1 |S(x)|. Here C1]0, 1] is the Banah space of continuously differen-

tiable ]0, 1] → R functions. For fixed constants K > 0 and 0 < β ≤ 1 we define the

corresponding stable local Hölder class at the point z0 as

H(β)(z0, K, ε) = {S ∈ Γε : Ω∗(z0, S) ≤ K} (2.3)

with

Ω∗(z0, S) = sup
x∈[0,1]

|S(x)− S(z0)|
|x− z0|β

.

The regularity β is supposed to be unknown but the interval [β∗; β
∗] is considered known.

First we give the lower bound for the minimax risk. We shows that with the convegence

rate N(β) the lower bound for the minimax risk is strictly positive.

Theorem 2.1. The risk adaptive admits the following lower bound

lim inf
n→∞

inf
S̃n

Rn(S̃n) ≥
1

4
,

where the infimum is taken over all estimators S̃n.

Now we give the upper bound for the maximal risk of the sequential adaptive estimator

defined in (1.3). Taking into account that β is unknown, can not use this estimator because

the bendwith hn depends of β. That is why we partition the interval [β∗; β
∗] to follow a

procedure of Lepskĭı. Let us set

dn = n/ lnn et h(β) =

(
1

dn

) 1
2β+1

. (2.4)

We define the grid on the interval [β∗; β
∗] with the points :

βk = β∗ +
k

m
(β∗ − β∗), k = 0, . . . , m with m = [ln dn] + 1 . (2.5)

We denote

Nk = N(βk) et hk = h(βk) ,

and

ω(hj) = max
0≤k≤j

(
|S∗

hj
− S∗

hk
| − λ

Nk+1

)
.

We define the optimal index of the bendwith as

k̂ = inf

{
0 ≤ j ≤ m : ω(hj) ≥

λ

Nj

}
− 1 . (2.6)
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We note that ω(h0) = −λ/N1, thus k̂ ≥ 0. The positive parameter λ is chosen as

λ > K + e

√
4 +

4

2β∗ + 1
.

The adaptive estimator is now defined as

Ŝn = S∗
H,ĥ

with ĥ = hk̂ . (2.7)

The following result gives the upper bound for the maximal risk of the sequential adaptive

estimator defined above.

Theorem 2.2. For all 0 < ε < 1, we have

lim sup
n→∞

Rn(Ŝn) < ∞ , (2.8)

thus Ŝn is an adaptive estimator to convergence rate.

3 Lower bound

We shows that with this appropriate rate N(β), the lower bound of minimax risk is strictly

positive.

Proof of Theorem 2.1

To simplify notations we denote N(β∗) = N∗, N(β∗) = N∗ and h(β∗) = h∗.

We denote

S(y) =
1

N∗
V

(
y − z0
h∗

)
,

where V is a function of C∞ class with compact support [−1, 1] as

∫ 1

−1

V 2(u) du =
β

2
with β =

β∗ − β∗
(2β∗ + 1)(2β∗ + 1)

,

V (0) = 1 and V (u) = 0 for |u| ≥ 1.

It is easy to show that for all real K, large enough, S ∈ H(β∗)(z0, K, ε). Note that for

all S the measure PS is equivalent to the measure P0, where P0 is the distribution of

vector (y1, . . . , yn) in (1.1) corresponding to function S0 = 0. It is easy to see that in this

case the density of Radon-Nikodym can be written

ρn : =
dP0

dPS

(y1, . . . , yn)

= exp

{
−1

2

n∑

k=1

(
y2k − (yk − S(xk)yk−1)

2
)
}

= exp

(
−ςnηn −

1

2
ς2n

)
,
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with

ς2n =
1

dn h∗

n∑

k=1

V 2

(
xk − z0

h∗

)
y2k−1 and ηn =

1√
dn h∗ ςn

n∑

k=1

V

(
xk − z0

h∗

)
yk−1 ξk .

We define

τ(S) = 1− S2(z0). (3.1)

According to Lemma 5.2 it comes

PS − lim
n→∞

dn
n

ς2n = PS − lim
n→∞

(
1

nh∗

n∑

k=1

V 2

(
xk − z0

h∗

)
y2k−1

)

= PS − lim
n→∞

1

τ(S)

∫ 1

0

V 2

(
x− z0
h∗

)
dx

=

∫ 1

−1

V 2(u)du =
β

2
= ς2∗ ,

because τ(S) = 1− 1

N2
∗
.

Furthermore, using a central limit theorem for martingales (cf. Lemma 5.6), it is easy

to see that under the measure PS

ηn =⇒ N (0, 1) when n → ∞ .

In fact, we can rewrite ηn as follows :

ηn =

√
n

dn

ς∗
ςn

n∑

k=1

uk,n,

with

uk,n =
1

ς∗
√
nh∗

V

(
xk − z0

h∗

)
yk−1 ξk.

Let us consider the first condition of lemma 5.6. To verify it, suffices to show

ES

n∑

k=1

ES(u
2
k,n1(|uk,n|>ε)|Fk−1,n) −−−→

n→∞
0.

We have

ES

n∑

k=1

ES(u
2
k,n1(|uk,n|>ε)|Fk−1,n) =

n∑

k=1

ES (u
2
k,n1(|uk,n|>ε)) (3.2)

=
1

ς2∗ nh∗

k=k∗∑

k=k∗

V 2

(
xk − z0

h∗

)
ES(y

2
k−1 ξ

2
k1(|uk,n|>ε)),
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where

k∗ = [nz0 − nhn] + 1 and k∗ = [nz0 + nhn] , (3.3)

with

ES(y
2
k−1 ξ

2
k1(|uk,n|>ε)) ≤

√
ES y

4
k−1ES ξ

4
k

√
PS(|uk,n| > ε)

≤
√

ES y
4
k−1ESξ

4
k

√
1

ε2
ES u

2
k,n

≤ C1

√
ES y

2
k−1 ξ

2
k

nh∗
≤ C2√

nh∗
,

where C1 and C2 are constants independent of n. So the term (3.2) is bounded by

E
n∑

k=1

E(u2
k,n1(|uk,n|>ε)|Fk−1,n) ≤

C3

nh∗

k∗∑

k=k∗

1√
nh∗

,

where C3 is a new constant, the latter term tends to zero as n → ∞.

The second condition, is easily checked by

n∑

k=1

ES (u
2
k,n|Fk−1,n) =

1

ς2∗ nh∗

n∑

k=1

V 2

(
xk − z0

h∗

)
E(y2k−1 ξ

2
k|Fk−1,n)

=
1

ς2∗ nh∗

n∑

k=1

V 2

(
xk − z0

h∗

)
y2k−1

=
dn
n

ς2n
ς2∗

PS−−−→
n→∞

1.

Let us denote θn = N∗|S̃n|, we have

Rn(S̃n) ≥ max
(
ES0

N∗|S̃n|,ES N∗|S̃n − S(z0)|
)

= max

(
ES0

N∗

N∗
|θn|,ES |1− θn|

)

≥ 1

2
ES

(
N∗

N∗
|θn|

dP0

dPS

(y) + |1− θn|
)

(3.4)

We set γn =
N∗

N∗
, we can bounded (3.4) from the following :

Rn(S̃n) ≥
1

2
ES (γn ρn |θn|+ |1− θn|).
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Let Bn = {ηn ≤ 0} and Cn = {dn
n
ς2n < β}. Clearly, when Bn ∩ Cn is realized, we have

γn ρn ≥ exp{β ln dn −
β

2

n

dn
},

this last expression tends to ∞ as n tends to ∞. This means that for n sufficiently large

Rn(S̃n) ≥
1

2
ES 1Bn∩Cn

(γn ρn |θn|+ |1− θn|)

≥ 1

2
ES 1Bn∩Cn

(|θn|+ 1− |θn|)

=
1

2
PS(Bn ∩ Cn). (3.5)

Since,

PS(Bn ∩ Cn) = PS(Bn)−PS(Bn ∩ Cc
n),

PS(Bn ∩ Cc
n) ≤ PS(C

c
n) = PS(

dn
n
ςn ≥ β)

and
dn
n

ςn
PS−−−→

n→∞

β

2
,

hence

PS(C
c
n) −−−→

n→∞
0.

As PS(Bn) = 1/2, we deduce that PS(Bn ∩ Cn) −−−→
n→∞

1/2.

Passing to the limit as n → ∞ in (3.5), we obtain the Theorem.

4 Sequential adaptive estimation (upper bound)

Proof of Theorem 2.2

We proceed following a method based on sequencial analysis. First, we rewrite the

estimation error as follows:

S∗
H,h

(z0)− S(z0) = −S(z0) 1(An<H) +BH(h) 1(An≥H) +
1√
H

ζH(h) 1(An≥H) , (4.1)

where

BH(h) =
1

H

(
τH−1∑

j=1

Q(uj) (S(xj)− S(z0)) y
2
j−1 + αH Q(uτH

) (S(xτH
)− S(z0)) y

2
τH−1

)

and

ζH(h) =
1√
H

(
τH−1∑

j=1

Q(uj) yj−1 ξj + αH Q(uτH
) yτH−1 ξτH

)
.
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Note that the first term in the right quantity of (4.1) is studied in Lemma 5.3. We can

show directly that for every S ∈ H(β)(z0, K, ε)

|BH(h)| ≤ Khβ (4.2)

and also, using Lemma 5.5 we have

sup
n≥1

sup
h
∗
≤h≤h∗

ES |ζH(h)| < ∞ , (4.3)

where h∗ = h(β∗) and h∗ = h(β∗). Now we choose H = nh and

ι = inf{k ≥ 0 : βk ≥ β} − 1 .

This means

βι < β ≤ βι+1 and hι < h(β) ≤ hι+1 .

In the sequel, we note S∗
h
(z0) = S∗

H,h
(z0). We have now

|S∗
hι
(z0)− S(z0)| ≤ 1(An(hι)<nhι) +K(h(βι))

β +
1√
nhι

|ζH(hι)|

and

|S∗
hι−1

(z0)− S(z0)| ≤ 1(An(hι−1)<nhι−1)
+K(h(βι−1))

β +
1√
nhι−1

|ζH(hι−1)| .

Inequality (4.3) implies

lim sup
n→∞

sup
β
∗
≤β≤β∗

N(β) sup
S∈H(β)(z0,K,ε)

ES ̟(ι, z0) < ∞ , (4.4)

where

̟(ι, z0) = |S∗
hι−1

(z0)− S(z0)|+ |S∗
hι
(z0)− S(z0)| .

Now considering the estimator Ŝn, we can write

|Ŝn(z0)− S(z0)| ≤ I1 + I2 +̟(ι, z0) , (4.5)

where

I1 = |Ŝn(z0)− S(z0)|1{k̂≥ι+1} and I2 = |Ŝn(z0)− S(z0)|1{k̂≤ι−2} .

We focus now on the first term in this inequality. We have

|Ŝn(z0)− S(z0)|1{k̂≥ι+1} ≤ |S∗
ĥ
(z0)− S∗

hι
(z0)|1{k̂≥ι+1} + |S∗

hι
(z0)− S(z0)|1{k̂≥ι+1} .
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Moreovere,

|S∗
ĥ
(z0)− S∗

hι
(z0)| 1{k̂≥ι+1} ≤ ω(hk̂)1{k̂≥ι+1} +

λ

Nι+1

≤ λ

Nk̂

1{k̂≥ι+1} +
λ

Nι+1

≤ 2λ

Nι+1

≤ 2λ

N(β)
.

This implies directly

lim sup
n→∞

sup
β
∗
≤β≤β∗

N(β) sup
S∈H(β)(z0,K,ε)

ES I1 < ∞ . (4.6)

We establish now a bound for the second term of (4.5):

I2 ≤
(
1(An(hk̂

)<nh
k̂
) +K(h(βk̂))

β +
1√
nhk̂

ζ∗

)
1{k̂≤ι−2} ,

where

ζ∗ = max
1≤j≤m

|ζHj
(hj)| . (4.7)

Note that

{k̂ ≤ ι− 2} =

ι−1⋃

j=1

{
ω(hj) ≥ λ/Nj

}
.

Moreovere,

{
ω(hj) ≥ λ/Nj

}
=

j−1⋃

l=0

{
|S∗

hj
(z0)− S∗

hl
(z0)| ≥ λ/Nj + λ/Nl+1

}

⊆
j−1⋃

l=0

(
{|S∗

hj
(z0)− S(z0)| ≥ λ/Nj} ∪ {|S∗

hl
(z0)− S(z0)| ≥ λ/Nl+1}

)
.

(4.8)

We denote for j ≤ ι− 1

Nj (hj)
β ≤ exp{− ln dn

(2β∗ + 1)m
} ≤ 1 .

For l ≤ ι− 1

Nl+1 (hl)
β ≤ exp{− ln dn

(2β∗ + 1)m
} ≤ 1

and
Nl

Nl+1

≥ exp{− ln dn
m

} = e−1 .

In the first term of (4.8), by Lemma 5.2 we prove that for n sufficiently large and for

λ > K + e

√
4 +

4

2β∗ + 1
we have
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{|S∗
hj
(z0)− S(z0)| ≥ λ/Nj} ⊆

{
K(hj)

β +
1√
nhj

|ζn(hj)| ≥ λ/Nj

}

⊆
{
|ζn(hj)| ≥

√
nhj

(
λ

Nj
−K(hj)

β

)}
.

We just have to note that (1/dn)
β/(2β+1)

√
nh =

√
n/dn and the last inclusion becomes

{|S∗
hj
(z0)− S(z0)| ≥ λ/Nj} ⊆

{
|ζn(hj)| ≥ (λ−K)

√
n

dn

}
.

Similarly for the second term in (4.8) we obtain

{|S∗
hl
(z0)− S(z0)| ≥ λ/Nl+1} ⊆

{
|ζn(hl)| ≥ (λ−K)/e

√
n

dn

}
.

Finally,

{k̂ ≤ ι− 2} ⊆ {ζ∗ ≥ λ1

√
n/dn} ,

with λ1 = (λ−K)/e. So

I2 ≤ 1(An(hk̂
)<nh

k̂
) +

K

N(β)
+

1√
nh∗

ζ∗ 1{ζ∗≥λ1

√
n/dn}

. (4.9)

Using Lemma 5.2 for t ≥ 2, one can easily estimate the first term of this inequality by

PS(An(hk̂) < nhk̂) =

m∑

l=1

PS(An(hl) < nhl, k̂ = l)

≤
m∑

l=1

PS(An(hl) < nhl)

=
m∑

l=1

PS

(
1

τ(S)

∫ 1

−1

Q(u)du+∆n(Q, hl) < 1

)

=

m∑

l=1

PS

(
∆n(Q, hl) < 1− 2

τ(S)

)

≤
m∑

l=1

PS (|∆n(Q, hl)| > 1)

≤
m∑

l=1

ES ∆
2t
n (Q, hl) ≤ ([ln dn] + 1)C1R

2t (h∗)2tβ .
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Consider now the last term on the right side of inequality (4.9):

ES ζ
∗ 1{ζ∗≥λ1

√
lnn} =

∫ +∞

0

PS(ζ
∗ 1{ζ∗≥λ1

√
lnn} ≥ z) dz

=

∫ +∞

0

PS(ζ
∗ ≥ z , ζ∗ ≥ λ1

√
lnn) dz

= λ1

√
lnnPS(ζ

∗ ≥ λ1

√
lnn) +

∫ +∞

λ1

√
lnn

PS(ζ
∗ ≥ z) dz.

Using (4.7) and Lemma 5.5, we have

PS(ζ
∗ ≥ z) = PS( max

1≤j≤m
|ζn(hj)| ≥ z)

=

m∑

j=1

PS(|ζn(hj|) ≥ z)

≤ 2me−z2/8.

Then

ES ζ
∗ 1{ζ∗≥λ1

√
lnn} ≤ 2mλ1

√
lnn e−

1
8
λ2
1
lnn + 2m

∫ +∞

λ1

√
lnn

e−z2/8 dz

≤ 2mλ1

√
lnn e−

1
8
λ2
1
lnn + 2m

∫ +∞

λ1

√
lnn

z e−z2/8 dz

≤
(
λ1

√
lnn+ 4

)
2mn−λ2

1
/8.

This implies the inequality (2.8) and Theorem (2.2).

5 Appendix

In this section we study the properties of stationary processes in the model (1.1).

Lemma 5.1. For all t ∈ N
∗ and 0 < ε < 1, the random variables in (1.1) satisfy the

following inequality

r∗ = sup
n≥1

sup
0≤k≤n

sup
S∈Γε

ES y
2t
k

< ∞. (5.1)

Proof.

Assume that y0 = 0. The model (1.1) become

yk =
k∑

i=1

k∏

l=i+1

S(xl) ξi ,

12



deduced with S ∈ Γε and for all 1 ≤ k ≤ n

y2t
k
≤




k∑

j=1

(1− ε)k−j |ξj|




2t

.

Moreover, the Hölder inequality with p = 2t ,

y2t
k
≤




k∑

j=1

(1− ε)k−j




2t−1 


k∑

j=1

(1− ε)k−j ξ2t
j




≤
(
1

ε

)2t−1



k∑

j=1

(1− ε)k−j ξ2t
j


 .

It follows that

ES y
2t
k

≤ (2t)!

2t t!

(
1

ε

)2t

.

Hence Lemma 5.1.

We introduce the following notation

∆n(f, h) =
1

nh

n∑

k=1

f(uk)y
2
k−1 − 1

τ(S)

∫ 1

−1

f(u)du.

Lemma 5.2. Let f be a function twice continuously differentiable in [−1, 1], as f(u) = 0

for |u| > 1. Then for all t ∈ N
∗

lim sup
n→∞

sup
h∗≤h≤h∗

sup
R>0

1

R2th2tβ
sup

‖f‖1≤R

sup
S∈Hβ(z0,K,ε)

ES ∆
2t
n
(f, h) ≤ C1 , (5.2)

where ‖f‖1 = ‖f‖+ ‖ḟ‖ and C1 = 24tK2t(r∗)2.

Proof. First rewrite
n∑

k=1

f(uk)y
2
k−1 = Tn + an , (5.3)

where

Tn =

k∗∑

k=k∗

f(uk)y
2
k

and an =

k∗∑

k=k
∗

(f(uk)− f(uk−1)) y
2
k−1

− f(uk∗) y
2
k∗
,

integers k∗ and k∗ are defined in (3.3). Substituting into model (1.1) gives us

Tn = In(f) +
k∗∑

k=k∗

f(uk)S
2(xk)y

2
k−1 +Mn ,

13



where

In(f) =

k∗∑

k=k∗

f(uk) and Mn =

k∗∑

k=k∗

f(uk) (2S(xk) yk−1 ξk + ηk)

with ηk = ξ2k − 1. Noting

Cn =

k∗∑

k=k∗

(S2(xk)− S2(z0)) f(uk) y
2
k−1 and Dn =

k∗∑

k=k∗

f(uk)(y
2
k−1 − y2k) ,

we obtain
1

nh
Tn =

1

τ(S)

In(f)

nh
+

1

τ(S)

Hn

nh
(5.4)

with Hn = Mn + Cn + S2(z0)Dn. Moreover, it is easy to see that

In(f)

nh
=

∫ 1

−1

f(t)dt+
k∗∑

k=k∗

∫ uk

uk−1

f(uk) dt −
∫ 1

−1

f(t)dt

=
k∗∑

k=k∗

∫ uk

uk−1

(f(uk)− f(t))dt+

∫ uk∗

uk∗−1

f(t)dt−
∫ 1

−1

f(t)dt .

Recall that ‖f‖+ ‖ḟ‖ ≤ R. Then
∣∣∣∣∣
1

nh

k∗∑

k=k∗

f(uk)−
∫ 1

−1

f(t)dt

∣∣∣∣∣ ≤
R

nh
.

The definition (3.1) implies that for any S ∈ Γε

ε2 ≤ τ(S) ≤ 1. (5.5)

Taking into account (5.3) and the lower bound for τ(S) given in (5.5), we prove that

∣∣∣∣
Tn

nh
− 1

τ(S)

∫ 1

−1

f(t)dt

∣∣∣∣ ≤
1

ε2

(
R

nh
+

Mn

nh
+

Cn

nh
+

Dn

nh

)
. (5.6)

We note that Mn is the last term of the martingale (Gj)k∗≤j≤k∗ of square integrable, where

Gj =

j∑

k=k∗

f(uk) (2S(xk) yk−1 ξk + ηk) .

So by applying the Burkhölder inequality, it comes

ES

(
1

nh
Mn

)2t

≤ A2t
2t

(nh)2t
ES

(
k∗∑

k=k∗

f 2(uk) (2S(xk) yk−1 ξk + ηk)
2

)t

≤ A2t
2t

Rt

(nh)t+1
ES

k∗∑

k=k∗

(
2S(xk) yk−1 ξk + ηk

)2t

≤ Rt

(nh)t
24t−2A2t

2t

(
(2t)!

2tt!

(
2r∗ +

(2t)!

2tt!

)
+ 1

)

14



where A2t = 18(2t)3/2/(2t − 1)1/2 and r∗ is given in (5.1). Since, |S(xk) − S(z0)| ≤
K|xk − z0|β for all S ∈ Hβ(z0, K, ε) and applying then the Hölder inequality for p = 2t

and q = 2t/(2t− 1), we obtain

1

(nh)2t
ES C

2t
n ≤ 1

(nh)2t

(
k∗∑

k=k∗

|(S2(xk)− S2(z0))|q1|uk|≤1

)2t/q k∗∑

k=k∗

f 2t(uk)ES y
4t
k−1

≤ 24tR2tK2t (r∗)2 h2tβ .

Now consider the last term on the right side of inequality (5.4). Can be written Dn as

Dn =

k∗∑

k=k∗

(
(f(uk)− f(uk−1)

)
y2
k−1

+ f(uk∗−1) y
2
k∗−1

− f(uk∗) y
2
k∗
.

Since ‖f‖+ ‖ḟ‖ ≤ R we have

ES D
2t
n
≤ 24t−2R2tES

(
1

nh

k∗∑

k=k∗

y4t
k−1

+ y4t
k∗

+ y4t
k∗−1

)

)
≤ 24tR2t (r∗)2 .

Similarly we find a bound for the second term on the right of the expression (5.2). Hence

Lemma 5.2.

Lemma 5.3. For any t ≥ 1 the stopping time τH defined in (1.2) satisfies the following

properties, for H = nh

PS(τH > n) ≤ C1(Rh)2tβ ,

where C1 is defined in (5.2).

Proof.

Taking into account that τ(S) ≤ 1 we obtain

PS(τH > n) = PS(
1

nh

n∑

k=1

Q(uk) y
2
k−1 <

H

nh
)

= PS

(
1

τ(S)

∫ 1

−1

Q(u)du+∆n(Q, h) < 1

)

= PS

(
∆n(Q, h) < 1− 2

τ(S)

)

≤ PS (|∆n(Q, h)| > 1) ≤ ES ∆
2t
n (Q, h) ≤ C1R

2t h2tβ ,

this last inequality comes from Lemma 5.2

To prove Lemma 5.5, we need the following lemma proved in Liptser and Shiryaev

(1978) p.234-235.
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Lemma 5.4. Consider the Wiener process W = (Wt,Ft), t ≥ 0, given a probability space

and is a random process f = (ft,Ft), t ≥ 0, such that :

(1) P

(∫ T

0

f 2
t dt < ∞

)
= 1, 0 < T < ∞ ,

(2) P

(∫ ∞

0

f 2
t dt = ∞

)
= 1.

Then the random process z = (zs,Γs), s ≥ 0, with zs =
∫ τs
0

ft dWt, Γs = Fτs
, where

τs = inf(t :
∫ t

0
f 2
udu > s), is the Wiener process.

Lemma 5.5. For all z ≥ 2 and H > 0,

PS(|ζH(h)| > z) ≤ 2 e−z2/8. (5.7)

Proof. The Brownian motion (Wt)t≥0 is a stochastic process whose disjoint increments

are independent as Wt+s−Wt follows a Gaussian distribution with zero mean and variance

s. So in our case we can write

ξk = Wk −Wk−1 ∼ N (0, 1).

We recall that

ζH =
1√
H

(
τH−1∑

j=1

Q(uj) yj−1 ξj + αH Q(uτH
) yτH−1 ξτH

)
1(An≥H).

So

PS(|ζH | > z 1(An≥H)) = PS(|ζH| > z, 1(An≥H)) = PS(|ζ̃H | > z, 1(An≥H)),

where

ζ̃H(h) =
1√
H

(
τ̃H−1∑

k=1

δk ξk + α̃τ̃H
δτ̃H ξτ̃H

)

and
τ̃H−1∑

k=1

δ2
k
+ α̃τ̃H

δ2τ̃H = H,

with δk = Q(uk) yk−1 1(k≤k∗) + 1(k>k∗) and

τ̃H = inf{k ≥ 1 :
k∑

j=1

δ2
j
≥ H}.

One can see that

PS(|ζ̃H(h)| > z) = PS

(
1√
H

∣∣∣∣
∫ τ̃H

0

ft dWt

∣∣∣∣ > z

)
,
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where

ft =

∞∑

j=1

δ′
j
1[j−1,j](t)

with

δ′
j
=





δj j < τ̃H
α̃τ̃H

δτ̃H j = τ̃H
0 j > τ̃H .

(5.8)

Indeed,

∫ τ̃H

0

ft dwt =

τ̃H∑

j=1

∫ j

j−1

ft dwt =

τ̃H∑

j=1

δ′
j
[wj − wj−1]

=

τ̃H∑

j=1

δ′
j
ξj =

τ̃H−1∑

j=1

δj ξj + α̃τ̃H
δτ̃H ξτ̃H .

We set

gt =

∞∑

j=1

δ′′
j
1[j−1,j](t)

with

δ′′
j
=





δj j < τ̃H√
α̃τ̃H

δτ̃H j = τ̃H

0 j > τ̃H ,

(5.9)

it comes,

∫ τ̃H

0

g2
t
dt =

τ̃H∑

j=1

∫ j

j−1

g2
t
dt

=

τ̃H−1∑

j=1

δ2
j
+ α̃τ̃H

δ2τ̃H = H.

By lemma 5.4, we obtain

η =
1√
H

∫ τ̃H

0

gt dWt ∼ N (0, 1).

17



Or,

PS

(
1√
H

∣∣∣∣
∫ τ̃H

0

ft dWt

∣∣∣∣ > z

)

≤ PS

(
1√
H

∣∣∣∣
∫ τ̃H

0

gt dWt

∣∣∣∣ >
z

2

)
+PS

(
1√
H

∣∣∣∣
∫ τ̃H

0

(ft − gt) dWt

∣∣∣∣ >
z

2

)

≤ PS

(
|η| > z

2

)
+PS

(
1√
H

|√ατ̃H
− ατ̃H

||δτ̃H ξτ̃H | >
z

2

)

≤ PS

(
|η| > z

2

)
+PS

(
1√
H

√
ατ̃H

|δτ̃H | |ξτ̃H | >
z

2

)

= PS

(
|η| > z

2

)
+PS

(
1

H
ατ̃H

δ2
τ̃H

ξ2
τ̃H

>
z2

4

)

≤ PS

(
|η| > z

2

)
+PS

(
ξ2
τ̃H

>
z2

4

)
. (5.10)

As η is a standard Gaussian random variable we can write for all z ≥ 2

PS

(
|η| > z

2

)
=

√
2

π

∫ +∞

z/2

e−t2/2dt

≤
√

2

π

∫ +∞

z/2

t e−t2/2dt =

√
2

π
e−z2/8.

We can write the second term of (5.10) as

PS

(
ξ2
τ̃H

>
z2

4

)
=

+∞∑

l=1

PS

(
ξ2
l
>

z2

4
, τ̃H = l

)

=

+∞∑

l=1

PS

(
ξ2
l
>

z2

4
,

l−1∑

j=1

δ2
j
< H ,

l∑

j=1

δ2
j
≥ H

)

=

+∞∑

l=1

PS

(
|ξl| >

z

2

)
PS(τ̃H = l)

≤
√

2

π
e−z2/8

+∞∑

l=1

PS(τ̃H = l) =

√
2

π
e−z2/8.

So for any z ≥ 2, (5.10) implies

PS

(
1√
nh

∣∣∣∣
∫ τ̃H

0

ft dwt

∣∣∣∣ > z

)
≤ 2

√
2

π
e−z2/8.

18



Lemma 5.6. (Helland , 1981, pp. 80-82)

Let (uk,n)1≤k≤n be a ”martingale difference” defined on a probability space (Ω,F ,P) and

filtrations {Fk,n, k ∈ N} of F , n ∈ N
∗ such that uk,n is Fk,n-measurable. Assume that the

following two conditions are satisfied:

n∑

k=1

E(u2
k,n1(|uk,n|>ε)|Fk−1,n)

P−−−→
n→∞

0, for all ε > 0,

n∑

k=1

E(u2
k,n|Fk−1,n)

P−−−→
n→∞

1.

Therefore
n∑

k=1

uk,n =⇒ N (0, 1).

6 Numerical simulations

We illustrate the obtained results by the following simulation which is established using

Scilab.

The purpose is to estimate at a given point z0 the function S defined over [0; 1] by

S(x) = |x−z0|β. We check that such a function belongs to H(β)(z0, K, ε) when K ≥ 1. The

values of z0 and β are arbitrary, which permits to the user the freedom of those choice.

We take z0 = 0.8, then β∗ = 0.6 as a value lower regularity and β∗ = 0.8 as the higher

value.

We simulated n data from the function S(x) = |x − z0|β for β = 0.7. We obtained

a estimation in constructing the estimator Ŝn defined in (2.7) with the procedure of

Lepskĭı who gives us the optimal window for the index k̂ defined in (2.6).

By varying the number of observations n, we obtain different estimations listed in the

following table:

n 1000 5000 10000 30000 50000 100000

Ŝn 0.180 0.086 0.103 0.090 0.039 0.05

In performing these simulations we noticed that the index k̂ given by the procedure

of Lepskĭı was always m− 1 is the number of grid points on [β∗, β
∗] except the ends.

This feature was expected since it is a priori a large number of observations for this

index is strictly less than m− 1 by the definition (2.6).
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