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Graphical User Interface to Solve the Burmester Problem

Julien S. Bourrelle Chao Cheh Stéphane Cafo Jorge Angeles

Departement of Mechanical Engineering
and Centre for Intelligent Machines
McGill University, Montreal, Canada

Abstract—The classic Burmester problem aims at find-
ing the geometric parameters of a planar four-bar linkage
for a prescribed set of finitely separated poses. In this pa-
per, we introduce a Matlab-based graphical user interface
to support the solution of the classic Burmester problem.
The synthesis deals with both revolute-revollR®]) and
prismatic-revolute PR) dyads for a prescribed set of five
poses. lIssues such as numerical conditioning, multiplic-
ity of solutions and singularities are considered. A case
study shows the applicability and robustness of the numer-
ical procedure in a design environment.

Keywords: graphical user interface, Burmester problem, fair-bar
linkage, numerical conditioning, five-pose synthesis

I. Introduction

The Burmester problem consists in designing a planar Fig. 2. Two finitely separated poses of a rigid body carriedhaycoupler
. . . link of a four-bar linkage
four-bar linkage to guide a rigid-body through a set of
finitely-separated poses. It is well known that four-bakdin

ages may be synthesized exactly for up to five prescribed tor of a landmark pointR of the body at thgth pose and
posesii]. 6; is the corresponding angle of a line of the body, as de-
picted in Fig.@ where Ry, Xo, Yo) is the reference frame.
R The problem consists in finding the joint centeigand B
that define theB Ay R dyadof the guiding four-bar linkage,
dyad B* AR being determined likewise. Ad, and Aj
A describe circles centered Atand B*, respectively, the for-

0 mer are termed theirclepoints the latter thecenterpoints
of the dyads.

The four-pose problem is known to admit an infinity of
solutions, each dyad being given by a pair of correspond-
ing cubic curves, theenterpoint curveand thecirclepoint
curve Commercial packages, such as LINCAGES 2000
[E], [E], are available for obtaining solutions to this prob
lem, these packages dealing mostly with the synthesis of
RR dyads. On the other hand, the five-pose problem is
known to lead to the solution of a quartic equation, and
hence, admits none, two or four real dyaﬂs [1]. Extensive
research has been reported on the solution of the Burmester
problem [h]—]. Among all these works, most focus on
revolute-revolutdRR dyads, few investigating the problem
of prismatic-revoluté®’R dyads.

This paper introduces a graphical user interface (GUI)
that solves the five-pose problem based on the robust com-
*E-mail: {julien.bourrelle, chao.chg@elf.mcgill.ca putational algorithm developed by Angeles, Al-Widyan and
tE-mail: {caro, angeles@cim.mcgill.ca Cervanteq[1]2] and Angeles and Hai][13] for b&R dyads
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Fig. 1. A four-bar linkage with revolute-revolute dyads

The Burmester problem, in its full generality, can be
stated as:A rigid body, attached to the coupler link of a
four-bar linkage, as shown in Fif] 1, is to be guided through
a discrete set ofn poses, given byr;, 6}, starting with
a reference pose labelet] wherer; is the position vec-



andPR dyads. The various interface sections are discussed, whereay andb are the position vectors of pointk, and B,
while the underlying theory is outlined . We refer the user the design parameters of tiRR dyad, whileQ,; denotes
to several case studies available online that demonskrate t the rotation matrix carrying the guided body from pose 0 to

applicability of the package in a design environment. posej, i.e.,
Il. Data Importing o [cgs b; smgb]} Cwithos =0, — 0y (2)
The data-importing options permit the study of problems sing;  cos¢g;

ranging from fully defined sets Qf five. poses, entered di-  The synthesis equationf (1) allow us to compute the de-
rectly from the keyboard, to design-oriented problems de- gjgn parameters. The equations are obtained in symbolic

fined by up to fifteen poses, imported from a file. Within the form, free of round-off error by means of computer-algebra
interface, different sets of five poses may be selected from ¢,¢yare.

the imported data and tested independently. If no adequate
solution is obtained for the given set of data poses, alterna A. Synthesis dRR dyads
tive poses may be tried from a rich set using an interactive

graphical selection method, available in our GUI. In order to find theRR dyads of the four-bar linkage, we

first eliminatea, from Eq. (1), which can be achieved by
A. Cubic Spline Curves rewriting this equation as:

Spline curves are used to interpolate data poses, thereby Gz =0,, (3)
obtaining a continuous path for the landmark point and a
continuous function fol, as shown in Fig[]3. The set Where0,, is them-dimensional zero vectoG isam x 3
of landmark-point positions is interpolated by means of a matrix linear function oy, andz = [b” 1}T is thethree-
parametric periodic cubic spline The orientation angles  dimensional array of homogeneous coordinaes. Thus,

are interpolated, in turn, by @on-parametric periodic cu- forj=1,...,m,

bic spline proper for the interpolation of functions, as op- T

posed to geometric curves. Moreover, the paramegtde- g1 (1-Q,)a0—r,

fined as the length measured along the polygonal formed G= : ) 85 = r’'Q.a, J+ ETr-/jQ (4)
by the landmark points, is used as the abscissa of the non- g A
parametric spline interpolatiry Hard-to-meet pose order-

ings are readily identified with the aid of the spline inter- By the same tokenb can be eliminated instead af,
polants prior to the synthesis. from Eq. ﬂ) by rewriting this equation in the form

B. Extraction of Poses from the Spline Interpolants Hw =0,, (5)

Design-oriented problems defined from client’s needs of- \ynereH is am x 3 matrix linear function ofb. while
ten admit slight variations of the given poses. The spline _ [aT 1}T is the three-dimensional array of homoge-
plots permit the selection of new poses selected by the 0

- i . ) neous coordinateaf Ag. In this case, foj = 1,...,m,
user by clicking, first, at an interpolated point on the
spline-generated (pse@@oupler curve; the GUI then re- hT
sponds with a point on the spline-generated, plot of fumctio H= : h — (1- QJT)b + Q]Trj (6)
6 = 6(s). The selection, moreover, is not restricted to the B . T —r]Tb + r]Trj/2
spline-generated plots; full flexibility is given to the use hp,

The point on the coupler-curve spline closest to the selec-
tion is used to compute the orientation angle by means of
the orientation spline. Markers are added on both plots for
validation and the new pose is added to the table.

When five poses are specifiedh, is equal to 4,G be-
coming a4 x 3 matrix. Given its definitionz cannot van-
ish, eq. [B) thus being required to admit nontrivial solngio
These are possible® is rank-deficient, i.e. iff everg x 3

ll. Synthesis Equations submatrixG;, forj = 1,...,4, of G is singular:

We start the synthesis with a general four-bar linkage, as K Aj(ag) = Aj(z,y) = det(G;) =0 (7

shown in Fig.|:|2. Under the usual rigid-body assumption, ) ) '
the synthesis equatiois readily derived as whereG; is formed by deleting thgth row fromG. Each

of the four equations[k?) defines one contour in the
plane, thereby leading to the four circlepoint curigscor-
responding to the three synthesis equations obtained when
(1) deleting thejth equation from the given four in Eq] (1).
1The closed curve appearing in the upper right window of Fiig. dot, Their common intersections yield the real circlepoints of
properly speaking, a coupler curve, for it is not a sextic. theRR dyad.

Tp.
rir;
2

bT(lfQj)aQ+I‘?QjaofI‘?b+ 0, j = 1,...,m
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Fig. 3. Data-importating-window using cubic-splines

Likewise, the centerpoint curvet; can be found from
H:
M; i Aj(b) = Aj(u,0) = det(H;) =0 (8)

with H;, for j = 1,...,4, defined as it counterpart,
the common intersections of the fowmt; curves yielding
the centerpoints. Therefore, every triplet of synthesiseq
tions ﬂ) out of the givemn > 4, defines one centerpoint
and one circlepoint curve.

The expressions for the four circlepoint curv€s and
the four centerpoint curvest; are again obtained in sym-
bolic form. Symbolic calculations are done withifatlab
using theMaple Kernel Fig. 4. Relation between thi¢h and;jth poses and the circlepoints

B. Synthesis @R dyads

To simplify the derivation of the synthesis equations for
PR dyads, we divide both sides of E{] (1) by the Euclidean
norm ofb, thus obtaining, foj = 1,...,m,

When ||b]| — oo, the centerpointB goes to infinity,
which leads to &R dyad. Under this condition, Equa-
tion (@) can be rewritten as

u 3=0 (11)
(1-Q,)ao — r,]TL + [ eTQ;a0 + o\ 1o 0 whereu; = a; — a, is the displacement of the circlepoint
! 7 bl 7 2 | b Ay at thejth pose, i.e.,
©) _
Furthermore, we define a unit vec@ras uj=r; —(1-Qjag, j=1,....m (12)
3 b (10) With reference to Fig[]4{u;}7" is theith displacement

Y vector of the circlepoint. From eq[ (11), alt vectorsu;



must be parallel. In other words, the cross product of any
two displacement vectors must vanish. If we resort to the
2D representation of the cross product introduced ih [14],
then the cross product can be expressed as

, i#Fj (13)
whereE is a2 x 2 matrix rotating vectors in the plar$®°
ccw. Equation3) expands to
Aij =aj (-EQ; — Q] E + Q] EQ;)ag
4+ (EI‘l — (ng:EI‘z — EI']' + QZTEI‘j)Ta()
+ rJTErZ- =0

Ajj=ulEu; =0, i,j=1,...,m

(14)

We develop below all quadratic terms of EEl(14), those
in the first line of this equation, by writin€); in the form
Q; = ¢i1 + s;E, in which s; = sing; andc¢; = cosg;.
Hence,

—aj EQ,ap = si||ag||? (15a)
—angTan = —sj||ao||2 (15b)
a; Q, EQap = —sin(¢; — ¢;)l|a||>  (15¢)

Further, letv;; = —Er; + Q] Er; + Er; — Q] Er;, as
appearing in the second line of EqE|(14), which are now
rewritten fori, 5 = 1,...,m,i # j, as,

Aij = (Si —8j —Sij) H ag ||2 +vl-Tja0 -‘rI‘?EI’i =0 (16)
and represent the loci ofy, of position vecton,, namely,
a family of circles, where;; = sin(¢; — ¢;).

IV. Determination of the Mechanism Type

To simplify the interface, the type of mechanism, for
m = 4, is determined prior to the synthesis. By rewritting

Eq. (I§) as

Nx = 0, (17)
2
wherex = [ ||af||” af 1 ]” and
51— s3+ 813 Vip riEr
T

N — So — 83 + S93 Va3 I3 EI‘Q (18)

83 — 84 + S31 Vg:l I‘ZEI‘g

s4—81+s84 vi, rTEry

the mechanism type can determined from the value of
det(IN). Two special cases can be identified for whih

is singular, i.e. its determinant vanishes:

(&) The first column vanishes. In this case, the orientation

of the coupler remains constant. A possible mechanism is

the parallelogram.
(b) The last column vanishes. In this case, all given dis-
placement vector§u; } are parallel. A mechanism con-
taining a prismatic joint is possible iff all orientationglas
are different. It is noteworthy that the landmark points may
or not be aligned.

If N is nonsingular, then the synthesis produces only
RR dyads.

Fig. 5. lllustration of vector normalization: determiraatiof the polesP;
and their centroid

A. Normalization of the Displacement Vector

To reduce the effect of data dimension on roundoff error,
normalized position vectors are desirable. To this end, we
make all{r,}{ dimensionless by means of a suitable nor-
malization ].

As depicted in Fig|]5, the displacement from the refer-
ence pose to thé&h pose can be considered as a pure ro-
tation about the polé;. Distanceqd;}7* betweenP; and
the centroidC' of {P;}1* are first obtained. The rms value
drms Of these distances is considered asdharacteristic
lengthfor normalization, such that the displacement vectors
are normalized as

p; = 7 i=1,....,m (29)
with
TMS mj:1 i 1 [ ) mj:1 7

(20)
To find p,, we refer to Fig[Js, whence,
pi:%HiEfi, # = ’;— i=1,...,m (21a)
and
| x|l ,
¢i #0 (21b)

L= S an(e2)’

If the rigid-body displacement from the reference pose 0
to theith pose is a pure translation, théf lies at infin-
ity. In this cased; cannot be computed fronﬁPZO) and,
¢; vanishing,l; cannot be computed from e(.(21b). What
we do in this case is defing as the absolute value of the
translation displacement.

V. Determination of the Circlepoints and Centerpoints

The problem at hand reduces to finding the solution of
an overdetermined nonlinear system of equations given by
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Pose X 'd PHI Circlepoint A Centrepoint B
1 1445 12135 24818 | @ -6.42841 -3.19637 234104 39963
Create Report Files 2 40558 | [ adan | [ BezEE | O -2.1987 B0414 255467 10,5293
3 4@5 | [ -40896 [Tragma | ® 330087 T 43068 404503 10,5394
4 51473 51588 563648 (O -454471s-005  -6.78T62-005 ALE42TES 0766047
Different solutions may be animated by selecting new coordinates for the circlepoint-| Reset Animation m::;o;mg —
centerpoint dyad in the above table. In the case where a Rocker-Rocker mechanism is| ( Croate .avi File ] ( E T
animated, the input link is taken to be the Ao-B dyad. In all other cases, the input link
is taken to maximize the RMS value of the transmission angle. For a PRRR (or RRRP) [ ‘Animate | [Zoom Out | [Resize Animation]
mechanism, the bolded coordinate represents the direction of the centerpoint lying
at infinity. It does NOT represent a finite intersection.

Contour Plot for Circlepoint A [[Graphic Resizing | Contour Plot for Centrepoint B

Fig. 6. Main window of the graphical user interface

eqs.ﬂl) and|]6) foay andb, respectively. Rough estimates B. Solution-Pairing and Centerpoint Calculation

of the real solutions are to be user-produced by inspection

of the intersections of the contour plots defined by each  Once all sets of real solutiorssy andb have been ob-
set of circlepoint curve&C; and centerpoint curves;, tained, we resort to the synthesis equations to pair them.
as shown in Fig[|6. The estimates are refined up to ma- By referring to eq.|]1), involving linearly as an unknown
chine accuracy by resorting to a nonlinear least-square ap-oncea, is available, it is apparent that the number of real
proximation of an overdetermined system of four nonlinear solutionsa, andb will be identical, the pairing of solutions

equations in two unknowns namely, thus being possible. Furthermore, it is apparentithaiuld
4 be directly computed from eq[](1) onag is known. The
||fH2 = 1 Z[Ai(x)]Q - min (22) problem thus reduces in finding the real circlepoiftsthe
2 i—0 x centerpoints3 being available.
with x denoting eithen, or b andf defined, correspond- The problem of roundoff error propagation is addressed
ingly, in any of the two forms below: here. Determinindp from cascaded computations based on
A (a0) Ay (b) ag would carry the roundoﬁ error afy into.b. To prevent
As(ap) As(b) roundoff error propagation, the computeds sent back to
f(ag) = As(a) f(b) = As(b) the nonlinear least-square algorithm, exactly as if it were
Ai(ag) Ai(b) independently estimated by inspection of the plots. Conse-

guently, complete roundoff-error consistency is insured.
It is noteworthy that solving for the unknowns while taking

into account all the redundant equations we enhance the al-

gorithm robustness. VI. Linkage Performance Evaluation

A. Calculations and Graphical Representation The mobility of the two links coupled to the frame is to
The user-estimated solutions are refined using the abovebe determined in order to assess the linkage performance.

described algorithm, thus permitting the immediate identi Notice that in the realm of the Burmester problem, there is

fication of the real solutions. Both estimated and refined no specification of input and output, which means tat

solutions are marked on the graph for this purpose. of AgpB andAjB* links can be used as input.



MECHANISM TYFE AND MOBILITY RANGE
Mohility Range - ROCKER-ROCKER -- RRRRLINKAGE ———
The transmission angle criteria is employed to determine which link should operate as the
input. The linkage derived from the selected circle-centerpoint dyads is optimized if the
1 |input link is chosen to maximise the root mean square value of the transmission angle. As
a general rule, RRRR linkages will be driven by the shortest link capable of a full rotation

1 |(crank) or,in the case of a rocker-rocker, the link with a larger sweep angle. Linkages with a
prismatic joint will be driven with the revolute-revolute dyad (RRRP configuration).In most
cases, this rule maximises the root mean square value of the sine of the transmission angle.

7 |If it does not, further analysis are to be made by the user to determine which of the link
should be use as input. The RMS value of the sine of the transmission angle is presented

1 |below for reference.

(8]

Output Angls (Fad)
=

r

The circle-centrepoint dyad of the selected input link now appears in blue in the table
4 Selected Dresign Alternative Design

RMS Value of the sine of the Transmission Angle: ~ 06.799201 0773848

£

R -4 -2 o 2 4 R
Tnpast Angls (Rad) Zoom Out [ Close and Start the Animation ]

Fig. 7. Mechanism type and link-mobility range window

A. Mobility of the Input-Output Links of the Freudenstein parameters as:

The input link of a four-bar linkage would better be ca-
pable of a full rotation, as four-bar linkages are frequentl sin? pu =
driven at constant angular velocity. For animation purgpse
RRRR linkages are driven by the shortest link capable of
a full rotation (crank); in the case of a rocker-rocker link-
age, the link with a larger sweep angle is the designated 2.2 - 32,12
input link. Linkages with a prismatic joint are driven by the AY) = —ky cos™ g2(kiks —ks) cosy+(1 k1+k2)(§6())
revolute-revolute dyad. The link-mobility rangesRRRR
linkages are determined from the Freudenstein equation

aka the input-output (10) equation: this case A(¢) is the discriminant of this quadratic equa-
tion.
F(,9) =k1+k —k - —)=0 . L
%:9) 1+ k2 cos(@) = ks cos(y) — cos(¢ —v)) (23) The transmission quality is computed after the synthe-
sis of everyRRRR linkage. One may compare the per-
formance of all linkages solving a given problem via their
a? 4+ a3 —a3 +a? a a transmission quality.

kl = 2a2a2 , kQ = a/_7 kg = —
20y 2 a4

k3
k’% + k’g + k%k’g — 2k1koks

A(y)  (25)

while thelinkage discriminantA(¢)) is calculated as

The name ofA(v) stems from its role in ed.(3), when
'this equation takes a quadratic forman= tan(¢$/2). In

where

VII. Four-Bar Linkage Animation
Parameter§a; }1 are the link lengths whilgk; }$ are the
Freudenstein parameterwith links being numbered from
1to 4 in the order: fixed, input, coupler and output.

A feature of the user interface is the animation function,
permitting visualization of the synthesized linkage. \das
design tools are offered; one may animate the linkage in a
suitable frame, record an animation in an external movie

] ] ) ] file, select the starting position of the linkage, and retliee
A variable of merit which assesses the linkage perfor- 5nimation window. The animations are useful animation

mance is the transmission angle This angle is defined  o0|s; a suitablpvelocity profile is applied to a rocker in-

as ApAsB* it BAy is the input link; else, asi;AoB. put link; and the coupler-point trajectory is recorded, ihi
Thetransmission qualitydefined as the root mean square  gnimation speed is platform-independent.

(rms) value of the sine of the transmission angle, provides
an overall performance criterion taking all possible ligga A, Dyad Selection
postures into consideration. We thus havetthasmission
quality Q defined as

B. Transmission Angle and Transmission Quality

It is well known that the five-pose synthesis of a four-
bar linkage leads to none, two or four center-circlepoint
1 b2 dyads. Two dyads define a unique linkage, whereas four
Q= \/— / sin? udip, AP =1pg—1p1  (24) dyads lead up to six distinct four-bar linkages. One may an-
AY Sy, imate any of the six linkages by selecting the desired set of

Wergw 1S Fhe Input angle Efmdw’ the .range. of motlon of 2A suitable velocity profile for a rocker link starts and endishvzero
the input link. An expression farin o is derived in terms velocity and zero acceleration.



dyads, as shown in Fi@ 8. Remember that within a center-
circlepoint dyad, the centerpoint represents the base-joi
position, while the circlepoint represents the couplentoi
position in the reference linkage configuration. Once the se
lection has been confirmed and the linkage mobility deter-
mined, the dyad of the driving link is colored in blue. Fur-
thermore, the “coordinates” of prismatic dyads are shown
in boldface in the selection table, with the caveat thatehes
putative coordinates do not represent here a point coordi-
nate, but a unit vector pointing at the centerpoint lying at
infinity.

Circlepoint & Centrepoint B

X T pd T

) -6.42541
-2.1987

-5.19837 -2.84104 -5.996%

-5.04114 -2 55467 -10.5393

3] 330087 -TAZ968 494503 -10.5394

SRORGNC

) -4544Tle-005 -6 TETSe-005 0642785 -0.766047

Fig. 8. Dyad selection table

B. Mechanism Frame

The mechanism framés defined with origin at poinB
of Fig. fl, theX -axis containing3* and directed fron® to
B*, with theY -axis pointing upwards.

Linkages may be animated in the coordinate frame of
Fig. @, in which the origin coincides with the landmark
point at the reference pose. Animation in tmechanism
frameis also allowed, in which case the whole linkage is
rotated so as to have thé-axis horizontally on the display
window.

C. Coupler curve

What we need here is an implicit functidi(z, y) = 0,
defined in either coordinate frame, free of linkage variable

Fig. 9. RRRR linkage animation

Another branch-related problem happens if merging of
branches occurs. During the animation, the direction of
motion needs to be carefully determined to prevent branch-
jumping. We accomplished this task by forcing the coupler-
point to remain in the branch that preserves the smoothness
of its acceleration.

E. Output angle

From the 10 equatior] (3), we obtain the output angle for
every input angle. A solution can be found by transform-
ing the 10 equation into an algebraic equation by means
of the tan-half identities. This transformation leads to a
guadratic equation yielding two possible solutions forreac
input angle. Rather than solving the foregoing quadratic
equation for animation purposes, which is prone to singu-
larities when the output angle approachesve used a ge-
ometric approach, free of the above singularities. These oc
cur by virtue of thetan-halfidentities. As a matter of fact,

and having as parameters the link lengths. The desiredthe solutions are derived from the intersections between a

function is obtained in terms of the Freudenstein parame-

line in theu(= cos ¢) — v(= sin ¢) plane, stemming from

ters using computer algebra, and represents a closed; sexti the |0 equation[(33), and the unit circle centred at the prigi

curve, termed the coupler curve.

The coupler curve is computed independent from the an-
imation. By superimposing the coupler-point trajectosy, a
displayed in Fig[|9 and produced during animation, with

of the same plane, which represents the constraiatsdv.
To ensure consistent frame display within the animation,
the relevant output angle needs to be selected.

the coupler curve, we create a redundancy that increases the E-1 RRRR Linkage

animation robustness. Animation problems can be readily
identified this way.

D. Branch Selection

Due to the finite number of solutions of the five-pose
problem, a situation known dsanch-defecheeds particu-
lar attention. Branch-defect happens if the five poses dre no
visited on the same branch. Without addressing directly the
problem, the interface permits animation in every branch
containing a pose. Branch-selection is done by graphical
pose selection.

As the 10 equation admits two output-angle solutions,
the correct output angle ®RRR linkages is determined
by a proximity rule, by comparing the linkage configuration
of the previous frame with the two possible configurations.

E.2 ParallelogramRRRR Linkage

In the parallelogram linkage, the input and output angles
are identical. The output angle of tkige layout of the same
linkage is the other solution of the 10 equation. One may
animate parallelogram linkages in their two layouts, paral
lelogram and kite.



Fig. 10. Parallelogram linkage animation

E.3 RRRP Linkage

Linkages containing prismatic joints are always ani-
mated in theirRRRP layout, the notion of output angle
not being present here. The slider position is determined
from a geometrical approach, leading again to two possible
linkage configurations for each input angle. The desired
configuration is determined similar to tRRRR linkage.

'._-_.'.*--1--‘,,‘?_\‘{—

Fig. 11. RRRP linkage animation

VIIl. Design Environment and Recording Tools

We included numerous functions aiming at creating a
user interface useful for design. One may record the link-
age animation, create an input file for reproduction of the
experiment, produce a report file summarizing the synthe-
sis and record the various graphs. Furthermore, zooming
functions are available for precise analysis of all graptts a
animation.

IX. Case Studies

Several case studies are available at the Centre for ntelli
gent Machines website bt t p: / / www. ci m ncgi | | .
ca/ rnsl / Angel es_ht m / cden/ nodul e. ht M . We
encourage the reader to try the interface available on this
same website.

X. Conclusions

We introduced a graphical user interface to solve the five-
pose Burmester problem in the presence of RRand
PRdyads. The robust algorithm does not break down in

the presence of special conditions of the prescribed pose.

We integrated methods for the data conditioning that leads
to a robust implementation of the algorithm.
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