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Abstract—The classic Burmester problem aims at find-
ing the geometric parameters of a planar four-bar linkage
for a prescribed set of finitely separated poses. In this pa-
per, we introduce a Matlab-based graphical user interface
to support the solution of the classic Burmester problem.
The synthesis deals with both revolute-revolute (RR) and
prismatic-revolute (PR) dyads for a prescribed set of five
poses. Issues such as numerical conditioning, multiplic-
ity of solutions and singularities are considered. A case
study shows the applicability and robustness of the numer-
ical procedure in a design environment.

Keywords:graphical user interface, Burmester problem, four-bar
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I. Introduction

The Burmester problem consists in designing a planar
four-bar linkage to guide a rigid-body through a set of
finitely-separated poses. It is well known that four-bar link-
ages may be synthesized exactly for up to five prescribed
poses [1].
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Fig. 1. A four-bar linkage with revolute-revolute dyads

The Burmester problem, in its full generality, can be
stated as:A rigid body, attached to the coupler link of a
four-bar linkage, as shown in Fig. 1, is to be guided through
a discrete set ofm poses, given by{rj , θj}m0 , starting with
a reference pose labeled0, whererj is the position vec-
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Fig. 2. Two finitely separated poses of a rigid body carried bythe coupler
link of a four-bar linkage

tor of a landmark pointR of the body at thejth pose and
θj is the corresponding angle of a line of the body, as de-
picted in Fig. 2, where (R0, X0, Y0) is the reference frame.
The problem consists in finding the joint centersA0 andB
that define theBA0R dyadof the guiding four-bar linkage,
dyadB∗A∗

0R being determined likewise. AsA0 andA∗

0

describe circles centered atB andB∗, respectively, the for-
mer are termed thecirclepoints, the latter thecenterpoints
of the dyads.

The four-pose problem is known to admit an infinity of
solutions, each dyad being given by a pair of correspond-
ing cubic curves, thecenterpoint curveand thecirclepoint
curve. Commercial packages, such as LINCAGES 2000
[2], [3], are available for obtaining solutions to this prob-
lem, these packages dealing mostly with the synthesis of
RR dyads. On the other hand, the five-pose problem is
known to lead to the solution of a quartic equation, and
hence, admits none, two or four real dyads [1]. Extensive
research has been reported on the solution of the Burmester
problem [4]–[11]. Among all these works, most focus on
revolute-revoluteRR dyads, few investigating the problem
of prismatic-revolutePR dyads.

This paper introduces a graphical user interface (GUI)
that solves the five-pose problem based on the robust com-
putational algorithm developed by Angeles, Al-Widyan and
Cervantes [12] and Angeles and Bai [13] for bothRR dyads

1



andPR dyads. The various interface sections are discussed,
while the underlying theory is outlined . We refer the user
to several case studies available online that demonstrate the
applicability of the package in a design environment.

II. Data Importing

The data-importing options permit the study of problems
ranging from fully defined sets of five poses, entered di-
rectly from the keyboard, to design-oriented problems de-
fined by up to fifteen poses, imported from a file. Within the
interface, different sets of five poses may be selected from
the imported data and tested independently. If no adequate
solution is obtained for the given set of data poses, alterna-
tive poses may be tried from a rich set using an interactive
graphical selection method, available in our GUI.

A. Cubic Spline Curves

Spline curves are used to interpolate data poses, thereby
obtaining a continuous path for the landmark point and a
continuous function forθ, as shown in Fig. 3. The set
of landmark-point positions is interpolated by means of a
parametric periodic cubic spline. The orientation angles
are interpolated, in turn, by anon-parametric periodic cu-
bic spline, proper for the interpolation of functions, as op-
posed to geometric curves. Moreover, the parameters, de-
fined as the length measured along the polygonal formed
by the landmark points, is used as the abscissa of the non-
parametric spline interpolatingθ. Hard-to-meet pose order-
ings are readily identified with the aid of the spline inter-
polants prior to the synthesis.

B. Extraction of Poses from the Spline Interpolants

Design-oriented problems defined from client’s needs of-
ten admit slight variations of the given poses. The spline
plots permit the selection of new poses selected by the
user by clicking, first, at an interpolated point on the
spline-generated (pseudo1) coupler curve; the GUI then re-
sponds with a point on the spline-generated, plot of function
θ = θ(s). The selection, moreover, is not restricted to the
spline-generated plots; full flexibility is given to the user.
The point on the coupler-curve spline closest to the selec-
tion is used to compute the orientation angle by means of
the orientation spline. Markers are added on both plots for
validation and the new pose is added to the table.

III. Synthesis Equations

We start the synthesis with a general four-bar linkage, as
shown in Fig. 2. Under the usual rigid-body assumption,
thesynthesis equationis readily derived as

bT (1−Qj)a0+rTj Qja0−rTj b+
rTj rj

2
= 0 , j = 1, . . . ,m

(1)

1The closed curve appearing in the upper right window of Fig. 3is not,
properly speaking, a coupler curve, for it is not a sextic.

wherea0 andb are the position vectors of pointsA0 andB,
the design parameters of theRR dyad, whileQj denotes
the rotation matrix carrying the guided body from pose 0 to
posej, i.e.,

Qj =

[

cosφj − sinφj
sinφj cosφj

]

, with φj ≡ θj − θ0 (2)

The synthesis equations (1) allow us to compute the de-
sign parameters. The equations are obtained in symbolic
form, free of round-off error by means of computer-algebra
software.

A. Synthesis ofRR dyads

In order to find theRR dyads of the four-bar linkage, we
first eliminatea0 from Eq. (1), which can be achieved by
rewriting this equation as:

Gz = 0m (3)

where0m is them-dimensional zero vector,G is am × 3

matrix linear function ofa0, andz =
[

bT 1
]T

is thethree-
dimensional array of homogeneous coordinatesofB. Thus,
for j = 1, . . . ,m,

G ≡







gT1
...

gTm






, gj =

[

(1−Qj)a0 − rj
rTj Qja0 + rTj rj/2

]

(4)

By the same token,b can be eliminated instead ofa0
from Eq. (1) by rewriting this equation in the form

Hw = 0m (5)

whereH is am × 3 matrix linear function ofb, while
w =

[

aT
0
1
]T

is the three-dimensional array of homoge-
neous coordinatesof A0. In this case, forj = 1, . . . ,m,

H ≡







hT
1

...
hTm






,hj =

[

(1−QT
j )b+QT

j rj

−rTj b+ rTj rj/2

]

(6)

When five poses are specified,m is equal to 4,G be-
coming a4 × 3 matrix. Given its definition,z cannot van-
ish, eq. (3) thus being required to admit nontrivial solutions.
These are possible ifG is rank-deficient, i.e. iff every3× 3
submatrixGj , for j = 1, . . . , 4, of G is singular:

Kj : ∆j(a0) = ∆j(x, y) = det(Gj) = 0 (7)

whereGj is formed by deleting thejth row fromG. Each
of the four equations (7) defines one contour in thex-y
plane, thereby leading to the four circlepoint curvesKj cor-
responding to the three synthesis equations obtained when
deleting thejth equation from the given four in Eq. (1).
Their common intersections yield the real circlepoints of
theRR dyad.
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A given five-pose Burmester 

problem may lead to no solu-

tion.  If the set of poses defin-

ing the problem is flexible; a 

solution may be attainable 

by slightly modifying the 

original poses. By pressing 

the ''New Landmark-Point 

Position'' button one may 

select a new pose position. 

The corresponding orienta-

tion angle will be calculated 

based on the original Peri-

odic Cubic Spline Interpola-

tion of the Orientation Angle. 

Refer to the user manual for a 

detailed description of the 

procedure.

Parametric Cubic Spline Interpolation of the Landmark-Point Position

Periodic Cubic Spline Interpolation of the Orientation Angle

Select five poses that best define the problem:

Select a total of five poses including pose 0. 

You may change the pose order

Change Pose Ordering

Import Data and ExecuteReset Point Selection

Resize Zoom out Reset ZoomZoom out

New Landmark-Point Position

Fig. 3. Data-importating-window using cubic-splines

Likewise, the centerpoint curvesMj can be found from
H:

Mj : ∆̃j(b) = ∆̃j(u, v) = det(Hj) = 0 (8)

with Hj , for j = 1, . . . , 4, defined as itsGj counterpart,
the common intersections of the fourMj curves yielding
the centerpoints. Therefore, every triplet of synthesis equa-
tions (1) out of the givenm ≥ 4, defines one centerpoint
and one circlepoint curve.

The expressions for the four circlepoint curvesKj and
the four centerpoint curvesMj are again obtained in sym-
bolic form. Symbolic calculations are done withinMatlab
using theMaple Kernel.

B. Synthesis ofPR dyads

To simplify the derivation of the synthesis equations for
PR dyads, we divide both sides of Eq. (1) by the Euclidean
norm ofb, thus obtaining, forj = 1, . . . ,m,

[(1−Qj)a0 − rj ]
T b

‖b‖
+

(

rTj Qja0 +
rTj rj

2

)

1

‖b‖
= 0

(9)
Furthermore, we define a unit vectorβ as

β =
b

‖b‖
(10)

Fig. 4. Relation between theith andjth poses and the circlepoints

When ‖b‖ → ∞, the centerpointB goes to infinity,
which leads to aPR dyad. Under this condition, Equa-
tion (9) can be rewritten as

uTj β = 0 (11)

whereuj ≡ aj − a0 is the displacement of the circlepoint
A0 at thejth pose, i.e.,

uj = rj − (1−Qj)a0, j = 1, . . . ,m (12)

With reference to Fig. 4,{ui}m1 is theith displacement
vector of the circlepoint. From eq. (11), allm vectorsui
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must be parallel. In other words, the cross product of any
two displacement vectors must vanish. If we resort to the
2D representation of the cross product introduced in [14],
then the cross product can be expressed as

∆ij = uTi Euj = 0, i, j = 1, . . . ,m, i 6= j (13)

whereE is a2× 2 matrix rotating vectors in the plane90◦

ccw. Equation (13) expands to

∆ij = aT0 (−EQi −QT
j E+QT

j EQi)a0
+(Eri −QT

j Eri −Erj +QT
i Erj)

Ta0

+ rTj Eri = 0 (14)

We develop below all quadratic terms of Eq. (14), those
in the first line of this equation, by writingQi in the form
Qi = ci1 + siE, in which si ≡ sinφi and ci ≡ cosφi.
Hence,

−aT
0
EQia0 = si||a0||

2 (15a)

−aT0 Q
T
j Ea0 = −sj ||a0||

2 (15b)

aT0 Q
T
j EQia0 = − sin(φi − φj)||a0||

2 (15c)

Further, letvij = −Eri +QT
j Eri + Erj −QT

i Erj , as
appearing in the second line of Eqs. (14), which are now
rewritten fori, j = 1, . . . ,m, i 6= j, as,

∆ij = (si− sj − si̄) ‖ a0 ‖2 +vTija0 + rTj Eri = 0 (16)

and represent the loci ofA0, of position vectora0, namely,
a family of circles, wheresi̄ = sin(φi − φj).

IV. Determination of the Mechanism Type

To simplify the interface, the type of mechanism, for
m = 4, is determined prior to the synthesis. By rewritting
Eq. (16) as

Nx = 04 (17)

wherex = [
∥

∥aT
0

∥

∥

2
aT
0

1 ]T and

N =







s1 − s2 + s12̄ vT12 rT2 Er1
s2 − s3 + s23̄ vT23 rT3 Er2
s3 − s4 + s34̄ vT

34
rT
4
Er3

s4 − s1 + s41̄ vT
41

rT
1
Er4






(18)

the mechanism type can determined from the value of
det(N). Two special cases can be identified for whichN
is singular, i.e. its determinant vanishes:
(a) The first column vanishes. In this case, the orientation
of the coupler remains constant. A possible mechanism is
the parallelogram.
(b) The last column vanishes. In this case, all given dis-
placement vectors{ui}41 are parallel. A mechanism con-
taining a prismatic joint is possible iff all orientation angles
are different. It is noteworthy that the landmark points may
or not be aligned.

If N is nonsingular, then the synthesis produces only
RR dyads.

Fig. 5. Illustration of vector normalization: determination of the polesPi

and their centroid

A. Normalization of the Displacement Vector

To reduce the effect of data dimension on roundoff error,
normalized position vectors are desirable. To this end, we
make all{rj}41 dimensionless by means of a suitable nor-
malization [13].

As depicted in Fig. 5, the displacement from the refer-
ence pose to theith pose can be considered as a pure ro-
tation about the polePi. Distances{di}m1 betweenPi and
the centroidC of {Pi}m1 are first obtained. The rms value
drms of these distances is considered as thecharacteristic
lengthfor normalization, such that the displacement vectors
are normalized as

ρi ≡
ri

drms
, i = 1, . . . ,m (19)

with

drms =

√

√

√

√

1

m

m
∑

j=1

d2i , di =‖ pi − c ‖, c =
1

m

m
∑

j=1

pi

(20)
To findpi, we refer to Fig. 5, whence,

pi =
ri

2
+ liEr̂i, r̂i ≡

ri

li
, i = 1, . . . ,m (21a)

and

li =
‖ ri ‖

2 tan(φi/2)
, φi 6= 0 (21b)

If the rigid-body displacement from the reference pose 0
to the ith pose is a pure translation, thenPi lies at infin-
ity. In this casedi cannot be computed from eq.(20) and,
φi vanishing,li cannot be computed from eq.(21b). What
we do in this case is definedi as the absolute value of the
translation displacement.

V. Determination of the Circlepoints and Centerpoints

The problem at hand reduces to finding the solution of
an overdetermined nonlinear system of equations given by
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Different solutions may be animated by selecting new coordinates for the circlepoint-

centerpoint dyad in the above table.  In the case where a Rocker-Rocker mechanism is

animated, the input link is taken to be the Ao-B dyad.  In all other cases, the input link

is taken to maximize the RMS value of the transmission angle.  For a PRRR (or RRRP) 

mechanism, the bolded coordinate represents the direction of the centerpoint lying 

at infinity.  It does NOT represent a finite intersection.

Contour Plot for Circlepoint A Contour Plot for Centrepoint B

Fig. 6. Main window of the graphical user interface

eqs.(4) and (6) fora0 andb, respectively. Rough estimates
of the real solutions are to be user-produced by inspection
of the intersections of the contour plots defined by each
set of circlepoint curvesKj and centerpoint curvesMj ,
as shown in Fig. 6. The estimates are refined up to ma-
chine accuracy by resorting to a nonlinear least-square ap-
proximation of an overdetermined system of four nonlinear
equations in two unknowns namely,

‖f‖
2
≡

1

2

4
∑

i=0

[∆i(x)]
2 → min

x

(22)

with x denoting eithera0 or b andf defined, correspond-
ingly, in any of the two forms below:

f(a0) =









∆1(a0)
∆2(a0)
∆3(a0)
∆4(a0)









f(b) =









∆1(b)
∆2(b)
∆3(b)
∆4(b)









It is noteworthy that solving for the unknowns while taking
into account all the redundant equations we enhance the al-
gorithm robustness.

A. Calculations and Graphical Representation

The user-estimated solutions are refined using the above
described algorithm, thus permitting the immediate identi-
fication of the real solutions. Both estimated and refined
solutions are marked on the graph for this purpose.

B. Solution-Pairing and Centerpoint Calculation

Once all sets of real solutionsa0 andb have been ob-
tained, we resort to the synthesis equations to pair them.
By referring to eq. (1), involvingb linearly as an unknown
oncea0 is available, it is apparent that the number of real
solutionsa0 andb will be identical, the pairing of solutions
thus being possible. Furthermore, it is apparent thatb could
be directly computed from eq. (1) oncea0 is known. The
problem thus reduces in finding the real circlepointsA0, the
centerpointsB being available.

The problem of roundoff error propagation is addressed
here. Determiningb from cascaded computations based on
a0 would carry the roundoff error ofa0 into b. To prevent
roundoff error propagation, the computedb is sent back to
the nonlinear least-square algorithm, exactly as if it were
independently estimated by inspection of the plots. Conse-
quently, complete roundoff-error consistency is insured.

VI. Linkage Performance Evaluation

The mobility of the two links coupled to the frame is to
be determined in order to assess the linkage performance.
Notice that in the realm of the Burmester problem, there is
no specification of input and output, which means thatany
of A0B andA∗

0
B∗ links can be used as input.

5



The circle-centrepoint dyad of the selected input link now appears in blue in the table

RMS Value of the sine of the Transmission Angle:

The transmission angle criteria is employed to determine which link should operate as the 

input. The linkage derived from the selected circle-centerpoint dyads is optimized if the 

input link is chosen to maximise the root mean square value of the transmission angle.  As 

a general rule, RRRR linkages will be driven by the shortest link capable of a full rotation 

(crank) or, in the case of a rocker-rocker, the link with a larger sweep angle.  Linkages with a 

prismatic joint will be driven with the revolute-revolute dyad (RRRP configuration). In most 

cases, this rule maximises the root mean square value of the sine of the transmission angle.  

If it does not, further analysis are to be made by the user to determine which of the link 

should be use as input. The RMS value of the sine of the transmission angle is presented 

below for reference.

Fig. 7. Mechanism type and link-mobility range window

A. Mobility of the Input-Output Links

The input link of a four-bar linkage would better be ca-
pable of a full rotation, as four-bar linkages are frequently
driven at constant angular velocity. For animation purposes,
RRRR linkages are driven by the shortest link capable of
a full rotation (crank); in the case of a rocker-rocker link-
age, the link with a larger sweep angle is the designated
input link. Linkages with a prismatic joint are driven by the
revolute-revolute dyad. The link-mobility ranges ofRRRR
linkages are determined from the Freudenstein equation,
aka the input-output (IO) equation:

F (ψ, φ) = k1 + k2 cos(φ)− k3 cos(ψ)− cos(φ− ψ) = 0
(23)

where

k1 ≡
a21 + a22 − a23 + a24

2a2
2
a2
4

, k2 ≡
a1
a2
, k3 ≡

a1
a4

Parameters{ai}41 are the link lengths while{ki}31 are the
Freudenstein parameters, with links being numbered from
1 to 4 in the order: fixed, input, coupler and output.

B. Transmission Angle and Transmission Quality

A variable of merit which assesses the linkage perfor-
mance is the transmission angleµ. This angle is defined
asA0A

∗

0B
∗ if BA0 is the input link; else, asA∗

0A0B.
The transmission quality, defined as the root mean square
(rms) value of the sine of the transmission angle, provides
an overall performance criterion taking all possible linkage
postures into consideration. We thus have thetransmission
qualityQ defined as

Q ≡

√

1

∆ψ

∫ ψ2

ψ1

sin2 µdψ, ∆ψ ≡ ψ2 − ψ1 (24)

wereψ is the input angle and∆ψ the range of motion of
the input link. An expression forsinµ is derived in terms

of the Freudenstein parameters as:

sin2 µ =
k23

k2
2
+ k2

3
+ k2

2
k2
3
− 2k1k2k3

∆(ψ) (25)

while thelinkage discriminant∆(ψ) is calculated as

∆(ψ) ≡ −k2
3
cos2 ψ+2(k1k3−k2) cosψ+(1−k2

1
+k2

2
) ≥ 0
(26)

The name of∆(ψ) stems from its role in eq.(23), when
this equation takes a quadratic form inx = tan(φ/2). In
this case,∆(ψ) is the discriminant of this quadratic equa-
tion.

The transmission quality is computed after the synthe-
sis of everyRRRR linkage. One may compare the per-
formance of all linkages solving a given problem via their
transmission quality.

VII. Four-Bar Linkage Animation

A feature of the user interface is the animation function,
permitting visualization of the synthesized linkage. Various
design tools are offered; one may animate the linkage in a
suitable frame, record an animation in an external movie
file, select the starting position of the linkage, and resizethe
animation window. The animations are useful animation
tools; a suitable2 velocity profile is applied to a rocker in-
put link; and the coupler-point trajectory is recorded, while
animation speed is platform-independent.

A. Dyad Selection

It is well known that the five-pose synthesis of a four-
bar linkage leads to none, two or four center-circlepoint
dyads. Two dyads define a unique linkage, whereas four
dyads lead up to six distinct four-bar linkages. One may an-
imate any of the six linkages by selecting the desired set of

2A suitable velocity profile for a rocker link starts and ends with zero
velocity and zero acceleration.
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dyads, as shown in Fig. 8. Remember that within a center-
circlepoint dyad, the centerpoint represents the base-joint
position, while the circlepoint represents the coupler joint
position in the reference linkage configuration. Once the se-
lection has been confirmed and the linkage mobility deter-
mined, the dyad of the driving link is colored in blue. Fur-
thermore, the “coordinates” of prismatic dyads are shown
in boldface in the selection table, with the caveat that these
putative coordinates do not represent here a point coordi-
nate, but a unit vector pointing at the centerpoint lying at
infinity.

Fig. 8. Dyad selection table

B. Mechanism Frame

The mechanism frameis defined with origin at pointB
of Fig. 1, theX-axis containingB∗ and directed fromB to
B∗, with theY -axis pointing upwards.

Linkages may be animated in the coordinate frame of
Fig. 2, in which the origin coincides with the landmark
point at the reference pose. Animation in themechanism
frame is also allowed, in which case the whole linkage is
rotated so as to have theX-axis horizontally on the display
window.

C. Coupler curve

What we need here is an implicit functionF (x, y) = 0,
defined in either coordinate frame, free of linkage variables
and having as parameters the link lengths. The desired
function is obtained in terms of the Freudenstein parame-
ters using computer algebra, and represents a closed, sextic
curve, termed the coupler curve.

The coupler curve is computed independent from the an-
imation. By superimposing the coupler-point trajectory, as
displayed in Fig. 9 and produced during animation, with
the coupler curve, we create a redundancy that increases the
animation robustness. Animation problems can be readily
identified this way.

D. Branch Selection

Due to the finite number of solutions of the five-pose
problem, a situation known asbranch-defectneeds particu-
lar attention. Branch-defect happens if the five poses are not
visited on the same branch. Without addressing directly the
problem, the interface permits animation in every branch
containing a pose. Branch-selection is done by graphical
pose selection.

Fig. 9. RRRR linkage animation

Another branch-related problem happens if merging of
branches occurs. During the animation, the direction of
motion needs to be carefully determined to prevent branch-
jumping. We accomplished this task by forcing the coupler-
point to remain in the branch that preserves the smoothness
of its acceleration.

E. Output angle

From the IO equation (23), we obtain the output angle for
every input angle. A solution can be found by transform-
ing the IO equation into an algebraic equation by means
of the tan-half identities. This transformation leads to a
quadratic equation yielding two possible solutions for each
input angle. Rather than solving the foregoing quadratic
equation for animation purposes, which is prone to singu-
larities when the output angle approachesπ, we used a ge-
ometric approach, free of the above singularities. These oc-
cur by virtue of thetan-half identities. As a matter of fact,
the solutions are derived from the intersections between a
line in theu(≡ cosφ) − v(≡ sinφ) plane, stemming from
the IO equation (23), and the unit circle centred at the origin
of the same plane, which represents the constraintsu andv.
To ensure consistent frame display within the animation,
the relevant output angle needs to be selected.

E.1 RRRR Linkage

As the IO equation admits two output-angle solutions,
the correct output angle ofRRRR linkages is determined
by a proximity rule, by comparing the linkage configuration
of the previous frame with the two possible configurations.

E.2 ParallelogramRRRR Linkage

In the parallelogram linkage, the input and output angles
are identical. The output angle of thekite layout of the same
linkage is the other solution of the IO equation. One may
animate parallelogram linkages in their two layouts, paral-
lelogram and kite.
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Fig. 10. Parallelogram linkage animation

E.3 RRRP Linkage

Linkages containing prismatic joints are always ani-
mated in theirRRRP layout, the notion of output angle
not being present here. The slider position is determined
from a geometrical approach, leading again to two possible
linkage configurations for each input angle. The desired
configuration is determined similar to theRRRR linkage.

Fig. 11. RRRP linkage animation

VIII. Design Environment and Recording Tools

We included numerous functions aiming at creating a
user interface useful for design. One may record the link-
age animation, create an input file for reproduction of the
experiment, produce a report file summarizing the synthe-
sis and record the various graphs. Furthermore, zooming
functions are available for precise analysis of all graphs and
animation.

IX. Case Studies

Several case studies are available at the Centre for Intelli-
gent Machines website athttp://www.cim.mcgill.
ca/rmsl/Angeles html/cden/module.html. We
encourage the reader to try the interface available on this
same website.

X. Conclusions

We introduced a graphical user interface to solve the five-
pose Burmester problem in the presence of bothRRand
PRdyads. The robust algorithm does not break down in
the presence of special conditions of the prescribed pose.

We integrated methods for the data conditioning that leads
to a robust implementation of the algorithm.
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