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Introduction

Every engineering design is subject to variations that can arise from a variety of sources, including manufacturing operations, variations in material properties, and the operating environment. When variations are ignored, non robust designs can result, which are expensive to produce or fail in service.

The concept of robust design may be first used by Taguchi. He introduced this concept to improve the quality of a product whose manufacturing process involves significant variability or noise [START_REF] Taguchi | On Robust Technology Development, Bringing Quality Engineering Upstream[END_REF]. Robust design aims at minimizing the sensitivity of performances to variations without controlling the causes of these variations.

First, we propose a new robustness index and compare it with three robustness indices used in the literature. Then, we develop a sequential tolerance synthesis method.

Robust Design Problem

In a robust design problem, the distinction is made between three sets:

• Design Variables (DV ): nominal values are controllable. However, they are subject to uncontrollable variations because of manufacturing errors, wear, or other uncertainties ;

• Design Environmental Parameters (DEP ): cannot be adjusted by the designer, they are uncontrollable ;

• Performance Functions (PF ).

DV, DEP, PF, are grouped in the l-dimensional

vector x = [x 1 x 2 • • • x l ] T , the m-dimensional vector p = [p 1 p 2 • • • p m ] T , and the n-dimensional vector f = [f 1 f 2 • • • f n ] T , respectively.
Let us assume a mathematical model between DV, DEP, and PF, as expressed by eq. ( 1).

f = f (x; p) (1) 
Robust design aims at rendering PF as insensitive to variations in DV and DEP as possible. Thus, if we introduce variations δx and δp in DV and DP, respectively, and use a Taylor expansion of f then,

δf = J δx T δp T T ( 2 
)
where δf is the variation in PF and J is the sensitivity Jacobian matrix of the design.

Optimal Robustness Index

In order to obtain a robust solution without the knowledge of the variations in DV and DEP , we need a wise a robustness index. Below, a list of three robustness indices used in the literature :

• RI 1 = J 2 J -1 2 , [2] • RI 2 = J F rob J -1 F rob , [3] • RI 3 = J 2 , [4]
where . 2 and . F rob mean the 2-norm and the Frobenius norm, respectively. Here, we suggest the use of an other robustness index : In order to illustrate the previous indices, let us compare the robustness of three designs named (1), (2), and (3), respectively. These designs have two DEP and variations in their DV are supposed to be insignificant. ε 1 , ε 2 , and ε 3 , depicted in Fig. 1, are the design sensitivity ellipses of designs (1), [START_REF] Ting | Performance Quality and Tolerance Sensitivity of Mechanisms[END_REF], and (3), respectively. The inclusion of ε 2 in ε 1 means that (1) is more robust than [START_REF] Ting | Performance Quality and Tolerance Sensitivity of Mechanisms[END_REF]. Likewise, the inclusion of ε 3 in ε 2 means that (2) is more robust than (3).

• RI 4 = J F rob ε 1 : σ 1 = σ 2 = 2 ε 2 : σ 1 = 2; σ 2 = 6 ε 3 : σ 1 = σ 2 = 6 δf 2 /2 δf 2 /6 δp 1 δp 2 q 1 q 2 δf 2 = constant
Table 1 depicts the values of RI 1 , RI 2 , RI 3 , and RI 4 corresponding to designs (1), (2), and (3), respectively. Whatever the index, the smaller it is, the more robust the design is supposed to be. However, according to RI 1 and RI 2 , the robustness of designs ( 1) and ( 3) are similar, and (3) is more robust than (2). According to RI 3 , (1) is more robust than (2) and ( 3), but the robustness of ( 2) and (3) are similar. Finally, RI 4 makes the difference between the robustness of all the designs accurately. In short, the minimization of RI 1 and RI 2 assures an homogeneity of the influence of variations in DV and DEP on PF, i.e.: an isotropic design, but not a minimum sensitivity of PF to variations in DV and DEP. Therefore, we had better use RI 3 or RI 4 in a robust design problem. Moreover, RI 4 is suitable for an optimization robust design problem because of its analytical form.

Tolerance Synthesis Method

The dimensional tolerances of a mechanism are usually fixed according to various parameters such as the manufacturing process, the performance tolerances, and the manufacturing cost. Here, we assume that the cost a mechanism decreases when its dimensional tolerances increase.

We suggest the use of a sequential tolerance synthesis method. First, robustness index RI 4 is used to compute the nominal values of DV : x = [x 1 x 2 • • • x l ] T . Then, assuming that δf 2 has to be smaller than C, the optimal tolerances of DV, ∆x iopt , are computed by solving the following optimization problem:

             max u l i=1 |u i | s.t. U (u 1 , u 2 , • • • , u l ) ∈ ξ(C) u i .sign(V i ) ≥ 0, i = 1, • • • , l |u i | ≥ ∆x imin , i = 1, • • • , l
where -V is the eigenvector corresponding to the maximum singular value of the sensitivity Jacobian matrix of the mechanism and V i is its i th component ;

ξ(C) is the design sensitivity ellipse of the mechanism, corresponding to δf 2 equal to C.

The problem aims at finding the largest tolerance box of the design of a mechanism without rejects, which is included in ξ(C). Besides, it assures that each dimensional tolerance ∆x i is higher than a minimum dimensional tolerance ∆x imin , which depends on the manufacturing process and x i .

For instance, Fig. 2 depicts all the possible positions of U when l = 2 and V 1 , V 2 are negative and positive, respectively, and the optimal tolerance box. 
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Table 1 :

 1 Values of robustness indices

	Robustness		Design	
	index	(1) (2) (3)
	RI 1	1	3	1
	RI 2	1	1.67	1
	RI 3	2	6	6
	RI 4	2	3.16	6