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Abstract

The common view on modeling and simulation of
dynamic systems is to focus on the speci�cation of
the state of the system and its transition function.
Although some interesting challenges remain to e�-
ciently and elegantly support this view, we consider
in this paper that this problem is solved. Instead,
we propose here to focus on a new point of view on
dynamic system speci�cations: the activity exhibited
by their discrete event simulation. We believe that
such a viewpoint introduces a new way for analyz-
ing, modeling and simulating systems. We �rst start
with the de�nition of the key notion of activity for
the speci�cation of a speci�c class of dynamic sys-
tem, namely discrete event systems. Then, we re�ne
this notion to characterize activity regions in time, in
space, in states and in hierarchical component-based
models. Examples are given to illustrate and stress
the importance of this notion.

1 Introduction

Complicated structures of simulation models consist
of a large number of components with many intense
interactions. It is not easy to extract abstractions of
the dynamics of the whole system, during, before or
after its simulation. The analysis of the many out-
puts and interactions is long and meticulous. As far
as we know, no established methods exist for �nding
patterns of interactions in system structures, during
a simulation. Some methods exist for particular do-
mains (multi-agent systems, distributed and paral-
lel simulations, image analysis, etc.), but except the
work proposed by [10], no generic methods have been
developed for this purpose.

In the simulation context, activity is usually used
as a phase of the system under study (e.g., activities
of a customer in a shop are: waiting , payCashier ,
etc.) [9]. We do not consider this de�nition of activ-
ity here. Instead, activity is considered as a measure
of the number of events occurring during a simula-
tion. We believe that this new de�nition of activity
can be used as a central guiding concept to construct
generic structures for the analysis and speci�cation
of systems. The speci�cation structures, driven by
a measure of activity of the simulation, can be used
to faithfully chart the dynamics of sub-components
in time, space, and states. Inactive and active re-
gions may also be speci�ed. Using activity, states
and components corresponding to systems can thus
be dynamically, structurally and behaviorally speci-
�ed. For example, one can imagine functional mag-
netic resonance image analysis of a brain. The dete-
tection of neural spikes are used for an activity-based
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structural determination of behavioral brain regions.
These structures and behabiors are highly dynamical,
according to the activity exhibited.
In this paper, the usual notions of time, space,

states and components are reconsidered from an
activity-based point of view for the discrete event
speci�cation of systems [11]. Our goal is to provide
a new de�nition of activity. Bene�ts from using this
new de�nition are expected to be twofold: (i) Op-
timizing system speci�cations and related simulator
architectures, and (ii) Providing guidance to design-
ers for modeling and simulating systems .
This article introduces mathematical notations for

dynamic systems and how activity can be used for
the analysis and the speci�cation of these systems,
using discrete events (Section 2). The new notion of
activity regions is then presented (Section 3) and ap-
plied to components (Section 4) before a description
of related works and a conclusion.

2 Activity tracking in discrete

event system speci�cations

Dynamic systems can be described by mathemati-
cal structures. A discrete event speci�cation of sys-
tems can then be achieved. Activity is restrained here
to discrete event system speci�cations and related to
event frequency.

2.1 Dynamic system speci�cation

A dynamic system (or DS in short) corresponds to
a phenomenon that evolves over time, within some
context. The phenomenon is part of a system char-
acterized by observables. The observables are called
the variables of the system (and are linked by some
relations). The value of the variables evolves over
time. The collection of the values of the variables
that describe the system constitutes its state. The
state of a system is an observation at a given instant.
The temporal sequence of state changes is called the
state trajectory of the system.
Let Q be the state space of a DS. We denote q ∈ Q

its current state. The transition to the next state is
given by the transition function δ : Q→ Q. Let q be

the value of the current state (at the event time t),
the value of q after the transition is q′ = δ(q) [at the
event time t+ ∆, for t ∈ T , where T is the time base
(discrete or continuous)]. In previous notation, time
is implicit, to make time explicit, such a transition
can be written as q(t′) = δ (q (t)), where t′ = t+ ∆.

2.2 Activity of event sets

In a discrete event simulation, the dynamics of a
system is represented by a chronological sequence of
events. An event a�ects the system at a given time
and possibly carries additional information, such as
a value, an operation to perform, etc. Consequently,
we denote an event evi by a couple (ti, vi), where ti is
the timestamp of the event, and vi is the information
associated to the event. The event set is de�ned as
ξ = {evi = (ti, vi) | i = 1, 2, 3, ...}.
Let's consider �rst the basic usual and transversal

de�nitions of the notions of activity, event, and pro-
cess. An activity �is what transforms the state of a
system over time� [3]. It begins with an event and
ends with another. An event is also considered to
cause a change in the state of a component. A pro-
cess �is a sequence of activities or events ordered in
time� [3].

We do not consider here activity as a phase of a
system. We de�ne activity as a measure of the num-
ber of events in an event set. Formally, we de�ne
the event-based activity measure νH(t) as a function
of time that provides the activity in a discrete event
simulation, from t over a given time horizon H:

νH(t) =
|{evi = (ti, vi) ∈ ξ | t ≤ ti < t+H}|

H

Activity is a measure of the event rate, or event
frequency, in an event set. The qualitative di�er-
ences of in�uence of events on the state of the dy-
namic system is voluntarily neglected here. Only the
quantity of events over a period of time is taken into
account. For example, assuming the event trajec-
tory depicted in Figure 1, the activity of the system
corresponds to the following values for di�erent time
horizons: ν10(t) = 0.3, ν20(t) = 0.15, ν30(t) ' 0.133,
ν40(t) = 0.175.
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Figure 1: An example of event trajectory.

For the sake of simplicity, we will denote the activ-
ity measure ν(t) (making implicit the dependency on
the time horizon H).

2.3 Activity state in discrete event

system speci�cations

We start here with the speci�cation of a basic
activity-based DS, through discrete-events. This sys-
tem is merely a model of a DS embedding an activ-
ity state based on the activity measure introduced in
section 2.2. Remember that this measure merely con-
stitutes a counter of events, without the information
of events (as presented in [1], for example).
Activity states, QA ⊆ Q, can be attributed todis-

crete event system speci�cations to encode the activ-
ity level of simulation levels, according to their re-
ception/scheduling (or not) of discrete events. In
their simplest form, activity states are: QA =
{active, inactive}.
A mean-time activity (TA) function can be de�ned

as: ρTA:R→ QA.
More precisely we have:{
qA(t) = ρTA(ν(t)) = inactive if ν(t)=0
qA(t) = ρTA(ν(t)) = active otherwise

2.4 Activity for discrete event system

speci�cations in Cartesian coordi-

nates

The Cartesian coordinate space is de�ned as a set
of references: P = {(x1, . . . , xn) | xi ∈ R, i ∈ N}. A
spatial state is thus de�ned as q (p) ∈ Q×P. Spatially
referenced states can be considered as a re�nement

of the set of states Q. Interactions can be noted as:
q(pi) = δ (q (pj∈Ni

)), where Ni corresponds to the set
of neighborhood positions of i (possibly including the
self-position i): Ni ⊂ N. A state in space and time
is de�ned as q (p, t) ∈ Q × P × T . Notice that, con-
sidering a single self-neighborhood: Ni = {i}, leads
to the following simpli�cation: q(pi, t

′) = δ (q (pi, t))
and q(t′) = δ (q (t)). That is, our spatiotemporal no-
tation is consistent with the temporal one.
A mean-space activity (SA) function can be de�ned

as: ρSA:R→ QA.
More precisely we have:{
qA(p, t) = ρSA(νp(t)) = inactive if νp(t)=0
qA(p, t) = ρSA(νp(t)) = active otherwise

Figure 2 depicts the di�erent activity regions in
space.

p

Event 

frequency

Activity RegionInactivity Region Inactivity Region

Figure 2: Activity in space.

A re�nement of the activity structures de�nition
can be achieved through the notion of activity re-
gions.

3 De�nition of activity regions

A formalization of the activity notion must be pro-
vided before being able to study it thoroughly. In this
section, we propose several mathematical structures
for describing the activity of systems, going from par-
ticular cases to more general notations. From the
modeler's perspective, the notion of activity as such
is not usually explicitly described. Most of the time,
we want to know which parts of the system are active
and which parts are not. Therefore, activity regions
can be used at a high level of abstraction to describe
elements of a discrete event system speci�cation as
active or inactive.

3



3.1 Activity regions in time

The activity measure is used to determine the sub-
regions of the time base T through:

� Activity region in time:

ART = {t ∈ T | ν(t) > 0}

� Inactivity region in time:

ART = {t ∈ T | ν(t)= 0}

Considering the chronological nature of time and that
every element of the time-base can be de�ned as ac-
tive or inactive, an activity-based partitioning of time
base T is thus achieved: T = ART ∪ ART .

3.2 Activity regions in states

The activity measure is used to determine the sub-
regions of the state set Q:

� Activity region in states:

ARQ(t) = {q ∈ Q |ν(t) > 0}

� Inactivity region in states:

ARQ(t) = {q ∈ Q | ν(t)= 0}

We consider now the function of reachable states
in time as q : T → Q . We can de�ne now
the set of all reachable states in the state set
Q, through time, named the universe and noted
U = {q (t) ⊆ Q | t ∈ T }. Considering that all reach-
able states in time can be active or inactive, an
activity-based partitioning of the state set Q can be
achieved: Q = ARQ ∪ ARQ .

3.3 Activity regions in Cartesian co-

ordinates

The activity measure is used to determine the sub-
regions of the Cartesian coordinate space (as de�ned
in 2.4) through:

� Activity region in space:

ARP(t) = {p ∈ P | νp(t) > 0}

� Inactivity region in space:

ARP(t) = {p ∈ P | νp(t)= 0}

We consider now the function of reachable states in
time and space as q : P × T → Q . We can de-
�ne now the set of all reachable states in the state
set Q, through time and space, through the universe
U = {q (p, t) ⊆ Q | p ∈ P, t ∈ T }.
Considering that all reachable states in time

and space can be active or inactive, an activity-
based partitioning of P can be achieved: ∀t ∈ T ,
P = ARP(t) ∪ ARP(t).
Figure 3 depicts activity values for two-dimensional

Cartesian coordinates X×Y . This is a neutral exam-
ple, which can represent whatever activity measures
in a Cartesian space (�re spread, brain activity, etc.)

3.4 Activity referenced states

For the set of states Q, we consider here that:

Q =
∏

i=0...n

Ei

where Ei can be any set, and n is the number of sets.
For example, the model of a leaf could include its
area in cm² (a real number), its age in days (a natu-
ral number) and the amount of energy received from
sunlight in Watts per meter (a real number). Hence,
the state set of this model would be S = R× N× R,
and a possible state would be s = (68.2, 20, 381.5).
Now, we reference states through activity. Activ-

ity references constitute a viewpoint of the state set
where only the variables relevant for activity are con-
sidered.
Formally, we de�ne the set of activity referenced

states GI as a projection of the state space Q onto
indexes I ⊆ {1, ..., n}:

GI = πI(Q) =
∏
i∈I

Ei
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Figure 3: 2D and 3D visualization of activity level in a 2D space. x and y represent Cartesian coordinates.
The activity amplitude (real value), of each coordinate, is represented in the third dimension.

The projection operator π is used to �select� a sub-
set of the state elements1. I ⊆ {1, ..., n} is the set of
indexes denoting the elements of interest. For a given
model, the set of activity referenced states can vary
depending on which states are selected for activity
indexing. In the previous leaf example, active leaves
can be de�ned as being the ones that are younger
than 100 days. In this case, the only activity refer-
enced state of interest is the age of the leaf. There-
fore, the following set of activity referenced states are
used: G2 = π2(Q) = N. However, active leaves are
de�ned as being the ones that receive enough energy
to grow (depending on their area and the energy re-
ceived), the set of activity referenced states will be
G1,3 = π1,3(Q) = R× R. The activity measure is
used to determine the sub-regions of the generalized
activity regions through:

� Activity region in activity referenced states:

ARGI (t) = {g ∈ GI | νg(t) > 0}

� Inactivity region in activity referenced states:

ARGI (t) = {g ∈ GI | νg(t) = 0}
1In the context of relational algebra, the projection could

be de�ned using attribute names instead of indexes.

Considering that all reachable states in the set
of activity referenced states GI are active or inac-
tive, and that all unreachable states are inactive,
an activity-based partitioning of GI can be achieved:
∀t ∈ T , GI = ARGI (t) ∪ ARGI (t).

The computation of activity referenced states can
be automated through the following steps: (i) Select
all states q ∈ Q relevant for activity, (ii) Copy these
new states in the set of activity referenced states, and
(iii) Compute the activity regions for every activity
referenced state g ∈ GI , i.e., those satisfying νg(t) >
0.

By restricting the states of the model to activity
referenced states, the speci�cation of activity regions
becomes straightforward. Activity regions can be
used to map the activity of the real system. Besides,
an hypothetical �activity-aware simulator�, more e�-
cient, can be developed to track and focus computa-
tions on active states.

We end up here with an universe of elements
of reachable activity referenced states g ∈ GI :
UA = {g ∈ GI | GI = πI (Q), I ⊆ {1 , ...,n}}. It can
be noticed that the de�nition of activity regions in
states given in 3.2 corresponds to a particular case
where I = {1, ..., n}.
Let's consider now a simple application example of

�re spreading. Using activity referenced states, we
can model very simply the activity regions of a �re
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spreading. Assume the �re model describes the state
of a cell with the following states:

� x ∈ R and y ∈ R;

� status ∈ {burnt, burning, safe};

� type ∈ {tree, bush,water, road};

� heat ∈ R.

A simple model of the activity regions can involve the
status and the type of the cell. Formally, the set of
activity referenced states would be G2,3. Assuming
the activity map depicted in Figure 4, the resulting
activity region speci�cation would be:

ARG2,3(t) = {{burning, safe} × {tree, bush}} ,∀t ∈ T

Figure 4: Activity measures based on two activity ref-
erences (status and type). E.g., Bushes in a burning
state have an activity of 0.8.

4 Activity in component-based

models

The modeling of a system can often be eased by
breaking it down into several subsystems (top-down
approach), or by assembling existing subsystem mod-
els into a larger one (bottom-up approach). This
leads to component-based models that describe sys-
tems as sets of components, along with the way they

interact with each other. We propose in the following
an extension of the notion of activity to this type of
hierarchical models.

4.1 Activity in a single composite

model

The activity of a composite model depends on the
activity of its components, but also on the interac-
tions between the components. In the case of simple
systems, the activity of a modelM composed of com-
ponents C = {c1, . . . , cn} might be approximated by
summing the ci activity measures:

νM(t) =
∑
c∈C

νc(t)

4.2 Activity regions in composite

models

In previous sections, we successively de�ned activity
regions as sets of instants, sets of spatial (Cartesian)
coordinates, states, and as sets of activity referenced
states being a projection of the set of states in which
activity is suppused to occur. These mathematical
structures are useful to model activity in simple �
not composed � models. In composite models, we
must take into account that each subsystem is itself
a model. We provide here a new de�nition of activity
regions in composite models, noted ARC

H(t), which is
the set of sub-components whose level of activity is
larger than zero, at a given time t and for a given
horizon H2:

ARC(t) = {c ∈ C | νc(t) > 0}

Once again, we will extend this de�nition to ease
the speci�cation of activity regions.

4.3 Activity regions in time for com-

posite models

Over time, a component can be active or inactive.
The periods of time for which a component c is ac-
tive is speci�ed using an activity region in time ART

c ,

2For the sake of brevity, we omit in this section the de�-

nition of inactivity regions, which can be easily deduced from

the active ones.
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as presented in sub-section 3.1. Using the activity re-
gions of the components, we de�ne the overall activity
region of the composite model as:

ARC(t) =
{
c ∈ C | t ∈ ART

c

}
In other words, the activity region of the hierarchi-

cal model at time t is the set of components whose
activity region in time contains t.

4.4 Activity regions in Cartesian co-

ordinates for composite models

In spatialized models3 components are localized into
a Cartesian coordinate space P. Each component c is
assigned to a position cp ∈ P. Applying the de�nition
of activity regions in space (presented in section 3.1)
to components, we obtain:

ARC(t) =
{
c ∈ C | cp ∈ ARP(t)

}
ARP(t) speci�es the coordinates where activity oc-
curs. Consequently, active components correspond to
the components localized at positions p.

4.5 Activity state references for com-

posite models

Denoting activity regions only through spatial coor-
dinates can be rather restrictive: Not all models are
spatialized, far from it. Moreover, even in spatial-
ized contexts, active components can often be identi-
�ed using the states of the components but not using
their position. As we did previously in section 3.4, we
broaden the notion of activity regions to the entire
state set. Each component in the model has a state
qc ∈ Q. For the component to be active, this state
must match one of the elements of the activity region
ARGI , meaning that the elements of the state that
are activity referenced states must belong to ARGI .
Formally, we obtain the following de�nition:

ARC(t) =
{
c ∈ C | πI(qc) ∈ ARGI (t)

}
3A model is said to be spatialized when the phenomenon

under study has a spatial extension. This requires that states

have a richer structure than just scalar values to cope with the

discretization of a spatially embedded phenomenon. Examples

of spatialized models include cellular automata and L-systems.

4.6 Extension to the component types

In a composite model, all components do not neces-
sarily have the same type. An hypothetical plant
model can be composed of leaf, stem and root
models. To allow the activation or deactivation of
heterogeneous components, we need to take their
types into consideration in the de�nition of activ-
ity regions. A composite model with heteroge-
neous sub-models aggregates a set of components
{c11, c12, . . . , c1k, c21, c22, . . . , cij} where cm1, . . . , cmn

are of type Tm. Components of di�erent types have
di�erent state sets. Therefore, separate activity ref-
erenced states must be provided for every component
type. To re�ect this, we generalize the previous def-
inition of the activity region of a composite model
to:

ARC(t) =
{
cmk ∈ C | πTm

I (qcmk
) ∈ ARGI

Tm
(t)
}

By using separate activity regions for each type of
components, an entire type set of components can be
deactivated. For example, if the leaves components
have to be deactivated during the night (because they
do not receive any energy from the sun), we can spec-
ify ARGI

leaves(t) = ∅ when t belongs to the nighttime
(remember that activity regions are functions of time,
and therefore can be dynamic).

5 Related works

As pointed out in [2], the notion of activity presented
here is a very generic term which can be applied
to a variety of di�erent topics in computer science.
This notion of activity is di�erent from the notion
used usually in simulation. The usual activity notion
can be found in Tocher [9], who also �rst described
the three phase approach, as an optimization of an
activity-based simulation. In [3], Balci presents the
concept of activity as a possible approach to drive the
implementation of a discrete event simulation ker-
nel. An object-oriented variant of the three phase
approach was introduced by Pidd [14].
In many �elds, the notion of activity can be found.

For example, it is a fundamental issue in computer
graphics, from Z-bu�ers [4], to current work required
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for fast rendering of di�erent level of details [5, 6] in
complex scenes or multiresolution modeling in game
engine [15]. In autonomic systems [8, 16], ensur-
ing the persistance of the self-∗ properties requires
a feedback loop based on tracking certain variables
that account for activity changes in the system, from
the level of the operating system (e.g., in Solaris 10)
to the level of large cloud-based systems. In every-
ware/ambiant/pervasive/ubiquitous systems [17], the
key issue is to track the activity/location of a user
to adapt local devices to the presence/absence and
movement of the user's activity. Nowadays, any par-
allel system copes with dynamic requirements for re-
sources using load-balancing [12] algorithms to track
the activity taking place in each computing sites to
reallocate and reschedule tasks according to changes
in both the demands and the availability of resources.
In dynamic systems, the notion of activity is a key
notion since, which, in some contexts, can lead to
structure changes of the state space as coined by [7],
with the notion of dynamic systems embedding a dy-
namic structure. An attempt to quantify and formal-
ize a simulated system activity has been proposed in
[13] for model exploration. Using a thermodynami-
cal approach functions characterized the activity and
the speed of evolution of a system. This approach
enhances the analysis of the trajectories of a system,
facilitating the identi�cation of cyclic, stationary or
chaotic behaviors.

While the concept of activity is found in many
�elds, very few address activity explicitly, as we did
here, through a precise de�nition. Even if we believe
that the work started here still needs to be worked-
out.

6 Conclusions

In this paper, we have introduced a new de�nition
of the notion of (simulation) activity. All de�nitions
constitute new aspects of dynamic systems through
a discrete event speci�cation. These aspects focus on
the possibly �changing� elements of a system. Possi-
ble changes correspond to the occurrence of discrete
events, i.e., whithout considering the e�ective impact
of event occurences for state changes. It is expected

that, for correct implementations and models, these
discrete event occurrences represent an e�cient map-
ping of a real-world dynamic phenomenon. Several
region-based extensions of activity have been pro-
posed through several elements: time, space, activity
references and components. We hope that this �rst
work sketches many perspectives to deal with activ-
ity (the de�nition of activity rates, levels, changes in
state, etc.)
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