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Activity Regions for the Specication of Discrete Event Systems

The common view on modeling and simulation of dynamic systems is to focus on the specication of the state of the system and its transition function.

Although some interesting challenges remain to eciently and elegantly support this view, we consider in this paper that this problem is solved. Instead, we propose here to focus on a new point of view on dynamic system specications: the activity exhibited by their discrete event simulation. We believe that such a viewpoint introduces a new way for analyzing, modeling and simulating systems. We rst start with the denition of the key notion of activity for the specication of a specic class of dynamic system, namely discrete event systems. Then, we rene this notion to characterize activity regions in time, in space, in states and in hierarchical component-based models. Examples are given to illustrate and stress the importance of this notion.

Introduction

Complicated structures of simulation models consist of a large number of components with many intense interactions. It is not easy to extract abstractions of the dynamics of the whole system, during, before or after its simulation. The analysis of the many outputs and interactions is long and meticulous. As far as we know, no established methods exist for nding patterns of interactions in system structures, during a simulation. Some methods exist for particular domains (multi-agent systems, distributed and parallel simulations, image analysis, etc.), but except the work proposed by [START_REF] Shi | Activity-based construction (ABC)Modeling and Simulation Method[END_REF], no generic methods have been developed for this purpose.

In the simulation context, activity is usually used as a phase of the system under study (e.g., activities of a customer in a shop are: waiting, payCashier, etc.) [START_REF] Neumann | The art of Simulation[END_REF]. We do not consider this denition of activity here. Instead, activity is considered as a measure of the number of events occurring during a simulation. We believe that this new denition of activity can be used as a central guiding concept to construct generic structures for the analysis and specication of systems. The specication structures, driven by a measure of activity of the simulation, can be used to faithfully chart the dynamics of sub-components in time, space, and states. Inactive and active regions may also be specied. Using activity, states and components corresponding to systems can thus be dynamically, structurally and behaviorally specied. For example, one can imagine functional magnetic resonance image analysis of a brain. The detetection of neural spikes are used for an activity-based structural determination of behavioral brain regions.

These structures and behabiors are highly dynamical, according to the activity exhibited.

In this paper, the usual notions of time, space, states and components are reconsidered from an activity-based point of view for the discrete event specication of systems [START_REF] Bertalany | General System Theory[END_REF]. Our goal is to provide a new denition of activity. Benets from using this new denition are expected to be twofold: (i) Optimizing system specications and related simulator architectures, and (ii) Providing guidance to designers for modeling and simulating systems . This article introduces mathematical notations for dynamic systems and how activity can be used for the analysis and the specication of these systems, using discrete events (Section 2). The new notion of activity regions is then presented (Section 3) and applied to components (Section 4) before a description of related works and a conclusion.

2 Activity tracking in discrete event system specications Dynamic systems can be described by mathematical structures. A discrete event specication of systems can then be achieved. Activity is restrained here to discrete event system specications and related to event frequency.

Dynamic system specication

A dynamic system (or DS in short) corresponds to a phenomenon that evolves over time, within some context. The phenomenon is part of a system characterized by observables. The observables are called the variables of the system (and are linked by some relations). The value of the variables evolves over time. The collection of the values of the variables that describe the system constitutes its state. The state of a system is an observation at a given instant.

The temporal sequence of state changes is called the state trajectory of the system.

Let Q be the state space of a DS. We denote q ∈ Q its current state. The transition to the next state is given by the transition function δ : Q → Q. Let q be the value of the current state (at the event time t), the value of q after the transition is q = δ(q) [at the event time t + ∆, for t ∈ T , where T is the time base (discrete or continuous)]. In previous notation, time is implicit, to make time explicit, such a transition can be written as q(t ) = δ (q (t)), where t = t + ∆.

Activity of event sets

In a discrete event simulation, the dynamics of a system is represented by a chronological sequence of events. An event aects the system at a given time and possibly carries additional information, such as a value, an operation to perform, etc. Consequently, we denote an event ev i by a couple (t i , v i ), where t i is the timestamp of the event, and v i is the information associated to the event. The event set is dened as

ξ = {ev i = (t i , v i ) | i = 1, 2, 3, ...}.
Let's consider rst the basic usual and transversal denitions of the notions of activity, event, and process. An activity is what transforms the state of a system over time [START_REF] Balci | The implementation of four conceptual frameworks for simulation modeling in high-level languages[END_REF]. It begins with an event and ends with another. An event is also considered to cause a change in the state of a component. A process is a sequence of activities or events ordered in time [START_REF] Balci | The implementation of four conceptual frameworks for simulation modeling in high-level languages[END_REF].

We do not consider here activity as a phase of a system. We dene activity as a measure of the number of events in an event set. Formally, we dene the event-based activity measure ν H (t) as a function of time that provides the activity in a discrete event simulation, from t over a given time horizon H:

ν H (t) = |{ev i = (t i , v i ) ∈ ξ | t ≤ t i < t + H}| H
Activity is a measure of the event rate, or event frequency, in an event set. The qualitative dierences of inuence of events on the state of the dynamic system is voluntarily neglected here. Only the quantity of events over a period of time is taken into account. For example, assuming the event trajectory depicted in Figure 1, the activity of the system corresponds to the following values for dierent time horizons: ν 10 (t) = 0.3, ν 20 (t) = 0.15, ν 30 (t) 0.133, ν 40 (t) = 0.175. For the sake of simplicity, we will denote the activity measure ν(t) (making implicit the dependency on the time horizon H).

Activity state in discrete event system specications

We start here with the specication of a basic activity-based DS, through discrete-events. This system is merely a model of a DS embedding an activity state based on the activity measure introduced in section 2.2. Remember that this measure merely constitutes a counter of events, without the information of events (as presented in [START_REF] Muzy | Modeling and simulation of re spreading through the activity tracking paradigm[END_REF], for example).

Activity states, Q A ⊆ Q, can be attributed todiscrete event system specications to encode the activity level of simulation levels, according to their reception/scheduling (or not) of discrete events. In their simplest form, activity states are:

Q A = {active, inactive}.
A mean-time activity (TA) function can be dened as: ρ TA :R → Q A .

More precisely we have:

q A (t) = ρ T A (ν(t)) = inactive if ν(t)=0 q A (t) = ρ T A (ν(t)) = active otherwise 2.

Activity for discrete event system specications in Cartesian coordinates

The Cartesian coordinate space is dened as a set of references:

P = {(x 1 , . . . , x n ) | x i ∈ R, i ∈ N}.
A spatial state is thus dened as q (p) ∈ Q×P. Spatially referenced states can be considered as a renement of the set of states Q. Interactions can be noted as: q(p i ) = δ (q (p j∈Ni )), where N i corresponds to the set of neighborhood positions of i (possibly including the self-position i): N i ⊂ N. A state in space and time is dened as q (p, t) ∈ Q × P × T . Notice that, considering a single self-neighborhood: N i = {i}, leads to the following simplication: q(p i , t ) = δ (q (p i , t)) and q(t ) = δ (q (t)). That is, our spatiotemporal notation is consistent with the temporal one.

A mean-space activity (SA) function can be dened as: ρ SA :R → Q A .

More precisely we have: A renement of the activity structures denition can be achieved through the notion of activity regions.

q A (p, t) = ρ SA (ν p (t)) = inactive if ν p (t)=0 q A (p, t) = ρ SA (ν p (t)) =

Denition of activity regions

A formalization of the activity notion must be provided before being able to study it thoroughly. In this section, we propose several mathematical structures for describing the activity of systems, going from particular cases to more general notations. From the modeler's perspective, the notion of activity as such is not usually explicitly described. Most of the time, we want to know which parts of the system are active and which parts are not. Therefore, activity regions can be used at a high level of abstraction to describe elements of a discrete event system specication as active or inactive.

Activity regions in time

The activity measure is used to determine the subregions of the time base T through:

Activity region in time:

AR T = {t ∈ T | ν(t) > 0 }
Inactivity region in time:

AR T = {t ∈ T | ν(t)= 0 }
Considering the chronological nature of time and that every element of the time-base can be dened as active or inactive, an activity-based partitioning of time base T is thus achieved: T = AR T ∪ AR T .

Activity regions in states

The activity measure is used to determine the subregions of the state set Q:

Activity region in states:

AR Q (t) = {q ∈ Q |ν(t) > 0 }
Inactivity region in states:

AR Q (t) = {q ∈ Q | ν(t)= 0 }
We consider now the function of reachable states in time as q : T → Q.

We can dene now the set of all reachable states in the state set Q, through time, named the universe and noted

U = {q (t) ⊆ Q | t ∈ T }.
Considering that all reachable states in time can be active or inactive, an activity-based partitioning of the state set Q can be achieved:

Q = AR Q ∪ AR Q .

Activity regions in Cartesian coordinates

The activity measure is used to determine the subregions of the Cartesian coordinate space (as dened in 2.4) through:

Activity region in space:

AR P (t) = {p ∈ P | ν p (t) > 0 }
Inactivity region in space:

AR P (t) = {p ∈ P | ν p (t)= 0 }
We consider now the function of reachable states in time and space as q : P × T → Q. We can dene now the set of all reachable states in the state set Q, through time and space, through the universe

U = {q (p, t) ⊆ Q | p ∈ P, t ∈ T }.
Considering that all reachable states in time and space can be active or inactive, an activitybased partitioning of P can be achieved: ∀t ∈ T , P = AR P (t) ∪ AR P (t).

Figure 3 depicts activity values for two-dimensional

Cartesian coordinates X ×Y . This is a neutral example, which can represent whatever activity measures in a Cartesian space (re spread, brain activity, etc.)

Activity referenced states

For the set of states Q, we consider here that:

Q = i=0...n E i
where E i can be any set, and n is the number of sets.

For example, the model of a leaf could include its area in cm² (a real number), its age in days (a natural number) and the amount of energy received from sunlight in Watts per meter (a real number). Hence, the state set of this model would be S = R × N × R, and a possible state would be s = (68.2, 20, 381.5).

Now, we reference states through activity. Activity references constitute a viewpoint of the state set where only the variables relevant for activity are considered.

Formally, we dene the set of activity referenced states G I as a projection of the state space Q onto indexes I ⊆ {1, ..., n}: The activity amplitude (real value), of each coordinate, is represented in the third dimension.

G I = π I (Q) = i∈I E i
The projection operator π is used to select a subset of the state elements 1 . I ⊆ {1, ..., n} is the set of indexes denoting the elements of interest. For a given model, the set of activity referenced states can vary depending on which states are selected for activity indexing. In the previous leaf example, active leaves can be dened as being the ones that are younger than 100 days. In this case, the only activity referenced state of interest is the age of the leaf. Therefore, the following set of activity referenced states are used: G 2 = π 2 (Q) = N. However, active leaves are dened as being the ones that receive enough energy to grow (depending on their area and the energy received), the set of activity referenced states will be 

G 1,3 = π 1,3 (Q) = R × R.
AR GI (t) = {g ∈ G I | ν g (t) > 0}
Inactivity region in activity referenced states:

AR GI (t) = {g ∈ G I | ν g (t) = 0}
1 In the context of relational algebra, the projection could be dened using attribute names instead of indexes.

Considering that all reachable states in the set of activity referenced states G I are active or inactive, and that all unreachable states are inactive, an activity-based partitioning of G I can be achieved: ∀t ∈ T , G I = AR G I (t) ∪ AR GI (t).

The computation of activity referenced states can be automated through the following steps: (i) Select all states q ∈ Q relevant for activity, (ii) Copy these new states in the set of activity referenced states, and (iii) Compute the activity regions for every activity referenced state g ∈ G I , i.e., those satisfying ν g (t) > 0.

By restricting the states of the model to activity referenced states, the specication of activity regions becomes straightforward.

Activity regions can be used to map the activity of the real system. Besides, an hypothetical activity-aware simulator, more ecient, can be developed to track and focus computations on active states.

We end up here with an universe of elements of reachable activity referenced states g ∈ G I : x ∈ R and y ∈ R;

U A = {g ∈ G I | G I = π I (Q), I ⊆ {1 , ...,
status ∈ {burnt, burning, saf e}; type ∈ {tree, bush, water, road}; heat ∈ R.

A simple model of the activity regions can involve the status and the type of the cell. Formally, the set of activity referenced states would be G 2,3 . Assuming the activity map depicted in Figure 4, the resulting activity region specication would be:

AR G2,3 (t) = {{burning, saf e} × {tree, bush}} , ∀t ∈ T 

Activity in component-based models

The modeling of a system can often be eased by breaking it down into several subsystems (top-down approach), or by assembling existing subsystem models into a larger one (bottom-up approach). This leads to component-based models that describe systems as sets of components, along with the way they interact with each other. We propose in the following an extension of the notion of activity to this type of hierarchical models.

Activity in a single composite model

The activity of a composite model depends on the activity of its components, but also on the interactions between the components. In the case of simple systems, the activity of a model M composed of components C = {c 1 , . . . , c n } might be approximated by summing the c i activity measures:

ν M (t) = c∈C ν c (t)

Activity regions in composite models

In previous sections, we successively dened activity regions as sets of instants, sets of spatial (Cartesian) coordinates, states, and as sets of activity referenced states being a projection of the set of states in which activity is suppused to occur. These mathematical structures are useful to model activity in simple not composed models. In composite models, we must take into account that each subsystem is itself a model. We provide here a new denition of activity regions in composite models, noted AR C H (t), which is the set of sub-components whose level of activity is larger than zero, at a given time t and for a given horizon H 2 :

AR C (t) = {c ∈ C | ν c (t) > 0}
Once again, we will extend this denition to ease the specication of activity regions.

Activity regions in time for composite models

Over time, a component can be active or inactive.

The periods of time for which a component c is active is specied using an activity region in time AR T c , 2 For the sake of brevity, we omit in this section the denition of inactivity regions, which can be easily deduced from the active ones.

as presented in sub-section 3.1. Using the activity regions of the components, we dene the overall activity region of the composite model as:

AR C (t) = c ∈ C | t ∈ AR T c
In other words, the activity region of the hierarchical model at time t is the set of components whose activity region in time contains t.

Activity regions in Cartesian coordinates for composite models

In spatialized models 3 components are localized into a Cartesian coordinate space P. Each component c is assigned to a position c p ∈ P. Applying the denition of activity regions in space (presented in section 3.1)

to components, we obtain:

AR C (t) = c ∈ C | c p ∈ AR P (t)
AR P (t) species the coordinates where activity occurs. Consequently, active components correspond to the components localized at positions p.

Activity state references for composite models

Denoting activity regions only through spatial coordinates can be rather restrictive: Not all models are spatialized, far from it. Moreover, even in spatialized contexts, active components can often be identied using the states of the components but not using their position. As we did previously in section 3.4, we broaden the notion of activity regions to the entire state set. Each component in the model has a state q c ∈ Q. For the component to be active, this state must match one of the elements of the activity region AR G I , meaning that the elements of the state that are activity referenced states must belong to AR G I .

Formally, we obtain the following denition:

AR C (t) = c ∈ C | π I (q c ) ∈ AR G I (t)
3 A model is said to be spatialized when the phenomenon under study has a spatial extension. This requires that states have a richer structure than just scalar values to cope with the discretization of a spatially embedded phenomenon. Examples of spatialized models include cellular automata and L-systems.

Extension to the component types

In a composite model, all components do not necessarily have the same type. An hypothetical plant model can be composed of leaf, stem and root models. To allow the activation or deactivation of heterogeneous components, we need to take their types into consideration in the denition of activity regions.

A 

AR C (t) = c mk ∈ C | π Tm I (q c mk ) ∈ AR G I Tm (t)
By using separate activity regions for each type of components, an entire type set of components can be deactivated. For example, if the leaves components have to be deactivated during the night (because they do not receive any energy from the sun), we can specify AR G I leaves (t) = ∅ when t belongs to the nighttime (remember that activity regions are functions of time, and therefore can be dynamic).

Related works

As pointed out in [START_REF] Salil R Akerkar | Analysis and visualization of time-varying data using the concept of 'activity modeling[END_REF], the notion of activity presented here is a very generic term which can be applied to a variety of dierent topics in computer science.

This notion of activity is dierent from the notion used usually in simulation. The usual activity notion can be found in Tocher [START_REF] Neumann | The art of Simulation[END_REF], who also rst described the three phase approach, as an optimization of an activity-based simulation. In [START_REF] Balci | The implementation of four conceptual frameworks for simulation modeling in high-level languages[END_REF], Balci presents the concept of activity as a possible approach to drive the implementation of a discrete event simulation kernel. An object-oriented variant of the three phase approach was introduced by Pidd [START_REF] Pidd | Object-orientation and three phase simulation[END_REF].

In many elds, the notion of activity can be found. For example, it is a fundamental issue in computer graphics, from Z-buers [START_REF] Catmull | A Subdivision Algorithm for Computer Display of Curved Surfaces[END_REF], to current work required for fast rendering of dierent level of details [START_REF] Clark | Hierarchical geometric models for visible surface algorithms[END_REF][START_REF] Funkhouser | Adaptive display algorithm for interactive frame rates during visualisation of complex virtual environments[END_REF] in complex scenes or multiresolution modeling in game engine [START_REF] Ramos | Level of detail modelling in a computer game engine[END_REF].

In autonomic systems [START_REF] Horn | Autonomic computing: IBM's perspective on the state of information technology[END_REF][START_REF] Sterritt | A concise introduction to autonomic computing[END_REF], ensuring the persistance of the self- * properties requires a feedback loop based on tracking certain variables that account for activity changes in the system, from the level of the operating system (e.g., in Solaris 10) to the level of large cloud-based systems. In everyware/ambiant/pervasive/ubiquitous systems [START_REF] Weiser | Ubiquitous computing[END_REF], the key issue is to track the activity/location of a user to adapt local devices to the presence/absence and movement of the user's activity. Nowadays, any parallel system copes with dynamic requirements for resources using load-balancing [START_REF] Leland | Load balancing heuristics and process behavior[END_REF] algorithms to track the activity taking place in each computing sites to reallocate and reschedule tasks according to changes in both the demands and the availability of resources.

In dynamic systems, the notion of activity is a key notion since, which, in some contexts, can lead to structure changes of the state space as coined by [START_REF] Giavitto | Modelling and Simulation of biological processes in the context of genomics, chapter Computational Models for Integrative and Developmental Biology[END_REF],

with the notion of dynamic systems embedding a dynamic structure. An attempt to quantify and formalize a simulated system activity has been proposed in [START_REF] Hill | Modélisation et Simulation des Ecosystèmes[END_REF] for model exploration. Using a thermodynamical approach functions characterized the activity and the speed of evolution of a system. This approach enhances the analysis of the trajectories of a system, facilitating the identication of cyclic, stationary or chaotic behaviors.

While the concept of activity is found in many elds, very few address activity explicitly, as we did here, through a precise denition. Even if we believe that the work started here still needs to be workedout.

Conclusions

In this paper, we have introduced a new denition of the notion of (simulation) activity. All denitions constitute new aspects of dynamic systems through a discrete event specication. These aspects focus on the possibly changing elements of a system. Possible changes correspond to the occurrence of discrete events, i.e., whithout considering the eective impact of event occurences for state changes. It is expected that, for correct implementations and models, these discrete event occurrences represent an ecient mapping of a real-world dynamic phenomenon. Several region-based extensions of activity have been proposed through several elements: time, space, activity references and components. We hope that this rst work sketches many perspectives to deal with activity (the denition of activity rates, levels, changes in state, etc.)

Figure 1 :

 1 Figure 1: An example of event trajectory.

Figure 2 :

 2 Figure 2: Activity in space.

Figure 3 :

 3 Figure 3: 2D and 3D visualization of activity level in a 2D space. x and y represent Cartesian coordinates.
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 4 Figure 4: Activity measures based on two activity references (status and type). E.g., Bushes in a burning state have an activity of 0.8.
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