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THE NONLINEAR SCHRÖDINGER EQUATION WITH WHITE NOISE

DISPERSION

ANNE DE BOUARD AND ARNAUD DEBUSSCHE

Abstract. Under certain scaling the nonlinear Schrödinger equation with random dispersion
converges to the nonlinear Schrödinger equation with white noise dispersion. The aim of this
work is to prove that this latter equation is globally well posed in L

2 or H
1. The main

ingredient is the generalization of the classical Strichartz estimates. Additionally, we justify
rigorously the formal limit described above.

March 19, 2010

1. Introduction

The following nonlinear Schrödinger equation with random dispersion describes the propa-
gation of a signal in an optical fibre with dispersion management (see [1],[2]):

(1.1)

{
i
dv

dt
+ εm(t)∂xxv + ε2|v|2v = 0, x ∈ R, t > 0,

v(0, x) = v0(x), x ∈ R.

Recall that in the context of fibre optics, x corresponds to the retarded time while t corresponds
to the distance along the fibre. The coefficient εm(t) accounts for the fact that ideally one
would want a fibre with zero dispersion, in order to avoid chromatic dispersion of the signal.
This is impossible to build in practise and engineers have proposed to build fibres with a
small dispersion which varies along the fibre and has zero average. The case of a periodic
deterministic dispersion has been studied in [22] where an averaged equation is derived. This
averaged equation is then shown to possess ground states (see [22] for the case of positive
residual dispersion, that is when m(t) has positive average over a period, and [15] for the case
of vanishing residual dispersion). Note that in this periodic setting, the nonlinear term is not
of size ε2 as such a nonlinear term would have no effect on the dynamics, the equation studied
in [22] has in fact the coefficient ε in front on the nonlinearity.

In this article, we consider the case of a random dispersion, i.e. m is a centered stationary
random process. As will be clear from our study, only a nonlinearity of order ε2 is relevant
in this context. In order to understand the limit as the small parameter ε goes to zero, it is
natural to rescale the time variable by setting u(t, x) = v( tε) and we obtain

(1.2)





i
du

dt
+

1

ε
m

(
1

ε2

)
∂xxu+ |u|2u = 0, x ∈ R, t > 0,

u(0) = u0, x ∈ R.
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This model has been initially studied in [17] where a split step numerical scheme is proposed
to simulate its solutions. Under classical ergodic assumptions on m, it is expected that the
limiting model when ε goes to zero is the following stochastic nonlinear Schrödinger equation
with white noise dispersion

(1.3)

{
idu+ σ0∂xxu ◦ dβ + |u|2u = 0, x ∈ R, t > 0,
u(0) = u0, x ∈ R,

where β is a standard real valued Brownian motion, σ2
0 = 2

∫ +∞
0 E[m(0)m(t)]dt, and ◦ is

the Stratonovich product. In [17], the cubic nonlinearity is replaced by a nicer Lipschitz
function so that the limiting equation can be easily studied using the fact that the evolution
associated to the linear equation defines an isometry in all L2 based Sobolev spaces. It is
shown that the nonlinear Schrödinger equation with white noise dispersion is indeed the limit
of the original problem and this result is used to prove that some numerical scheme produces
good approximation result for a time step significantly higher than ε. Again, all this study is
performed for an equation where a nice Lipschitz function replaces the power nonlinearity.

Our aim is to address the original equation with power nonlinearity. In fact, we study the
more general equation for σ > 0:

{
idu+ σ2

0∆u ◦ dβ + |u|2σu dt = 0, x ∈ R
d, t > 0,

u(0) = u0, x ∈ R
d.

Note that the sign in front of the nonlinear term |u|2u is not important here, as it can be
changed from +1 to −1 by changing β to −β and u to its complex conjugate. Also, we will
assume without loss of generality that σ2

0 = 1.
We recall that the usual nonlinear Schrödinger equation

(1.4)

{
i∂tu+∆u+ |u|2σu = 0, x ∈ R

d, t > 0,
u(0) = u0, x ∈ R

d.

preserves the Hamiltonian

H(u) =
1

2

∫

Rd

|∇u|2dx− 1

2σ + 2

∫

Rd

|u|2σ+2dx.

However, the varying dispersion destroys the Hamiltonian character of the equation. On the
mathematical point of view, this implies the loss of the a priori estimate provided by the
energy H and no a priori estimates in H1 are available. On the contrary, the mass, equal
to the square of the L2 norm is still preserved. Thus, a L2 theory is necessary to get global
solutions. For equation (1.4), such a theory is possible thanks to Strichartz estimates which
imply ultracontractivity of the linear group (see [4], [13], [14], [21]). We prove in Section 3
that Strichartz estimates can be generalized to the equation with white noise dispersion. This
allows to construct local in time solutions for σ < 2/d, in L2 or H1, in section 4. Then in
section 5, the conservation of the mass is used to prove global existence. Also, we prove that
regularity is preserved so that if the initial state is H1, then the L2 global solution is a.s.
continuous in time with values in H1. Finally, in section 6, we show that Marty’s method
to prove convergence of solutions when ε goes to zero is easily generalized once the previous
results are obtained.

In [17] some numerical simulations are given. It would be very interesting to do a more
general and systematic numerical study on the equations considered here. For instance, the
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influence of the random dispersion on blow-up phenomena could be investigated (see [7], [8],
[10] for such a study with different noises), eventhough this phenomenon is not present in fibre
optics.

We finally note that all the results stated in Section 2 would still hold with a nonzero but
small residual dispersion, i.e. if equation (1.1). is replaced by

{
i
dv

dt
+ εm(t)∂xxv + ε2ν∂xxv + ε2|v|2v = 0, x ∈ R, t > 0,

v(0, x) = v0(x), x ∈ R,

where ν ∈ R is a constant. In this case, of course, the limit equation (1.3) should be replaced
by

(1.5)

{
idu+ σ0∂xxu ◦ dβ + ν∂xxu+ |u|2u = 0, x ∈ R, t > 0,
u(0) = u0, x ∈ R,

All the analysis made in the present paper applies to the above equation, the only difference
being in the proof of Proposition 3.3 (see Remark 3.5). However, the study of the complete
model where residual, periodic and random dispersions are taken into account is more delicate,
and will be the object of further studies. We refer to [12] for results on the complete model,
using the physicists “collective coordinates” approach.

2. Preliminaries and main results

We consider the following stochastic nonlinear Schrödinger (NLS) equation

(2.1)

{
idu+∆u ◦ dβ + |u|2σu dt = 0, x ∈ R

d, t > 0,
u(0) = u0, x ∈ R

d,

where the unknown u is a random process on a probability space (Ω,F ,P) depending on t > 0
and x ∈ R

d. The nonlinear term is a power law. The noise term involves a brownian motion
β associated to a stochastic basis (Ω,F ,P, (Ft)t≥0). The product ◦ is a Stratonovich product.
As usual, we do not consider this equation but its formally equivalent Itô form:

(2.2)

{
idu+

i

2
∆2u dt+∆u dβ + |u|2σu dt = 0, x ∈ R

d, t > 0,

u(0) = u0.

Note that, formally, the L2(Rd) norm of a solution is a conserved quantity. However, the time
dependent dispersion destroys the Hamiltonian character of the classical Nonlinear Schrödinger
equation and there does not exist an energy here. We study this equation in the framework of
the L2(Rd) based Sobolev spaces. We also use the spaces Lp(Rd) to treat the nonlinear term
thanks the Strichartz estimates. In order to lighten the presentation, we use the following
notations

Hs
x = Hs(Rd), Lp

x = Lp(Rd), p ≥ 1,

and, when the time interval I does not need to be specified or is obvious from the context:

Lr
tL

p
x = Lr(I;Lp(Rd)), r, p ≥ 1.

Note that, in all the article, these are spaces of complex valued functions. The norm of a
Banach space K is simply denoted by | · |K . When we consider moments with respect to the
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random parameter ω ∈ Ω, we sometimes write

Lp
ω(K) = Lp(Ω;K), p ≥ 1.

For spaces of predictible time dependent processes, we use the subscript P. For instance
Lr
P(Ω;L

p(0, T ;K)) is the subspace of Lr(Ω;Lp(0, T ;K)) consisting of predictible processes.
We will denote associate conjugate exponents using “prime” upperscripts, that is if p ≥ 1,
then p′ is such that 1

p + 1
p′ = 1.

Our first main result is the following.

Theorem 2.1. Assume σ < 2
d ; let u0 ∈ L2

x a.s.be F0-measurable, then there exists a unique

solution u to (2.2) with paths a.s. in Lr
loc(0,∞;Lp(Rd)), with p = 2σ + 2 ≤ r < 4(σ+1)

dσ ;

moreover, u has paths in C(R+;L2
x), a.s. and

|u(t)|L2
x
= |u0|L2

x
, a.s.

u also has the additional integrability properties :

• u ∈ Lρ
loc(0,+∞;L∞(R)) a.s. for any ρ < 4 if d = 1.

• u ∈ Lρ
loc(0,+∞;Lq(Rd)) a.s. for any (ρ, q) with 2 ≤ q < 2d

d−2 , and 2 ≤ ρ < 4q
d(q−2) if

d ≥ 2.

If in addition u0 ∈ H1
x, then u has paths a.s. in C(R+;H1

x).

Remark 2.2. In the case 2
d ≤ σ ≤ 2

d−2 (or 2
d ≤ σ < +∞ if d = 1 or 2), it is possible to prove

a local existence result of solutions with paths a.s. in C([0, τ ];H1
x) provided u0 ∈ H1

x, using
similar argument as those used in the present paper, but with a cut-off at fixed time in L2σ+2

x

norm (see Section 4 for the necessity of the use of a cut-off). However, because no energy
conservation is available for equation (2.2), only in the case σ < 2/d global existence may be
obtained, thanks to the conservation of L2 norm and Strichartz estimates.

The result of Theorem 2.1 is used to justify rigorously the convergence of the solution of the
random equation (1.2) to the solution of (2.2) with σ = 1, d = 1. In order to state the result
precisely, we assume the following.

Assumption 1. The real valued centered stationary random process m(t) is continous and

such that for any T > 0, the process t 7→ ε
∫ t/ε2

0 m(s)ds converges in distribution to a standard
real valued Brownian motion in C([0, T ]).

Let us recall classical conditions on m ensuring that the above Assumption 1 is satisfied.
This holds e.g. if m is a Markov process with a unique and ergodic invariant measure and its
generator satisfies the Fredholm alternative; for instance, m can satisfy Doeblin’s condition.
Assumption 1 also holds under some mixing conditions on m. We refer to [3], [11], [16], [18]
and [19] for more general and precise conditions.

To our knowledge, Strichartz estimates are not available for equation (1.2). Hence we cannot
get solutions in L2(R). Since the equation is set in space dimension 1, a local existence existence
result can be easily proved in H1(R) but since no energy is available we do not know if the
solutions are global in time. In the following result, we prove that the lifetime of the solutions
converges to infinity when ε goes to zero, and that solutions of (1.2) converge in distribution
to the solutions of the white noise driven equation (2.2).
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Theorem 2.3. Suppose that m satisfies the above assumption. Then, for any ε > 0 and
u0 ∈ H1(R), there exists a unique solution uε of equation (1.2) with continuous paths in
H1(R) which is defined on a random interval [0, τε(u0)). Moreover, for any T > 0

lim
ε→0

P(τε(u0) ≤ T ) = 0,

and the process uε1l[τε>T ] converges in distribution to the solution u of (2.2) in C([0, T ];Hs(R))
for any s < 1.

3. The linear equation and Strichartz type estimates

It is important to understand the properties of the linear part of equation (2.2). Indeed,
in the case of the deterministic NLS equation, the linear part possesses ultracontractivity
properties which are extremely helpful to solve the nonlinear equation (see for instance [4]).
We use below this equation starting from an initial data at various initial times. We therefore
consider in this section the following stochastic linear Schrödinger equation:

(3.1)

{
idu+∆u ◦ dβ = 0, t ≥ s,
u(s) = us.

We interpret this equation in the Itô sense and consider the following equation which is formally
equivalent to (3.1):

(3.2)

{
idu+

i

2
∆2u dt+∆u dβ = 0, t ≥ s,

u(s) = us.

As was noticed in [17], we have an explicit formula for the solutions of (3.1).

Proposition 3.1. For any s ≤ T and us ∈ S ′(Rn), there exists a unique solution of (3.2)
almost surely in C([s, T ];S ′(Rn)) and adapted. Its Fourier transform in space is given by

û(t, ξ) = e−i|ξ|2(β(t)−β(s))ûs(ξ), t ≥ s, ξ ∈ R
d.

Moreover, if us ∈ Hσ
x for some σ ∈ R, then u(·) ∈ C([0, T ];Hσ

x ) a.s. and |u(t)|Hσ = |us|Hσ ,
a.s. for t ≥ s.

If us ∈ L1
x, the solution u of (3.1) has the expression

(3.3) u(t) = S(t, s)us :=
1

(4iπ (β(t)− β(s)))d/2

∫

Rd

exp

(
i

|x− y|2
4(β(t) − β(s))

)
us(y)dy, t ∈ [s, T ].

Proof. The proof is the same as in the deterministic case (see for instance [20]). It suffices to
take the Fourier transform in space of equation (3.2). �

Proposition 3.2 leads to the following spatial estimates for the solution S(t, s)us.

Lemma 3.2. For any p ≥ 2 and s ≤ t, S(t, s) maps Lp′
x into Lp

x and there exists a constant
Cp depending only on p such that

|S(t, s)us|Lp
x
≤ Cp

|β(t)− β(s)|d(
1
2
− 1

p
)
|us|Lp′ , for any us ∈ Lp′ .
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Proof. It is easily seen from (3.3) and a density argument that S(t, s) is an isometry on L2
x.

Thus, the result is true for p = 2 with C2 = 1. Also, for p = ∞, we obtain the result from (3.3)
with C∞ = 1

(4π)d/2
. The general result follows from the Riesz-Thorin interpolation theorem. �

Lemma 3.2 is the preliminary step to get Strichartz type estimates. Contrary to the classical
deterministic case, we cannot immediately deduce from Lemma 3.2 space-time estimates on
the mapping f 7→

∫ ·
0 S(·, s)f(s)ds. This is due to the fact that formula (3.3) defining S(t, s)us

is not in terms of t−s and the Hausdorff-Young inequality for convolution cannot be used here
in order to get estimates in time. We need the following result.

Proposition 3.3. Let α ∈ [0, 1), there exists a constant cα depending only on α such that for
any T ≥ 0 and f ∈ L2

P(Ω;L
2(0, T ))

E

(∫ T

0

(∫ t

0

1

|β(t) − β(s)|α |f(s)|ds
)2

dt

)
≤ cαT

2−α
E

(∫ T

0
|f(s)|2ds

)

Proof. The result is clear for α = 0 so that by an interpolation argument, it suffices to consider
the case α ∈ (1/2, 1). Let us write

(∫ t

0

1

|β(t) − β(s)|α |f(s)|ds
)2

=

∫ t

0

∫ t

0

|f(s1)| |f(s2)|
|β(t) − β(s1)|α|β(t)− β(s2)|α

ds1ds2

= 2

∫ t

0

∫ s1

0

|f(s1)| |f(s2)|
|β(t)− β(s1)|α|β(t)− β(s2)|α

ds2ds1.

Since f is adapted, and |β(t) − β(s1)| is independent of Fs1 , we may write

I = E

∫ T

0

(∫ t

0

1

|β(t)− β(s)|α |f(s)|ds
)2

dt

= 2E

∫ T

0

∫ t

0

∫ s1

0

|f(s1)| |f(s2)|
|β(t)− β(s1)|α|(β(t)− β(s1)) + (β(s1)− β(s2))|α

ds2ds1dt

= 2

∫ T

0

∫ t

0

∫ s1

0
E

((∫

R

1

|x|α|x+ (β(s1)− β(s2))|α
µ(dx)

)
|f(s1)| |f(s2)|

)
ds2ds1dt

where µ = N (0, t − s1) is the law of β(t)− β(s1). We have
∫

R

1

|x|α|x+ (β(s1)− β(s2))|α
µ(dx)

=
1

(2π(t − s1))1/2

∫

R

1

|x|α|x+ (β(s1)− β(s2))|α
e
− |x|2

2(t−s1)dx

=
1

(2π)1/2
(t− s1)

−α

∫

R

1
∣∣x
∣∣α
∣∣∣∣x+

β(s1)− β(s2)

(t− s1)1/2

∣∣∣∣
α e

− |x|2

2 dx.

We need the following Lemma.
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Lemma 3.4. Let α ∈ (1/2, 1), there exists a constant cα depending on α such that for any
γ ∈ R, γ 6= 0,

∫

R

e−
|x|2

2

|x|α|x− γ|αdx ≤





cα|γ|1−2α, |γ| ∈ (0, 1),

cα, |γ| ≥ 1.

Proof. By symmetry, we may assume γ > 0.
For γ ∈ (0, 1), we split the integral on the disjoint intervals (−∞,−1), [−1, γ + 1] and

(γ + 1,+∞) and majorize the integrand to obtain

∫

R

e−
|x|2

2

|x|α|x− γ|α dx ≤
∫ −1

−∞
e−

|x|2

2 dx+

∫ γ+1

−1

1

|x|α|x− γ|αdx+

∫ ∞

γ+1
e−

|x|2

2 dx

≤ γ1−2α

∫ 1
2
+γ−1

− 1
2
−γ−1

1

|y − 1
2 |α|y + 1

2 |α
dy + (2π)1/2

≤ 2γ1−2α max

{∫

R

1

|y − 1
2 |α|y + 1

2 |α
dy; (2π)1/2

}
.

For γ ≥ 1, we have

∫

R

e−
|x|2

2

|x|α|x− γ|α dx

≤ 1

22α

∫

(−∞,− 1
2
)∪( 1

2
,γ− 1

2
)∪(γ+ 1

2
,∞)

e−
|x|2

2 dx+
1

2α

∫ 1/2

−1/2

1

|x|α dx+
1

2α

∫ γ+ 1
2

γ− 1
2

1

|x− γ|α dx

≤ (2π)1/2

22α
dx+

2

1− α
. �

We now proceed with the estimate of I. For |β(s1) − β(s2)| ≤ |t − s1|1/2, we deduce from
Lemma 3.4:

(t− s1)
−α

∫

R

e−
|x|2

2

∣∣x
∣∣α
∣∣∣∣x+

β(s1)− β(s2)

(t− s1)1/2

∣∣∣∣
αdx ≤ cα|t− s1|−1/2|β(s1)− β(s2)|1−2α

≤ cα|t− s1|−α/2|β(s1)− β(s2)|−α.

On the other hand, if |β(s1)− β(s2)| > |t− s1|1/2,

(t− s1)
−α

∫

R

e−
|x|2

2

∣∣x
∣∣α
∣∣∣∣x+

β(s1)− β(s2)

(t− s1)1/2

∣∣∣∣
α dx ≤ cα(t− s1)

−α.
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It follows

I ≤ 2cα

∫ T

0

∫ t

0

∫ s1

0
E

[
|t− s1|−α/2|β(s1)− β(s2)|−α + (t− s1)

−α
]
|f(s1)| |f(s2)|ds2ds1dt

≤ 2cα
1− α/2

T 1−α/2
E

∫ T

0
|f(s1)|

∫ s1

0
|β(s1)− β(s2)|−α|f(s2)|ds2ds1

+
2cα
1− α

T 1−α
E

∫ T

0
|f(s1)|

∫ s1

0
|f(s2)|ds2ds1

≤ 2cα
1− α/2

T 1−α/2

(
E

∫ T

0
|f(s1)|2ds1

)1/2

I1/2 +
2cα
1− α

T 2−α
E

∫ T

0
|f(s1)|2ds1

≤ c′αT
2−α

E

∫ T

0
|f(s1)|2ds1 +

1

2
I,

from which we deduce the result. �

Remark 3.5. The reader may easily convince himself that the estimate of Proposition 3.3 is
still true with the same bound on the right hand side if |β(t) − β(s)|α on the left hand side
is replaced by |β(t) − β(s) + ν(t − s)|α. This is the only change to be made to apply all the
analysis of the paper to equation (1.5).

Corollary 3.6. Let α = 0, r ≤ ∞ or α ∈ (0, 1), 2 ≤ r < 2
α and ρ be such that r′ ≤ ρ ≤ r;

then there exists Cα,ρ,r such that, for any T ≥ 0 and f ∈ Lρ
P(Ω;L

r′(0, T )),
∣∣∣∣
∫ t

0
|β(t)− β(s)|−α|f(s)|ds

∣∣∣∣
Lρ
ω(Lr(0,T ))

≤ Cα,ρ,rT
2
r
−α

2 |f |Lρ(Ω;Lr′(0,T )).

Proof. The result is clear for α = 0 and ρ ≤ r = ∞. For α < 1 and ρ = r = 2, it is the
statement of Proposition 3.3. We obtain the general result by an interpolation argument. �

Corollary 3.6 is exactly what we need to replace Hausdorff-Young inequality in order to get
Strichartz type estimates. Note that in the deterministic case, i.e. if β(t) is replaced by t,
the limiting case r = 2

α is allowed. We state an immediate consequence of Lemma 3.2 and
Corollary 3.6.

Proposition 3.7. Let 2 ≤ r < ∞ and 2 ≤ p ≤ ∞ be such that 2
r > d

(
1
2 − 1

p

)
or r = ∞

and p = 2. Let ρ be such that r′ ≤ ρ ≤ r; there exists a constant cρ,r,p > 0 such that for any

s ∈ R, T ≥ 0 and f ∈ Lρ
P(Ω;L

r′(s, s+ T ;Lp′
x ))

∣∣∣∣
∫ ·

s
S(·, σ)f(σ)dσ

∣∣∣∣
Lρ(Ω;Lr(s,s+T ;Lp

x))

≤ cρ,r,pT
β |f |

Lρ(Ω;Lr′(s,s+T ;Lp′
x ))

with β = 2
r − d

2

(
1
2 − 1

p

)
.
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Remark 3.8. This result is very similar to the classical Strichartz estimates. However, we

need 2
r > d

(
1
2 − 1

p

)
whereas in the classical case, one can choose 2

r = d
(
1
2 − 1

p

)
. A pair of

numbers (r, p) satisfying this latter condition is often called an admissible pair. We believe that

in the stochastic case considered here the result is still true for 2
r = d

(
1
2 − 1

p

)
but our proof

does not cover this case. Note also that the exponent β is much bigger than in the classical

case where one would have β = 1
r − d

2

(
1
2 − 1

p

)
.

By analogy with the deterministic theory we define admissible pairs.

Definition 3.9. A pair of real numbers is called an admissible pair if r = ∞ and p = 2 or if
the following conditions are satisfied:

2 ≤ r < ∞, 2 ≤ p ≤ ∞ and
2

r
> d

(
1

2
− 1

p

)
.

Proof of Proposition 3.7. let (r, p) be an admissible pair, let ρ be such that r′ ≤ ρ ≤ r and

let f ∈ Lρ
P(Ω;L

r′(s, s+ T ;Lp′
x )). By Lemma 3.2

∣∣∣∣
∫ t

s
S(t, σ)f(σ)dσ

∣∣∣∣
Lp
x

≤
∫ t

s
|S(t, σ)f(σ)|Lp

x
dσ

≤ c

∫ t

s

1

|β(t)− β(σ)|d(
1
2
− 1

p
)
|f(σ)|

Lp′
x
dσ.

By Corollary 3.6 with α = d(12 − 1
p) ∈ [0, 1), we deduce

E

(∣∣∣∣
∫ ·

s
S(·, σ)f(σ)dσ

∣∣∣∣
ρ

Lr(s,s+T ;Lp
x)

)
≤ cT ρ( 2

r
− d

2
( 1
2
− 1

p
)) |f |ρ

Lρ(Ω;Lr′(s,s+T ;Lp′
x ))

,

which is the result. �

Using a duality argument, we then have :

Proposition 3.10. Let 2 ≤ r ≤ ∞ and 2 ≤ p ≤ ∞ be such that 2
r > d

(
1
2 − 1

p

)
or r = ∞ and

p = 2; there exists a constant cr,p > 0 such that for any s ∈ R, T ≥ 0 and us ∈ Lr(Ω;L2
x),

Fs-measurable, S(·, s)us ∈ Lr
P(Ω;L

r(s, s+ T ;Lp
x)) and

|S(·, s)us|Lr(Ω;Lr(s,s+T ;Lp
x)) ≤ cr,pT

β/2 |us|Lr
ω(L

2
x)

with β = 2
r − d

2

(
1
2 − 1

p

)
.

Proof. Note that S(t, s)∗ = S(s, t), where the adjoint is taken with respect to the L2
x inner

product. Thus for us ∈ Lr(Ω;L2
x), Fs-measurable, and f ∈ L2

P(Ω× [s, s+ T ]× R
d) we have

∫ s+T

s
(S(t, s)us, f(t))dt =

∫ s+T

s
(us, S(s, t)f(t))dt

≤ |us|L2
x

∣∣∣∣
∫ s+T

s
S(s, t)f(t)dt

∣∣∣∣
L2
x

.



10 A. DE BOUARD AND A. DEBUSSCHE

Moreover
∣∣∣∣
∫ s+T

s
S(s, t)f(t)dt

∣∣∣∣
2

L2
x

=

∫ s+T

s

∫ s+T

s
(f(t), S(t, σ)f(σ))dtdσ

=

∫ ∫

s≤σ≤t≤s+T
(f(t), S(t, σ)f(σ))dtdσ

+

∫ ∫

s≤t≤σ≤s+T
(S(σ, t)f(t), f(σ))dtdσ

= 2

∫ ∫

s≤σ≤t≤s+T
(f(t), S(t, σ)f(σ))dtdσ

= 2

∫ s+T

s
(f(t),

∫ t

s
S(t, σ)f(σ)dσ)dt

≤ 2 |f |
Lr′(s,s+T ;Lp′

x )

∣∣∣∣
∫ ·

s
S(·, σ)f(σ)dσ

∣∣∣∣
Lr(s,s+T ;Lp

x)

.

It follows from Proposition 3.7,

E

∫ s+T

s
(S(t, s)us, f(t))dt ≤ 21/2E

(
|us|L2

x
|f |1/2

Lr′(s,s+T ;Lp′
x )

∣∣∣∣
∫ ·

s
S(·, σ)f(σ)dσ

∣∣∣∣
1/2

Lr(s,s+T ;Lp
x)

)

≤ 21/2|us|Lr
ω(L

2
x)
|f |1/2

Lr′
ω (Lr′(s,s+T ;Lp′

x ))

∣∣∣∣
∫ ·

s
S(·, σ)f(σ)dσ

∣∣∣∣
1/2

Lr′
ω (Lr(s,s+T ;Lp

x))

≤ c T β/2|us|Lr
ω(L

2
x)
|f |

Lr′
ω (Lr′ (s,s+T ;Lp′

x ))

with β = 2
r − d

2

(
1
2 − 1

p

)
. This implies the result. �

In the deterministic case, it is well known that Strichartz estimates still hold with different
admissible pairs in the left and right hand sides. We also have such results here. These will be
useful later to prove regularity properties of solutions of the nonlinear equation and to prove
rigorously that these are indeed limits of solutions of equation (1.2) when ε goes to 0.

Proposition 3.11. Let (r, p) and (γ, δ) be two admissible pairs such that

(3.4)
1

γ
=

1− λ

r
,
1

δ
=

λ

2
+

1− λ

p
,

with λ ∈ [0, 1], and ρ be such that max{ρ, ρ′} ≤ r; then there exists a constant c(r, p, γ, δ, ρ)
such that for any s ∈ R, T ≥ 0,

(3.5)

∣∣∣∣
∫ ·

s
S(·, σ)f(σ)dσ

∣∣∣∣
Lρ(Ω;Lr(s,s+T ;Lp

x))

≤ c(r, p, γ, δ, ρ)T β̃ |f |Lρ(Ω;Lγ′ (s,s+T ;Lδ′
x ))
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if f ∈ Lρ
P(Ω;L

γ′
(s, s+ T ;Lδ′

x )) and

(3.6)

∣∣∣∣
∫ ·

s
S(·, σ)f(σ)dσ

∣∣∣∣
Lρ(Ω;Lγ(s,s+T ;Lδ

x))

≤ c(r, p, γ, δ, ρ)T β̃ |f |
Lρ(Ω;Lr′(s,s+T ;Lp′

x ))

if f ∈ Lρ
P(Ω;L

r′(s, s+ T ;Lp′
x )). In this latter case, we also have

(3.7)

∫ ·

s
S(·, σ)f(σ)dσ ∈ Lρ(Ω;C([s, s+ T ];L2

x)).

Here, β̃ =
(
2
r − d

2

(
1
2 − 1

p

)) (
1− λ

2

)
.

Proof. We first consider the case λ = 1 in (3.4) and prove that given (r, p) an admissible pair,
r′ ≤ ρ′ ≤ r and f ∈ Lρ

P(Ω;L
1(s, s+ T ;L2

x)), we have

(3.8)

∣∣∣∣
∫ ·

s
S(·, σ)f(σ)dσ

∣∣∣∣
Lρ(Ω;Lr(s,s+T ;Lp

x))

≤ cT β/2 |f |Lρ(Ω;L1(s,s+T ;L2
x))

with β = 2
r − d

2

(
1
2 − 1

p

)
.

In order to prove this, we consider ϕ ∈ Lρ′

P (Ω;L
r′(s, s + T ;Lp′

x )) and write

E

(∫ s+T

s

(∫ t

s
S(t, σ)f(σ)dσ, ϕ(t)

)
dt

)

= E

(∫ s+T

s

∫ t

s
(f(σ), S(σ, t)ϕ(t)) dσdt

)

= E

(∫ s+T

s

(
f(σ),

∫ s+T

σ
S(σ, t)ϕ(t)dt

)
dσ

)

≤ E

(
|f |L1

tL
2
x

sup
σ∈[s,s+T ]

∣∣∣∣
∫ s+T

σ
S(σ, t)ϕ(t)dt

∣∣∣∣
L2
x

)
.
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We need to bound the second factor. For any σ ∈ [s, s+ T ], we have

∣∣∣∣
∫ s+T

σ
S(σ, t)ϕ(t)dt

∣∣∣∣
2

L2
x

=

∫ s+T

σ

∫ s+T

σ
(S(σ, t)ϕ(t), S(σ, θ)ϕ(θ)) dt dθ

= 2

∫ ∫

σ≤t≤θ≤s+T
(S(θ, t)ϕ(t), ϕ(θ)) dt dθ

= 2

∫ s+T

σ

(∫ θ

σ
S(θ, t)ϕ(t)dt, ϕ(θ)

)
dθ

≤ 2 |ϕ|
Lr′(σ,s+T ;Lp′

x )

∣∣∣∣
∫ ·

σ
S(·, t)ϕ(t)dt

∣∣∣∣
Lr(σ,s+T ;Lp

x)

≤ 2 |ϕ|
Lr′(s,s+T ;Lp′

x )

∣∣∣∣
∫ ·

σ
|S(·, t)ϕ(t)|Lp

x
dt

∣∣∣∣
Lr(σ,s+T )

≤ 2 |ϕ|
Lr′(s,s+T ;Lp′

x )

∣∣∣∣
∫ ·

s
|S(·, t)ϕ(t)|Lp

x
dt

∣∣∣∣
Lr(s,s+T )

.

Therefore

sup
σ∈[s,s+T ]

∣∣∣∣
∫ s+T

σ
S(σ, t)ϕ(t)dt

∣∣∣∣
2

L2
x

≤ 2 |ϕ|
Lr′
t Lp′

x

∣∣∣∣
∫ ·

s
|S(·, t)ϕ(t)|Lp

x
dt

∣∣∣∣
Lr
t

and

E

(∫ s+T

s

(∫ t

s
S(t, σ)f(σ)dσ, ϕ(t)

)
dt

)

≤
√
2E

(
|f |L1

tL
2
x
|ϕ|1/2

Lr′
t Lp′

x

∣∣∣∣
∫ ·

s
|S(·, t)ϕ(t)|Lp

x
dt

∣∣∣∣
1/2

Lr
t

)

≤
√
2 |f |Lρ

ωL1
tL

2
x
|ϕ|1/2

Lρ′
ω Lr′

t Lp′
x

∣∣∣∣
∫ ·

s
|S(·, t)ϕ(t)|Lp

x
dt

∣∣∣∣
1/2

Lρ′
ω Lr

t

≤ c T β/2 |f |Lρ
ωL1

tL
2
x
|ϕ|

Lρ′
ω Lr′

t Lp′
x

if r′ ≤ ρ′ ≤ r, or equivalently if r′ ≤ ρ ≤ r, and with β = 2
r − d

2

(
1
2 − 1

p

)
by the same argument

as for Proposition 3.7. Claim (3.8) follows.
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By Proposition 3.7, we have

(3.9)

∣∣∣∣
∫ ·

s
S(·, σ)f(σ)dσ

∣∣∣∣
Lρ(Ω;Lr(s,s+T ;Lp

x))

≤ cT β |f |
Lρ(Ω;Lr′(s,s+T ;Lp′

x ))

if r′ ≤ ρ ≤ r. Interpolation between (3.8) and (3.9) leads to (3.5).
The second inequality is proved similarly : we have by similar arguments as above

∣∣∣∣
∫ t

s
S(t, σ)f(σ)dσ

∣∣∣∣
2

L2
x

≤ 2 |f |
Lr′(s,s+T ;Lp′

x )

∣∣∣∣
∫ ·

s
|S(·, σ)f(σ)|Lp

x
dσ

∣∣∣∣
Lr(s,s+T )

,

for any t ∈ [s; s+ T ]. Therefore, by Cauchy-Schwarz inequality,

∣∣∣∣
∫ ·

s
S(·, σ)f(σ)dσ

∣∣∣∣
2

Lρ
ωL∞

t L2
x

≤ c |f |
1
2

Lρ
ωLr′Lp′

x

∣∣∣∣
∫ ·

s
|S(·, σ)f(σ)|Lp

x
dσ

∣∣∣∣

1
2

Lρ
ωLr

t

≤ cT β/2 |f |
Lρ
ωLr′Lp′

x
.

The fact that
∫ ·
s S(·, σ)f(σ)dσ has a.s. continuous paths with values in L2

x follows from a
density argument and the preceding estimate. Again, (3.6) follows by interpolation between
the above inequality and (3.9). �

4. A truncated equation

We now construct a local solution of equation (2.2). We use a similar cut-off of the nonlin-
earity as in [5] and [6]. Let θ ∈ C∞

0 (R) be such that θ = 1 on [0, 1], θ = 0 on [2,∞). For s ∈ R,
u ∈ Lr

loc(s,∞;Lp
x), R ≥ 1 and t ≥ 0, we set

θsR(u)(t) = θ

( |u|Lr(s,s+t;Lp
x)

R

)
.

For s = 0, we set θ0R = θR. We take in this section p = 2σ + 2 and r such that 2σ + 2 ≤ r <
4(σ+1)

dσ . Note that such a r exists, since we have assumed σ < 2
d .

We consider the following truncated form of equation (2.1)

(4.1)

{
iduR +∆uR ◦ dβ + θR(u

R)|uR|2σuR dt = 0,
uR(0) = u0.

More precisely, we consider the truncation of its Itô form

(4.2)

{
iduR +

i

2
∆2uR dt+∆uRdβ + θR(u

R)|uR|2σuR dt = 0,

uR(0) = u0.

We interpret it in the mild sense

(4.3) uR(t) = S(t, 0)u0 + i

∫ t

0
S(t, s)θR(u

R)(s)|uR(s)|2σuR(s)ds.

Theorem 4.1. Let σ < 2
d , p = 2σ + 2 and r be such that 2σ + 2 ≤ r < 4(σ+1)

dσ . For any F0-

measurable u0 ∈ Lr
ω(L

2
x), there exists a unique uR in Lr

P(Ω× [0, T ];Lp
x) for any T > 0, solution
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of (4.3). Moreover uR is a weak solution of (4.2) in the sense that for any ϕ ∈ C∞
0 (Rd) and

any t ≥ 0,

i(uR(t)− u0, ϕ)L2
x

= − i

2

∫ t

0
(uR,∆2ϕ)L2

x
ds−

∫ t

0
θR(u

R)(|uR|2σuR, ϕ)L2
x
ds−

∫ t

0
(uR,∆ϕ)L2

x
dβ(s), a.s.

Finally, the L2
x norm is conserved:

|uR(t)|L2
x
= |u0|L2

x
, t ≥ 0, a.s.

and u ∈ C([0, T ];L2
x) a.s.

Proof. In order to lighten the notations we omit the R dependence in this proof. By
Proposition 3.10, we know that S(·, 0)u0 ∈ Lr

P(Ω × [0, T ];Lp
x). Then, by Proposition 3.7,

for u, v ∈ Lr
P(Ω× [0, T ];Lp

x),
∣∣∣∣
∫ t

0
S(t, s)

(
θ(u)(s)|u(s)|2σu(s)− θ(v)(s)|v(s)|2σv(s)

)
ds

∣∣∣∣
Lr(Ω×[0,T ];Lp

x)

≤ cT β
∣∣θ(u)|u|2σu− θ(v)|v|2σv

∣∣
Lr
ω(L

r′ ([0,T ];Lp′
x ))

with β = 2
r − d

2

(
1
2 − 1

p

)
. Moreover, by standard arguments (see [5]),

∣∣θ(u)|u|2σu− θ(v)|v|2σv
∣∣
Lr
ω(L

r′([0,T ];Lp′
x ))

≤ c T γR2σ|u− v|Lr(Ω×[0,T ];Lp
x)

with γ = 1− 2σ+2
r . It follows that

(4.4) T R : u 7→ S(t, 0)u0 + i

∫ t

0
S(t, s)θ(u(s))|u(s)|2σu(s)ds

defines a strict contraction on Lr
P(Ω × [0, T ];Lp

x) provided T ≤ T0 where T0 depends only on
R. Iterating this construction, one easily ends the proof of the first statement. The proof that
u is in fact a weak solution is classical.

Let M ≥ 0 and uM = PMu be a regularization of the solution u defined by a truncation in

Fourier space: ûM (t, ξ) = θ
(
|ξ|
M

)
û(t, ξ). We deduce from the weak form of the equation that

iduM +
i

2
∆2uM dt+∆uMdβ + PM

(
θ(u)|u|2σu

)
dt = 0.

We apply Itô formula to |uM |2L2
x
and obtain

|uM (t)|2L2
x
= |u0|2L2

x
+Re

(
i

∫ t

0

(
θ(u)|u|2σu, PMuM

)
ds

)
, t ∈ [0, T ].

We know that u ∈ L2σ+2([0, T ] ×R
d) a.s. Since

lim
M→∞

PMuM = u in L2σ+2([0, T ]× R
d),

we may let M go to infinity in the above equality and obtain

lim
M→∞

|uM (t)|L2
x
= |u0|L2

x
, t ∈ [0, T ], a.s.
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This implies u(t) ∈ L2
x for any t ∈ [0, T ] and |u(t)|L2

x
= |u0|L2

x
. In particular u ∈ L∞(0, T ;L2

x).
As easily seen from the weak form of the equation, u is almost surely continuous with values
in H−4

x . It follows that u is weakly continuous with values in L2
x. Finally the continuity of

t 7→ |u(t)|L2
x
implies u ∈ C([0, T ];L2

x) and |u(t)|L2
x
= |u0|L2

x
a.s. �

5. Proof of Theorem 2.1

We use the solution of the truncated problem obtained in Section 4 to construct a solution
to the original equation (2.2). There is no loss of generality in assuming that u0 ∈ L2

x is
deterministic. Uniqueness is clear since two solutions are solutions of the truncated equation
on a random interval.

Let us define
τR = inf{t ∈ [0, T ], |uR|Lr(0,t;Lp

x) ≥ R}.
Clearly uR is a solution of (2.2) on [0, τR]. In order to see that τR cannot be too small, we
need to prove that the Lr

tL
p
x norm of uR can be controlled. Recall that p = 2σ + 2 and

2σ + 2 ≤ r ≤ 4(σ+1)
dσ .

We fix a T0 and explain how to construct a solution of (2.2) on [0, T0].

Lemma 5.1. There exist constants c1, c2 such that if

T
− drσ

4(σ+1)
+r−2σ ≤ c1 R

−2rσ

then

P(τR ≤ T ) ≤
c2|u0|rL2

x

Rr

Proof. Let us write

(5.1) uR(t)1l[0,τR](t) = S(t, 0)u01l[0,τR](t) + i

∫ t

0
S(t, s)|uR|2σuR1l[0,τR](s)ds1l[0,τR](t).

Thus for T ≤ T0

|uR1l[0,τR]|Lr(0,T ;Lp
x) ≤ |S(·, 0)u01l[0,τR]|Lr(0,T ;Lp

x) + |
∫ t

0
S(t, s)|uR|2σuR1l[0,τR](s)ds|Lr(0,T ;Lp

x).

Proposition 3.7 and Proposition 3.10 yield

E

(
|uR1l[0,τR]|rLr(0,T ;Lp

x)

)
≤ c(r, T0)|u0|rL2

x
+ c T

2− drσ
4(σ+1)E(||uR|2σ+11l[0,τR)|rLr′(Lp′ )

).

Then, by Hölder inequality,

E

(
|uR1l[0,τR]|rLr(0,T ;Lp

x)

)
≤ c(r, T0)|u0|rL2

x
+ c T

− drσ
4(σ+1)

+r−2σ
E(|uR1l[0,τR)|r(2σ+1)

Lr(Lp) )

≤ c(r, T0)|u0|rL2
x
+ c T

− drσ
4(σ+1)

+r−2σ
R2rσ

E(|uR1l[0,τR)|rLr(Lp))

Hence, if c T
− drσ

4(σ+1)
+r−2σ

R2rσ ≤ 1

2
,

E

(
|uR1l[0,τR]|rLr(0,T ;Lp

x)

)
≤ 2c(r, T0)|u0|rL2

x

and by Markov inequality

P(τR ≤ T ) ≤
2c(r, T0)|u0|rL2

x

Rr
.
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�

In order to construct a solution to (2.2) on [0, T0], we iterate the local construction. We fix
R > 0 and have a local solution on [0, τR]. We then consider the equation for u:

u(t+ τR) = S(t+ τR, τR)u(τ
R) +

∫ t

0
S(t+ τR, s+ τR)θ

τR
R (u)(s)|u(s + τR)|2σu(s+ τR)ds

All the arguments of Section 4 can be reproduced. We obtain a unique global solution of this
equation, that we denote by u2R. Moreover setting

τ2R = inf{t ∈ [0, T ], |u2R|Lr(τR,t+τR;Lp
x) ≥ R}

we obtain a solution of the non truncated equation on [τR, τR + τ2R] and thus on [0, τR + τ2R].
We also have by Lemma 5.1 and the conservation of the L2

x norm

P(τ2R ≤ T |FτR) ≤
c2|u(τR)|rL2

x

Rr
=

c2|u0|rL2
x

Rr
,

provided that T
− drσ

4(σ+1)
+r−2σ ≤ c1 R

−2rσ. We continue this construction recursively and obtain
a solution on [0, T n

R], where T n
R = τR + · · ·+ τnR, with

P(τnR ≤ T |FTn−1
R

) ≤
c2|u0|rL2

x

Rr
,

provided T
− drσ

4(σ+1)
+r−2σ ≤ c1 R

−2rσ. Note that

P

(
lim

n→+∞
τnR = 0

)
= lim

ε→0
lim

N→+∞
P(τnR ≤ ε, ∀n ≥ N).

For R large enough and ε
2− dr

2
( 1
2
− 1

p
)+r−2σ−2 ≤ c1 R

−2rσ,

P(τnR ≤ ε|FTn−1
R

) ≤ 1

2
,

and we deduce that

P(τnR ≤ ε, ∀n ≥ N) ≤ lim
M→∞

E

( ∏

N≤n≤M−1

1l{τnR≤ε}P(1l{τMR ≤ε}|FTM−1
R

)
)
≤ lim

M→∞

1

2M−N
= 0.

Hence, P(limn→+∞ τnR = 0) = 0 so that T n
R goes to infinity, a.s. and we have constructed a

global solution.
The conservation of the L2-norm and the fact that u ∈ C(R+;L2

x) a.s. was proved in
Theorem 4.1. In order to obtain the extra-integrability properties given in the statement of
Theorem 2.1, we apply Proposition 3.10 and (3.5) of Proposition 3.11 with (ρ, q) on the left
hand side (q = +∞ if d = 1) and with γ = r, δ = 2σ + 2 to equation (5.1). Note that (ρ, q) is
an admissible pair thanks to the conditions ρ ≤ 4 if d = 1 and 2 ≤ q < 2d

d−2 , 2 ≤ ρ < 4d
d(q−2) if
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d ≥ 2. This gives, setting q = +∞ if d = 1 :

|uR1l[0,τR]|Lρ
ω(Lρ(0,T ;Lq

x))

≤ c(ρ, q, T0)|u0|L2
x
+ c′(ρ, q, T0)|(uR)2σuR1l[0,τR]|Lρ

ω(Lγ′ (0,T ;Lδ′
x ))

≤ c(ρ, q, T0)|u0|L2
x
+ c′(ρ, q, T0)|uR1l[0,τR]|2σ+1

L
(2σ+1)ρ
ω (Lr(0,T ;L2σ+2

x ))

≤ c(ρ, q, T0)|u0|L2
x
+ c′(ρ, q, T0, R)

where R is chosen as above. Estimates on other intervals of the form [T n
R, T

n+1
R ] are obtained

similarly.
Finally, assume that u0 ∈ H1

x. Then going back to T R defined in (4.4), and applying the
same estimates as in the proof of Lemma 5.1, after having taken first order space derivatives,
lead to

|T Ru|Lr(Ω×[0,T ];W 1,p)

≤ CT
β/2
0 |u0|H1 + C ′T β̃R2rσ|u|Lr(Ω×[0,T ];W 1,p)

with β̃ = r− 2σ − drσ
4(σ+1) . This proves that if B = B(0, R0) is the (closed) ball of radius R0 in

Lr(Ω× [0, T ];W 1,p), then T RB ⊂ B provided T ≤ T̃0, where T̃0 depends only on R and not on
R0. Since closed balls of Lr(Ω× [0, T ];W 1,p) are closed in Lr(Ω× [0, T ];Lp

x), this implies that
the fixed point of T R, which is the solution uR of (4.3), is in Lr(Ω × [0, T ];W 1,p). Applying
then Proposition 3.1, and (3.7) in Proposition 3.11 to equation (4.3) (or (5.1)), again after
having taken first order space derivatives, gives the result. �

6. Equation (2.1) as limit of NLS equation with random dispersion

To prove Theorem 2.3, we use the same argument as in [17]. Let us recall its main lines.
Note that we introduce a slight modification since we work with H1(R) functions instead of
H2(R) as in [17]. Consider the following nonlinear Schrödinger equation:

(6.1)

{
i
du

dt
+ ṅ(t)∂xxu+ F (|u|2)u = 0, x ∈ R, t > 0,

u(0) = u0, x ∈ R,

where F is a smooth function with compact support and n is a real valued function. Note
that, using the mild form

un(t) = Sn(t)u0 + i

∫ t

0
Sn(t, s)F (|u(s)|2)u(s)ds,

where we have denoted by Sn(t, s) the evolution operator associated to the linear equation

i
dv

dt
+ ṅ(t)∂xxv = 0, x ∈ R, t > 0,

whose solution can be written down explicitly thanks to spatial Fourier transform, one can
give a meaning to the solution u of equation (6.1) as soon as n is a continuous function of
t. Indeed, for each t, s ∈ R, Sn(t, s) is an isometry on any Sobolev space Hs(R). Since the
nonlinear term has bounded derivatives, a fixed point argument can be used in C([0, T ];L2(R))
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and a global solution un is obtained in this space if u0 ∈ L2(R). Moreover, the solutions belongs
to C([0, T ];H1(R)) if u0 ∈ H1(R).

Using Fourier transform, we see that, for n1, n2 ∈ C([s, s+ T ]), we have, for s ∈ [0, 1],

|(Sn1(·, s)− Sn2(·, s))us|L∞(s,s+T ;Hs
x)

≤ 2|n1 − n2|(1−s)/2
C([s,s+T ])|us|H1

x
.

Proceeding as in the proof of Theorem 3.7 in [17], we deduce, for s ∈ (12 , 1),

|un1 − un2 |C([0,T ];Hs
x)

≤ c|n1 − n2|(1−s)/2
C([0,T ])|u0|H1

x

where the constant c depends on T and F . It follows that for u0 ∈ H1(R) the mapping

n 7−→ un
C([0, T ]) −→ C([0, T ];Hs(R))

is continuous for s ∈ (12 , 1). Since our assumption on the process m says that the process

t 7→
∫ t
0

1
εm( s

ε2 )ds converges in distribution in C([0, T ]) to a brownian motion, we deduce that
the solution of

(6.2)





i
du

dt
+

1

ε
m(

t

ε2
)∂xxu+ F (|u|2)u = 0, x ∈ R, t > 0,

u(0) = u0, x ∈ R,

converges in distribution in C([0, T ];Hs(R)) to the solution of
{

idu+∆u ◦ dβ + F (|u|2)u dt = 0, x ∈ R, t > 0,
u(0) = u0, x ∈ R,

for s ∈ (12 , 1). We now want to extend this result to the original power nonlinear term. Let us
introduce the truncated equations, where θ is as in section 4,

(6.3)





i
du

dt
+

1

ε
m(

t

ε2
)∂xxu+ θ

( |u|2
M

)
|u|2u = 0, x ∈ R, t > 0,

u(0) = u0, x ∈ R,

and

(6.4)





idu+∆u ◦ dβ + θ

( |u|2
M

)
|u|2u dt = 0, x ∈ R, t > 0,

u(0) = u0, x ∈ R.

We denote by uMε and uM their respective solutions. By the previous arguments, these solutions
exist and are unique in C([0, T ];H1(R)). Note that setting

τ̃Mε = inf{t ≥ 0 : |uMε (t)|L∞
x

≥ M}
and uε = uMε on [0, τ̃Mε ], defines a unique local solution uε of equation (1.2) on [0, τε) with
τε = limM→∞ τMε .

We also set

τ̃M = inf{t ≥ 0 : |uM (t)|L∞
x

≥ M}.
By the above result, for each M , uMε converges to uM in distribution in C([0, T ];Hs(R)) for
s ∈ (12 , 1). By Skohorod Theorem, after a change of probability space, we can assume that for
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each M the convergence of uMε to uM holds almost surely in ([0, T ];Hs(R)). To conclude, let
us notice that for 0 < δ ≤ 1, if

τ̃M−1 ≥ T and |uMε − uM |C([0,T ];Hs(R)) ≤ δ

then uM = u, the solution of (2.2), on [0, T ]. Moreover, by the Sobolev embedding Hs(R) ⊂
L∞(R), we have

|uMε − uM |C([0,T ];L∞(R)) ≤ cδ

for some c > 0. We deduce |uMε |C([0,T ];L∞(R)) ≤ M provided δ is small enough. Therefore

τε > τ̃Mε ≥ T and uMε = uε on [0, T ].

It follows that for δ > 0 small enough,

P(τε(u0) ≤ T ) + P(τε(u0) > T and |uε − u|C([0,T ];Hs(R)) > δ)

≤ P(|uMε − uM |C([0,T ];Hs(R)) > δ) + P(τ̃M−1 < T ).

Since u0 ∈ H1(R), we know that u is almost surely in C(R+;H1(R)); we deduce

lim
M→∞

P(τ̃M−1 < T ) = 0.

Choosing first M large and then ε small we obtain

lim
ε→0

P(τε(u0) ≤ T ) = 0

and
lim
ε→0

P(τε(u0) > T and |uε − u|C([0,T ];Hs(R)) > δ) = 0

The result follows. �
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