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NOTE ON THE CHEN-LIN RESULT WITH LI-ZHANG METHOD.

SAMY SKANDER BAHOURA

Abstract: We give a new proof of Chen-Lin result with Li-Zhang method.

1. INTRODUCTION AND RESULTS.

We set∆ = −∂11 − ∂22 the geometric Laplacian onR2.

On an open setΩ of R2, with a smooth boundary, we consider the following problem:

(P )

{

∆u = V eu in Ω.

0 < a ≤ V ≤ b < +∞

The previous equation is called, the Prescribed Scalar Curvature, in relation with conformal
change of metrics. The functionV is the prescribed curvature.

Here, we try to find some a priori estimates for sequences of the previous problem.

Equations of the previous type were studied by many authors.We can see in [B-M], different
results for the solutions of those type of equations with or without boundaries conditions and,
with minimal conditions onV , for example we supposeV ≥ 0 andV ∈ Lp(Ω) orV eu ∈ Lp(Ω)
with p ∈ [1,+∞].

We can see in [B-M] the following important Theorem,

Theorem A(Brezis-Merle).If (ui)i and (Vi)i are two sequences of functions relatively to the
problem (P ) with, 0 < a ≤ Vi ≤ b < +∞, then, for all compact set K of Ω,

sup
K

ui ≤ c = c(a, b,m,K,Ω) if inf
Ω

ui ≥ m.

A simple consequence of this theorem is that, if we assumeui = 0 on∂Ω then, the sequence
(ui)i is locally uniformly bounded.

If, we assumeV with more regularity, we can have another type of estimates,sup+ inf. It
was proved, by Shafrir, see [S], that, if(ui)i, (Vi)i are two sequences of functions solutions of
the previous equation without assumption on the boundary and, 0 < a ≤ Vi ≤ b < +∞, then
we have the following interior estimate:

C(a/b) sup
K

ui + inf
Ω

ui ≤ c = c(a, b,K,Ω).

We can see in [C-L], an explicit value ofC(a/b) =

√

a

b
.

Now, if we suppose(Vi)i uniformly Lipschitzian withA the Lipschitz constant, then,C(a/b) =
1 andc = c(a, b, A,K,Ω), see Brézis-Li-Shafrir [B-L-S]. This result was extendedfor Hölderian
sequences(Vi)i by Chen-Lin, see [C-L]. Also, we can see in [L], an extension of the Brezis-
Li-Shafrir to compact Riemann surface without boundary. Wecan see in [L-S] explicit form,
(8πm,m ∈ N

∗ exactly), for the numbers in front of the Dirac masses, when the solutions blow-
up.

On open setΩ of R2 we consider the following equation:

∆ui = Vie
ui on Ω.

0 < a ≤ Vi ≤ b < +∞, |Vi(x) − Vi(y)| ≤ A|x− y|s, 0 < s < 1, x, y ∈ Ω.
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Theorem B((Chen-Lin). For all compactK ⊂ Ω and alls ∈]0, 1[ there is a constantc =
c(a, b, A, s,K,Ω) such that,

sup
K

ui + inf
Ω

ui ≤ c, ∀ i.

Here we try to prove the previous theorem by the moving-planemethod and Li-Zhang method.

We argue by contradiction, and we want to proof that:

∃ R > 0, such that 4 logR+ sup
BR(0)

u+ inf
B2R(0)

u ≤ c = c(a, b, A),

Thus, by contardition we can assume:

∃ (Ri)i, (ui)i Ri → 0, 4 logRi + sup
BRi

(0)

ui + inf
B2Ri

(0)
ui → +∞,

The blow-up analysis

Let x0 ∈ Ω, we want to prove the theorem locally aroundx0, we use the previous assertion
with x0 = 0. The classical blow-up analysis gives the existence of the sequence(xi)i and a
sequence of functions(vi)i such that:

We set,

sup
BRi(0)

ui = ui(x̄i),

si(x) = 2 log(Ri − |x− x̄i|) + ui(x), and si(xi) = sup
BRi(x̄i)

si, li =
1

2
(Ri − |xi − x̄i|).

Also, we set:

vi(x) = ui[xi + xe−ui(xi)/2]− ui(xi), V̄i(x) = Vi[xi + xe−ui(xi)/2],

Then,

∆vi = V̄ie
vi ,

vi ≤ 2 log 2, vi(0) = 0,

vi → v = log
1

(1 + [V (0)/8]|x|2)2
converge uniformly on each compact set of R2

with V (0) = limi→+∞ Vi(xi).

The classical elliptic estimates and the classical Harnackinequality, we can prove the previous
uniform convergence on each compact ofR

2.

The Kelvin transform and the moving-plane method: Li-Zhang method.

For0 < λ < λ1, we define:

Σλ = B(0, liMi)−B(0, λ).

First, we set :

v̄λi = vλi − 4 log |x|+ 4 logλ = vi

(

λ2x

|x|2

)

+ 4 log
λ

|x|
,

V̄ λ
i = V̄i

(

λ2x

|x|2

)

,

Mi = eui(xi)/2,
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and,

wλ = v̄i − v̄λi .

Then,

∆v̄λi = V̄ λ
i ev̄

λ

i ,

min
|y|=RiMi

v̄λi = ui(xi + rθ)− ui(xi) + 2ui(xi) ≥ inf
Ω

ui + ui(xi) → +∞,

and,

∆(vi − vλi ) = V̄i(e
vi − ev

λ

i ) + (V̄i − V̄ λ
i )ev

λ

i ,

We have the following estimate:

|V̄i − V̄ λ
i | ≤ AM−s

i |x|s|1−
λ2

|x|2
|s,

We take an auxiliary functionhλ :
Because,vi(xλ) ≤ C(λ1) < +∞, we have,

hλ = C1M
−s
i λ2(log(λ/|x|)) + C2M

−s
i λ2+s[1− (

λ

|x|
)2−s], |x| > λ,

with C1, C2 = C1, C2(s, λ1) > 0,

hλ = M−s
i λ2(1− λ/|x|)(C1

log(λ/|x|)

1− λ/|x|
+ C′

2),

with, C′
2 = C′

2(s, λ1) > 0. We can chooseC1 big enough to havehλ < 0.

Lemma 1: There is anλk,0 > 0 small enough, such that, for0 < λ < λk,0, we have:

wλ + hλ > 0.

We have,

f(r, θ) = vi(rθ) + 2 log r,

then,

∂f

∂r
(r, θ) =< ∇vi(rθ)|θ > +

2

r
,

According to the blow-up analysis,

∃ r0 > 0, C > 0, |∇vi(rθ)|θ > | ≤ C, for 0 ≤ r < r0,

Then,

∃ r0 > 0, C′ > 0,
∂f

∂r
(r, θ) >

C′

r
, 0 < r < r0,

if 0 < λ < |y| < r0,

wλ(y) + hλ(y) = vi(y)− vλi (y) + hλ(y) > C(log |y| − log |yλ|) + hλ(y),

by the definition ofhλ, we have, forC,C0 > 0 and0 < λ ≤ |y| < r0,

wλ(y) + hλ(y) > (|y| − λ)[C
log |y| − log |yλ|

|y| − λ
− λ1+sC0M

s
i ],

but,

|y| − |yλ| > |y| − λ > 0, and |yλ| =
λ2

|y|
,

thus,
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In the first step of the lemma 2, we have,

vi ≥ min vi = C1
i , vλi (y) ≤ C1(λ1, r0), if r0 ≤ |y| ≤ RiMi,

Thus, inr0 ≤ |y| ≤ RiMi andλ ≤ λ1, we have,

wλ + hλ ≥ Ci − 4 logλ+ 4 log r0 − C′λ1
2+s

then, ifλ → 0, − logλ → +∞, and,

wλ + hλ > 0, if λ < λi
0, λ

i
0 (small), and r0 < |y| ≤ RiMi,

By the maximum princple and the Hopf boundary lemma, we have:

Lemma 2: Let λ̃k be a positive number such that:

λ̃k = sup{λ < λ1, wλ + hλ > 0 in Σλ.}.

Then,

λ̃k = λ1.

The blow-up analysis gives the follwing inequality for the boundary condition,

Fory = |y|θ = RiMiθ, we have,

wλi(|y| = RiMi) + hλi(|y| = RiMi) =

= ui(xi+Riθ)−ui(xi)−vi(y
λi

, |y| = RiMi)−4 logλ+4 log(RiMi)+C(s, λ1)M
−s
i λ2+s[1−(

λ

RiMi
)2−s],

4 log R̄i + ui(xi) + inf
Ω

ui → +∞,

which we can write,

wλi(|y| = RiMi) + hλi(|y| = RiMi) ≥ min
Ω

ui + ui(xi) + 4 logRi − C(s, λ1) → +∞,

because,0 < λ ≤ λ1,
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