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NOTE ON THE CHEN-LIN RESULT WITH LI-ZHANG METHOD.

SAMY SKANDER BAHOURA

Abstract: We give a new proof of Chen-Lin result with Li-Zhang method.
1. INTRODUCTION AND RESULTS.

We setA = —9;; — 01 the geometric Laplacian dR?.

On an open sg® of R?, with a smooth boundary, we consider the following problem:

Au="Ve" in Q.
(P)
0<a<V<b<+o0
The previous equation is called, the Prescribed Scalargum, in relation with conformal
change of metrics. The functidn is the prescribed curvature.

Here, we try to find some a priori estimates for sequencesegbtévious problem.

Equations of the previous type were studied by many autilescan see in [B-M], different
results for the solutions of those type of equations with dheut boundaries conditions and,
with minimal conditions oV, for example we suppodé > 0 andV € LP(Q)) or Ve* € LP(Q)
with p € [1, +o0].

We can see in [B-M] the following important Theorem,

Theorem A(Brezis-Merle).If (u;); and (V;); are two sequences of functions relatively to the
problem (P) with, 0 < a < V; < b < 400, then, for all compact set K of 2,

supu; < ¢ =c(a,b,m, K,Q) if irgllfui >m.
K

A simple consequence of this theorem is that, if we assume 0 on 052 then, the sequence
(u;); is locally uniformly bounded.

If, we assumé/ with more regularity, we can have another type of estimatgs+ inf. It
was proved, by Shafrir, see [S], thatif;);, (V;); are two sequences of functions solutions of
the previous equation without assumption on the boundady@r: a < V; < b < +o0, then
we have the following interior estimate:

C(a/b)supu; + i?zfui <c=c(a,b, K,Q).
K
We can see in [C-L], an explicit value 6f(a/b) = \/%

Now, if we supposéV;); uniformly Lipschitzian withA4 the Lipschitz constant, the6)(a/b) =
landc = c(a, b, A, K, Q), see Brézis-Li-Shafrir [B-L-S]. This result was extendedHolderian
sequencesV;); by Chen-Lin, see [C-L]. Also, we can see in [L], an extensibnhe Brezis-
Li-Shafrir to compact Riemann surface without boundary. &da see in [L-S] explicit form,
(8mm, m € N* exactly), for the numbers in front of the Dirac masses, wihersblutions blow-

up.

On open sef? of R? we consider the following equation:
Au; = V;e™ on .

0<a<V;<b<+too, [Vifz) = Vily)| <Az —yl, 0<s<1, z,y €
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Theorem B((Chen-Lin). For all compact’ C Q and alls €]0, 1] there is a constant =
c(a,b, A, s, K, Q) such that,

supu; +infu; <e, Vi.
K Q
Here we try to prove the previous theorem by the moving-ptaethod and Li-Zhang method.

We argue by contradiction, and we want to proof that:

3 R >0, such that 4logR+ sup u+ inf u<c=c(a,b,A),
Br(0) B2r(0)

Thus, by contardition we can assume:

3 (Ri)i, (u;); Ry — 0, 4logR; + sup u; + inf w; — 400,
Br, (0) B2r, (0)

The blow-up analysis

Letzy € €2, we want to prove the theorem locally aroungl we use the previous assertion
with o = 0. The classical blow-up analysis gives the existence of duygiencgx;); and a
sequence of function®; ); such that:

We set,

sup u; = ui(Z;),
Br; (0

1
si(x) = 2log(R; — | — Z;]) + wi(x), and s;(z;) = sup s;, L= §(Rz — |z — Z4)).
Br;@;)
Also, we set:

vi(x) = wilz; + ze*“i(mi)/2] —ui(xy), Vi(x) = Vila; + xefui(zi)/Q],
Then,

—
AU'L = ‘/ie ‘

vy < 210g25 Ui(o) =0,

v; — v = log converge uniformly on each compact set of R?

1
(1 +[V(0)/8]|z[*)?

The classical elliptic estimates and the classical Harivaeduality, we can prove the previous
uniform convergence on each compacR3f

The Kelvin transform and the moving-plane method: Li-Zhang method.

For0 < X\ < A\, we define:

¥\ = B(0,l;M;) — B(0, \).
First, we set :

Az

A
@3@?‘410g|:p|+410g>\1}i< )+410gﬁ7
X

0 ()

jz?

jz?

Mi _ eui(wi)/Q,
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and,

wy = T; — T
Then,
AT} = V2™,
min T)Z-A = ui(x; + r0) — ui(x;) + 2u;(z;) > inf u; + ui(z;) = 400,
and,

Awi = v}) = Vi — ) + (Vi = T,

We have the following estimate:
_ _ )\2
V; — VN < AM%|z*|1 — 2= |°

|z

We take an auxiliary functioh) :
Becausey; () < C(\1) < +oo, we have,

A
x = LMW (08(M ) + CoM* N[t = (o

0L fal > A,
with Cl, Cy = Cl, CQ(S,)\l) > 0,

log(M ) |
with, C% = CY(s, A1) > 0. We can choos€’; big enough to have, < 0.

hy = M7*X2(1 — \/|=|)(Cy

Lemma 1: There is am\, o > 0 small enough, such that, for< A < Ay o, we have:

wy + hy > 0.
We have,
f(r,0) = v;(r0) 4+ 2logr,
then,
of 2
E(r,@) =< Vu;(r6)]0 > +;,

According to the blow-up analysis,

79 >0, C>0, |[Vu(r0)|0 > | < C, for 0 <r < ro,
Then,
of c’

7o >0, C" >0, =—(r,0) > —, 0<r <ro,
or r

if 0 <A<yl <ro,

wx(y) + ha(y) = vi(y) — v} (y) + haly) > C(log ly| —log |y*]) + ha(y),
by the definition ofh), we have, foiC, Cy > 0 and0 < A < |y| < 7o,

log |y| — log |y* s .
wA(y) + haly) > (ly| - A)[C% — Ao My,
but,
A N 22
Iyl — [y > |yl = X >0, and |y |:m,

thus,



In the first step of the lemma 2, we have,

v; > minv; = CF, v (y) < Ci(\1,70), if ro < |y| < RiM;,
Thus, inrg < |y| < R;M; and\ < )1, we have,

wx 4+ hy > C; —4log A + 4logrg — C' A\ 2T
then, if A — 0, —log A — +00, and,

wy + hy >0, if A < A, Ay (small), and 7o < |y| < R;M;,
By the maximum princple and the Hopf boundary lemma, we have:

Lemma 2: Let \;, be a positive number such that:

A =sup{A < A1, wx+hy >0 in Xy.}.
Then,

Ak = A1.
The blow-up analysis gives the follwing inequality for theumdary condition,

Fory = |y|@ = R; M0, we have,

yl = RiM;) + hxi(

wyi ( y| = RiM;) =

= ui(xi—l—RiH)—ui(xi)—vi(y)‘i, ly| = R;M;)—41og A\+4 log(R; M;)+C (s, Al)Mi_S)\QH[l—(—

4log R; + ui(z;) + igfui — +o00,

which we can write,

yl = RiM;) + hyi(

Wi (

because) < X < \q,

y| = R;M;) > ngnul + ui(z;) + 4log R; — C(s, A1) — +00,
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