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ON EQUIVALENCE OF SUPER LOG SOBOLEV AND

NASH TYPE INEQUALITIES

MARCO BIROLI AND PATRICK MAHEUX

Abstract. We prove the equivalence of Nash type and super log Sobolev
inequalities for Dirichlet forms. We also show that both inequalities are
equivalent to Orlicz-Sobolev type inequalities. No ultracontractivity of
the semigroup is assumed. It is known that there is no equivalence be-
tween super log Sobolev or Nash type inequalities and ultracontractiv-
ity. We discuss Davies-Simon’s counterexample as borderline case of this
equivalence and related open problems.

1. Introduction

Let (Tt)t>0 = (e−At)t>0 be a symmetric submarkovian semigroup with

infinitesimal generator −A on L2(X, µ) where (X, µ) is a σ-finite measure

space. The symmetry reads as

(Ttf, g) = (f, Ttg), f, g ∈ L2, t > 0,

and the submarkovian property reads as

0 ≤ f ≤ 1 ⇒ 0 ≤ Ttf ≤ 1, f ∈ L2.

Moreover, the semigroup (Tt)t>0 is a C0-contraction semigroup on L2 which

extends to a C0-contraction semigroup Tt := T
(p)
t on each Lp = Lp(X, µ)

with 1 ≤ p < +∞ and acts as a contraction on L∞. The infinitesimal

generator −A is defined by

Af := lim
t→0+

f − Ttf

t
,

for f ∈ D(A) i.e. f ∈ L2 such that limt→0+
f−Ttf

t
exists in L2. In particular,

the operator A is non-negative and self-adjoint on L2.

The associated Dirichlet form E is defined as follows. Let D(E) = D(
√
A)

where
√
A is the positive square root of A. We set E(f, g) = (

√
Af,

√
Ag)

for f, g ∈ D(E). Then the bilinear form E is a positive, symmetric, bilinear,
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2 M. BIROLI AND P. MAHEUX

closed, densely defined form on L2(µ). Moreover, the form E satisfies the

following contraction property:

(1.1) ∀f ∈ D(E), g = (f ∧ 1) ∨ 0 =⇒ g ∈ D(E) and E(g) ≤ E(f)
where E(f) := E(f, f). Furthermore, there is a bijective correspondence

between Dirichlet forms and submarkovian symmetric semigroups, see [F].

A fundamental property of semigroups of operators (Tt)t>0 is ultracon-

tractivity, that is the existence of a non-increasing function a from (0,+∞)

to itself such that for any f ∈ L1,

(1.2) ‖Ttf‖∞ ≤ a(t)‖f‖1, t > 0.

In that case, we will say that the semigroup is ultracontractive.

Under some conditions described for instance in [GH, Section 3.3] (see

also [W2, Proposition 3.3.11]), ultracontractivity of a semigroup (1.2) im-

plies the existence of a heat kernel ht(x, y) for this semigroup

Ttf(x) =

∫

X

ht(x, y)f(y) dµ(y),

and uniform bounds on this kernel

sup
x,y∈X

ht(x, y) ≤ a(t), t > 0.

Conversely, the existence of a heat kernel and uniform bounds obviously

implies ultracontractivity of the semigroup.

Before going further, let us discuss some equivalent formulation of ultra-

contractivity. By interpolation, semigroup property, duality and symmetry,

inequality (1.2) is equivalent to the existence of a non-increasing function

c : (0,+∞) −→ (0,+∞) such that for any f ∈ L1,

(1.3) ‖Ttf‖2 ≤ c(t)‖f‖1, t > 0,

or equivalently, for any f ∈ L2,

(1.4) ‖Ttf‖∞ ≤ c(t)‖f‖2, t > 0.

More precisely, (1.2) implies (1.3) and (1.4) with c(t) ≤
√

a(t) and con-

versely (1.3) or (1.4) implies (1.2) with a(t) ≤ c2(t/2), see [D].

It is known that some regularization properties (for instance ultracon-

tractivity) of the semigroup (Tt)t>0 can be quantified by functional inequal-

ities satisfied by the infinitesimal generator −A. Let us recall two funda-

mental results in that direction.

Let M : (0,+∞) → R be a function. For any y ∈ R, we set

(1.5) Λ(y) = sup
t>0

{ty − 2tM(1/2t)} ∈ (−∞,+∞].
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Note that the function Λ is the Legendre transform of t 7→ 2tM(1/2t).

In [C, Proposition II.2], T. Coulhon proved that if (Tt)t>0 is ultracon-

tractive with c(t) = eM(t) in (1.3). Then the following Nash type inequality

(1.6) Θ
(

||f ||22
)

≤ E(f), f ∈ D(E), ||f ||1 ≤ 1,

holds true with Θ(x) = xΛ(log x), x > 0 and Λ given by (1.5). This specific

form of Θ will be of importance for the formulation of our main result

Theorem 1.1 as already noticed in [BM] in a particular case. This inequality

can be seen as a weak form of Sobolev inequality, see for instance [C],

[BCLS], [VSC], [W2], [BGL].

On the other hand, E.B Davies and B. Simon proved in [D, Theo-

rem 2.2.3] that if (Tt)t>0 is ultracontractive with c(t) = eβ(t) in (1.3). Then

for any non-negative function f in D(E)∩L1 ∩L∞, it implies f 2 log f ∈ L1

and the following super log Sobolev inequality (1.7) holds true

(1.7)

∫

X

f 2 log f dµ ≤ tE(f) + β(t)‖f‖22 + ‖f‖22 log ‖f‖2, t > 0.

This inequality is modeled on the celebrated Gross’ inequality [G1] and

equivalent to supercontractivity of the semigroup (Tt)t>0 i.e. for each t > 0,

Tt is bounded from L2 to L4, see [G2, Theorem 3.7].

T. Coulhon’s and Davies-Simon’s results assert that ultracontractivity

of the semigroup implies Nash type inequality (1.6) and super log Sobolev

inequality (1.7) respectively for the generator of the semigroup. Then it is

natural to ask whether there exist direct relationships between Nash type

and super log Sobolev inequalities without ultracontractivity assumption.

Our main theorem provides a positive answer to that question.

Main Theorem 1.1. Let E be a Dirichlet form with domain D(E). Then
the following statements are equivalent

(1) There exists a function M1 : (0,+∞) → R such that for any f ∈
D(E),

(1.8)

∫

X

f 2 log

( |f |
||f ||2

)

dµ ≤ tE(f) +M1(t)||f ||22, t > 0.

(2) There exits a function M2 : (0,+∞) → R such that, for any f ∈
D(E) ∩ L1 with ||f ||1 ≤ 1,

(1.9) ‖f‖22Λ(log ‖f‖22) ≤ E(f)

where Λ is defined by (1.5) with M = M2.
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(3) There exists a function M3 : (0,+∞) → R and constants c1, c2 > 0

such that, for any f ∈ D(E) ∩ L1 with ||f ||22 = 1,

(1.10) c1

∫

X

f 2Λ+(log c
2
2f

2) dµ ≤ E(f)

with Λ+ = sup(Λ, 0) where Λ is defined by (1.5) with M = M3.

The proof is given in Section 2.

Remark 1.2. (1) Super log Sobolev inequality (1.8) implies Nash type

inequality (1.9) with M = M2 = M1 in the definition (1.5) of Λ.

(2) Nash type inequality (1.9) implies Orlicz-Sobolev inequality (1.10)

with M3 = M2, c1 = 16−1 , c2 = 8−1.

(3) Orlicz-Sobolev inequality (1.10) implies super log Sobolev inequality

(1.8) with M1(t) = M3(c3t) + c4 and c3 = c1, c4 = − log c2.

(4) We do not need to assume that E is a Dirichlet form for the implica-

tions (1.8) =⇒ (1.9) and (1.10) =⇒ (1.8). But the assumption that

E is a Dirichlet form is fundamental for the implication (1.9) =⇒
(1.10).

(5) Inequalities similar to (1.10) called F-Sobolev inequality have been

obtained by F.Y. Wang under a super Poincaré inequality assump-

tion, see [W1], [W2]. See also the comments at the end of Section

3.2.

As a direct consequence of Theorem 1.1, we can provide an alternative

proof of Nash type inequality (1.6) under an ultracontractivity assumption.

Indeed, we just need to apply successively Davies-Simon’s result to deduce

super log Sobolev inequality (1.7) and Theorem 1.1 to get exactly Nash type

inequality (1.6). Likewise, we can provide an alternative proof of super log

Sobolev inequality (1.7) (with some loss on β) under an ultracontractivity

assumption. Here again, we just need to apply successively Coulhon’s result

to deduce Nash type inequality (1.6) and Theorem 1.1 to get super log

Sobolev inequality (1.7).

In practice, functional inequalities are used to prove ultracontractivity

and, consequently, to get bounds on the heat kernel of the semigroup, for

instance, under a Nash type inequality or a super log Sobolev inequality as-

sumption. Here, we briefly discuss these aspects of the theory by first quoting

one of the results of T. Coulhon under Nash type inequalities assumption.

We restrict the statement to the class of submarkovian semigroups. For a

more general statement, we refer to Proposition II.1 of [C]. Assume that

a quadratic form E(f) = (Af, f) satisfies (1.6) for a continuous function
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Θ : [0,+∞) → [0,+∞) such that 1
Θ

is integrable at infinity. Then the

semigroup (Tt)t>0 is ultracontractive and satisfies

(1.11) ||Ttf ||∞ ≤ m(t)||f ||1, 0 < t < t0

where m is the inverse function of y 7→ p(y) =
∫∞
y

dx
Θ(x)

, y > 0 and t0 =
1
2

∫ +∞
0

dx
Θ(x)

∈ (0,+∞], see also Theorem 7.4.5 in [BGL] for a variant.

On the other hand, Theorem 2.2.7 and its Corollary 2.2.8 in [D], which

assume a super log Sobolev inequality, allows us to deduce ultracontractivity

under additional conditions on β in (1.7). The method have been refined

later by D. Bakry in [B], see also Theorem 7.1.2 in [BGL]. For this latter

method, we will not go further in details. Indeed, at the level of functional

inequalities Theorem 1.1 says that super log Sobolev inequalities imply Nash

type inequalities (in fact equivalent) with exactly the same formula (1.6)

for Θ as in T. Coulhon’s result. So, we will emphasize this first method to

get ultracontractive bounds for various classes of behaviour in Section 3.

We refer to [B],[BGL], [C],[D],[DS],[W2] (and references therein) for more

details on the subject of ultracontractivity. Note that the sharp Euclidean

ultracontractive bounds (heat kernel bounds) may be deduced from the

sharp super log Sobolev inequality in R
n, see [BCL], [B], and also [BGL,

Corollary 7.1.6] for a precise statement.

In Section 3, our goal is to describe briefly some classes of ultracontrac-

tivity and their pertaining functional inequalities using Theorem 1.1 and

known results as (1.6), (1.7), (1.11). In particular, we examine two classes

where these properties are equivalent. We also exhibit a class of ultracon-

tractivity where the equivalence does not hold. In Section 4, we provide

examples for these three particular classes of ultracontractivity. The non

equivalence will be confirmed by the counterexample of E.B Davies and B.

Simon described in Section 4.3. This leads us to discuss open problems in

Section 5.

The paper is organized as follows.

In Section 2, we prove our main result Theorem 1.1. In Section 3, we ex-

hibit the functional inequalities for the polynomial, the one and the double-

exponential classes of ultracontractivity. In Section 4, we briefly describe

some examples belonging to these classes and the Davies-Simon’s coun-

terexample. In Section 5, we suggest some open problems about the double-

exponential class and beyond.

2. Proof of Theorem 1.1
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2.1. Super log Sobolev inequality implies Nash type inequality. We

prove that log Sobolev inequality (1.8) implies Nash type inequality (1.9)

with M2 = M1 using the following convexity argument.

Lemma 2.1. If f ∈ L1 ∩ L2 with f ≥ 0 and ‖f‖1 ≤ 1 then

(2.1) ‖f‖22 log ‖f‖2 ≤
∫

X

f 2 log(|f |/‖f‖2) dµ.

Proof. First, assume ‖f‖1 = 1. We deduce (2.1) by applying Jensen’s in-

equality to the convex function Ψ(x) = x log x and the probability measure

dν = |f |dµ. For any f ∈ L1 ∩ L2 with f non identically zero, we get by

homogeneity,

(2.2) ‖f‖22 log (‖f‖2/‖f‖1) ≤
∫

X

f 2 log(|f |/‖f‖2) dµ,

or equivalently,

(2.3) ‖f‖22 log ‖f‖2 ≤
∫

X

f 2 log(|f |/‖f‖2) dµ+ ‖f‖22 log ‖f‖1.

If we assume ‖f‖1 ≤ 1 then log ‖f‖1 ≤ 0 and we get immediately (2.1).

The proof of the lemma is complete. �

Now, we assume that super log Sobolev inequality (1.8) holds true. By

Lemma 2.1, we deduce that for any function f in D(E) with ‖f‖1 ≤ 1,

(2.4) ‖f‖22 log ‖f‖2 ≤ sE(f) +M1(s)||f ||22, s > 0.

Hence, for any s > 0,

‖f‖22
(

1

2s
log ‖f‖22 −

1

s
M1(s)

)

≤ E(f).

By taking the supremum over s > 0, it yields

‖f‖22Λ(log ‖f‖22) ≤ E(f)

where Λ is defined by (1.5) with M = M1. Thus Nash type inequality (1.9)

and (1) of Remark 1.2 are proved. This finishes the proof.

Remark 2.2. Note that we do not use any assumption on the functional

E in this proof. Moreover, the function Λ is automatically finite on the set

{log ‖f‖22 : f ∈ D(E) ∩ L1, ‖f‖1 ≤ 1}.

2.2. Nash type inequality implies Orlicz-Sobolev type inequality.

We use the cut-off method developed in [BCLS] to show that Nash type

inequality (1.9) implies Orlicz-Sobolev type inequality (1.10). The fact that

E is a Dirichlet form is fundamental due to the next lemma.
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Lemma 2.3. Let E be a Dirichlet form with domain D(E). Let f be any

non-negative function in D(E). We set for any ρ > 1 and any k ∈ Z,

fρ,k = (f − ρk)+ ∧ ρk(ρ− 1).

Then fρ,k ∈ D(E) and
∑

k∈Z
E(fρ,k) ≤ E(f).(2.5)

This lemma can be compared with Corollary 2.3 of [BCLS] and Lemma

3.3.2 of [W2]. In what follows, we will denote indifferently E(f) or E(f, f).
The starting point is the following important remark1.

Remark 2.4. Let λ ≥ 0. Let g ∈ D(E) with g ≥ 0. Denote the support of

g by supp(g) = {x ∈ X : g(x) 6= 0}. If h ∈ D(E) with 0 ≤ h ≤ λ, satisfies

h = λ on supp(g), then E(h, g) ≥ 0, see [A, (ii) p.2].

We prove the remark as follows. For any ε > 0, we have (h+εg)∧λ = h.

By Dirichlet property

E(h) = E((h+ εg) ∧ λ) ≤ E(h+ εg) = E(h) + 2εE(h, g) + ε2E(g).
Subtracting E(h) on both sides of this inequality and dividing by ε > 0, it

yields

0 ≤ 2E(h, g) + εE(g).
When ε goes to 0, we get E(h, g) ≥ 0 as stated.

Proof. (Lemma 2.3). Let f ∈ D(E) be non-negative. Fix ρ > 0. For any

n ∈ N, we set fn
ρ = f ∧ ρn+1 = ρn+1(( f

ρn+1 ∧ 1) ∨ 0). By Dirichlet property,

fn
ρ , f

−(n+1)
ρ and fρ,k belong to D(E). Indeed, each one of these expressions

are normal contractions of f of the form φ(f) with φ(u) = ((u− a) ∨ 0)∧ b

where a, b > 0, see [F, p.5].

We apply Remark 2.4 to h = f
−(n+1)
ρ , λ = ρ−n and g = fρ,k with

k = −n, · · · , n. We deduce E(fρ,k, f−(n+1)
ρ ) ≥ 0 for k = −n, · · · , n.

Let (p, k) ∈ Z
2 with p < k. Once again, we apply Remark 2.4 with

h = fρ,p, λ = ρp(ρ − 1) and g = fρ,k, it yields E(fρ,p, fρ,k) ≥ 0. By the

relation

fn
ρ =

n
∑

k=−∞
fρ,k =

n
∑

k=−n

fρ,k + f−(n+1)
ρ ,

and the Dirichlet property, we obtain

E(f) ≥ E(fn
ρ ) = E(

n
∑

k=−n

fρ,k) + 2
n
∑

k=−n

E(fρ,k, f−(n+1)
ρ ) + E(f−(n+1)

ρ ).

1The main argument was pointed out to us by G.Allain, see [A, p.2,5].
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Since the two last terms are non-negative and by developing the third term,

we get

E(f) ≥
n
∑

k,p=−n

E(fρ,p, fρ,k) =
n
∑

k=−n

E(fρ,k, fρ,k) +
n
∑

k 6=p,k,p≥−n

E(fρ,p, fρ,k).

Since the last term of the right-hand side is non-negative, we arrive at

E(f) ≥
n
∑

k=−n

E(fρ,k, fρ,k).

The lemma is proved by passing to the limit as n → +∞. �

We are now in position to prove Orlicz-Sobolev inequality (1.10). We

divide the proof into two steps.

Step 1. Let f ∈ L2 be a non-negative function such that ||f ||2 = 1. Let

k ∈ Z. We define fk := f2,k = (f − 2k)+ ∧ 2k. By Hölder’s inequality,

(2.6) ||fk||21 ≤ ||fk||22µ(f ≥ 2k).

On the other hand, by Bienaymé-Chebyshev’s inequality we have

(2.7) 22(k−1)µ(f ≥ 2k) ≤ ||fk−1||22 ≤ ||f ||22 ≤ 1.

Combining inequalities (2.6) and (2.7), we obtain

(2.8) 2k−1 ≤ ||fk||2/||fk||1.

Again by Bienaymé-Chebyshev’s inequality, we have

(2.9) 22kµ(f ≥ 2k+1) ≤ ||fk||22.

Step 2. Assume that Nash type inequality (1.9) holds true. For conve-

nience set B(x) = Λ(log x2). For a function H defined on [0,+∞), we define

H+ its non-negative part byH+(x) = max(H(x), 0), x ≥ 0. As the quadratic

form E is non-negative, we have for any g ∈ D(E) ∩ L1 with ||g||1 = 1,

||g||22Λ+(log ||g||22) = ||g||22B+(||g||2) ≤ E(g).

By homogeneity, it implies for any g ∈ D(E) ∩ L1 and g 6= 0,

(2.10) ||g||22Λ+(log ||g||22/||g||21) = ||g||22B+(||g||2/||g||1) ≤ E(g).

Let f and fk be as in Lemma 2.3. We apply inequality (2.10) to g = fk, it

yields

||fk||22B+(||fk||2/||fk||1) ≤ E(fk).
Since B+ is a non-negative non-decreasing function, we obtain from (2.8)

and (2.9),

(2.11) 22kB+(2
k−1)µ(f ≥ 2k+1) ≤ E(fk), k ∈ Z,
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for any non-negative function f ∈ D(E) ∩ L1. Let λ > 0 to be chosen later.

We discretize the following integral
∫

X

f 2B+(λf) dµ =
∑

k∈Z

∫

{2k≤f<2k+1}
f 2B+(λf) dµ

≤
∑

k∈Z
22(k+1)B+(λ2

k+1)µ(f ≥ 2k)

≤
∑

k∈Z
22(k+2)B+(λ2

k+2)µ(f ≥ 2k+1).

We choose λ = 2−3 and we get
∫

X

f 2B+(f/8) dµ ≤ 24
∑

k∈Z
22kB+(2

k−1)µ(f ≥ 2k+1).

By applying (2.11) and Lemma 2.3 with ρ = 2, it leads to

(2.12)

∫

X

f 2B+(f/8) dµ ≤ 24
∑

k∈Z
E(fk) ≤ 24E(f).

So, Orlicz-Sobolev type inequality (1.10) is proved for f ≥ 0, ||f ||2 = 1 with

c1 = 1/16 and c2 = 1/8. For real-valued functions f ∈ D(E), we obtain

the same conclusion by using E(|f |) ≤ E(f) which is a consequence of the

Dirichlet property. This completes the proof of Orlicz-Sobolev inequality

(1.10) and (2) of Remark 1.2.

2.3. Orlicz-Sobolev type inequalities implies super log Sobolev in-

equalities. In this section, we plan to prove super log Sobolev inequality

(1.8) under the assumption of Orlicz-Sobolev type inequality (1.10).

From the definition (1.5) of Λ, we have for any t > 0 and y ≥ 0,

ty/2− tM3(1/t) ≤ Λ(y) ≤ Λ+(y).

By the change of variable t = (c1s)
−1 for s > 0 with c1 > 0 as in (1.10), it

yields

y/2 ≤ c1sΛ+(y) +M3(c1s).

Let f ∈ D(E). Set y = log(c22f
2) with c2 > 0 as in (1.10). Hence

log(c2|f |) ≤ c1sΛ+(log(c
2
2f

2)) +M3(c1s).

Multiplying this expression by f 2 and integrating on X with respect to µ,

it leads us to
∫

X

f 2 log |f | dµ+ (log c2)||f ||22 ≤ sc1

∫

X

f 2Λ+(log(c
2
2f

2))dµ+M3(c1s)||f ||22
≤ sE(f) +M3(c1s)||f ||22.

The last inequality is obtain from the assumption (1.10). Thus we easily

conclude (1.8) with M1(s) = M3(c3s) + c4, s > 0, and c3 = c1, c4 = − log c2.
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2.4. Remarks and comments.

2.4.1. A remark about the cut-off method. For the proof of Orlicz-Sobolev

type inequalities of Theorem 1.1, we have applied the cut-off method with

fk i.e. fρ,k with ρ = 2. A similar proof of the Orlicz-Sobolev type inequality

(1.10) under the assumption of Nash type inequality (1.9) can be performed

with fρ,k of Lemma 2.3 for any ρ > 1. In that case, if we apply successively

the circle of implications (1.8) with M1 =⇒ (1.9) =⇒ (1.10) =⇒ (1.8) with

M̃1. For any ρ > 1, we have the relation

M̃1(t) = M1

(

t(ρ− 1)2ρ−4
)

+ log(ρ3(ρ− 1)−1).

In terms of equivalence of these functional inequalities, it is of inter-

est to obtain M̃1 as close as possible to M1, up to the additive constant

log(ρ3(ρ − 1)−1). Since in applications we can always assume that M1 is

a non-increasing function, we need to optimize the choice of ρ > 1 of the

expression M1(t(ρ − 1)2ρ−4) for any t > 0 i.e. to optimize the function

ρ 7→ (ρ− 1)2ρ−4 over (1,+∞). This function attains exactly its supremum

at ρ = 2. This justifies our choice of ρ = 2 for the proof in Section 2.2.

2.4.2. Comments. After the submission of this paper, it was drawn to our

attention that the relationship between the statement (1) for a fixed t and

a closed version of (2), namely (2.4) for a fixed t, of our main Theorem 1.1

is implicitly described in Proposition 5.1.8, p.241, of the very recent book

[BGL]. This is proved under the stronger assumptions that the Dirichlet

form E is given by a carré du champ, satisfies the diffusion property, is

ergodic and the measure is invariant for the associated semigroup. These

conditions are imposed by the use of Proposition 3.1.17 in [BGL]. Note

that, different from Proposition 3.1.17 of [BGL], Lemma 2.3 is valid for all

Dirichlet forms without additional assumptions.

We also refer the reader to [BGL] for an introduction to the subject of

functional inequalities treated here (in particular, Chapters 5 and 7) and

also for related topics, in particular, for the measure-capacity formulations

of Nash type inequalities which are not considered in this paper, see [BGL,

Chap. 8]. Similarly, we can consult the book by F-Y Wang [W2].

3. Examples of classes of ultracontractivity

In this section, we consider three special classes of ultracontractivity. For

the first two classes, we state the equivalence between the specific bound

of ultracontractivity and the corresponding functional inequalities. For the
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third class, ultracontractivity is a stronger property than the pertaining

functional inequalities.

3.1. Polynomial class of ultracontractivity. We say that a semigroup

(Tt)t>0 with generator A belongs to the polynomial class of ultracontractiv-

ity of order ν > 0 if c(t) = c1t
−ν/4 in (1.3) with c1 > 0. This is the most

common case of applications, see for instance [N],[CKS],[VSC],[G],[BGL].

We recall that E(f) = (
√
Af,

√
Af) with f ∈ D(

√
A). The following state-

ments are equivalent.

(1) The semigroup (Tt)t>0 belongs to the polynomial class of ultracon-

tractivity of order ν.

(2) The generator A satisfies the following Nash inequality

||f ||2+
4

ν

2 ≤ c2E(f)||f ||
4

ν

1 .

(3) The generator A satisfies the following super log Sobolev inequality
∫

X

f 2 log(f/||f ||2)dµ ≤ tE(f) + log(c3t
− ν

4 )||f ||22, t > 0.

(4) The generator A satisfies the following Orlicz-Sobolev type inequal-

ity
∫

X

f 2+ 4

ν dµ ≤ c4E(f)||f ||
4

ν

2 .

(5) The generator A satisfies the following Sobolev inequality (ν > 2)

||f ||22ν
ν−2

≤ c5E(f).

(6) The generator A satisfies the following super Poincaré inequality

||f ||22 ≤ tE(f) + c6t
−ν/2||f ||21, t > 0,

for some positive constants ci, i = 1, · · · , 6.
The equivalences between polynomial ultracontractivity, Nash inequality,

super log Sobolev inequality and Orlicz-Sobolev type inequality are deduced

from (1.6), (1.7), (1.11) and Theorem 1.1. Nash inequality is super Poincaré

inequality optimized over t > 0. Historically, the first proof of equivalence

between ultracontractivity and Sobolev inequality can be found in [V] and

the one between ultracontractivity and Nash inequality (and implicitly su-

per Poincaré inequality) in [CKS] inspired by [N]. A direct proof of the fact

that Nash inequality implies Sobolev inequality using the cut-off method

can be found in [BCLS]. The Orlicz-Sobolev inequality (4) is also called

Moser’s inequality.
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3.2. One-exponential class of ultracontractivity. We say that a semi-

group (Tt)t>0 with generator A belongs to the one-exponential class of ul-

tracontractivity of order α > 0 if c(t) = exp(c1t
−α) in (1.3) with c1 > 0.

The following statements are equivalent.

(1) The semigroup (Tt)t>0 belongs to the one-exponential class of ultra-

contractivity of order α.

(2) The generator A satisfies Nash type inequality (1.9) with

(3.1) Λ(log x) = c2
[

log+ (c3x)
]1+ 1

α .

(3) The generator A satisfies super log Sobolev inequality (1.7) with

β(t) = c4t
−α.

(4) The generator A satisfies Orlicz-Sobolev type inequality (1.10) with

Λ as in (3.1).

Here ci are positive constants for i = 1, · · · , 4.
The equivalences between one-exponential ultracontractivity, Nash type

inequality, super log Sobolev inequality and Orlicz-Sobolev type inequality

are deduced from (1.6), (1.7), (1.11) and Theorem 1.1.

These results apply to the family of examples of Section 4.1 described

below.

Comments

First, we notice the following fact. The usual semigroup proof of super

Poincaré inequality under the following ultracontractivity assumption

||Ttf ||2 ≤ c(t)||f ||1, t > 0,

is as follows. Let f ∈ D(E) ∩ L1 and t > 0. By symmetry and semigroup

properties, we obtain

||f ||22 − ||Tt/2f ||22 = (f − Ttf, f) =

∫ t

0

(ATs/2f, Ts/2f) ds

≤
∫ t

0

(Af, f) ds = tE(f)

because s → (ATs/2f, Ts/2f) is non-increasing for all f ∈ D(E). Hence, the
following super Poincaré inequality is satisfied

(3.2) ||f ||22 ≤ tE(f) + γ(t)||f ||21, t > 0

with γ(t) = c2(t/2). In the case where c(t) = exp[ c
2
(1 + (2t)−1/δ)] for some

δ > 0, we get γ(t) = exp[c(1 + t−1/δ)]. By [W1, Corollary 3.3], it implies

that the so-called F-Sobolev inequality of index δ,

(3.3)

∫

X

f 2[log(1 + f 2)]δ dµ ≤ c1E(f) + c2||f ||22,
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holds for some constants c1, c2 > 0.

But below we follow another route and deduce an improved F-Sobolev

inequality under the same assumption of ultracontractivity by using Theo-

rem 1.1. In particular, this will show that (3.2) and (3.3) are not necessarily

sharp for the Dirichlet form E despite the fact that they are equivalent in

a general framework [W1, Corollary 3.3]. Indeed, in Section 1 we have seen

that the following super log Sobolev inequality

(3.4)

∫

X

f 2 log |f | dµ ≤ tE(f) + (log c(t))‖f‖22 + ‖f‖22 log ‖f‖2, t > 0

holds true by using [D, Theorem 2.2.3]. Now by applying Theorem 1.1, we

deduce that the following F-Sobolev inequality of index δ̃ = δ + 1,

(3.5)

∫

X

f 2[log(1 + f 2)]δ+1 dµ ≤ c1E(f) + c2||f ||22,

holds true. More precisely, we obtain (3.5) from the Orlicz-Sobolev type

inequality associated to (3.1) with α = 1/δ and by adding the term c2||f ||22.
Since we are considering the one-exponential class of order 1/δ, the in-

dex δ̃ = 1 + δ in (3.5) is now sharp by the results described above these

comments. Moreover, by applying [W1, Corollary 3.3] again, we obtain an

improved super Poincaré inequality (3.2) for small t with rate function

γ̃(t) = exp[c̃(1 + t−1/δ̃)], δ̃ = 1 + δ, t > 0

in place of γ(t) since limt→0 γ̃(t)/γ(t) = 0.

The discussion above reveals some weakness of what we have called the

“usual”semigroup proof of super Poincaré inequality (3.2). But note that

the phenomenon described above does not occur for the polynomial class

studied in Section 3.1.

3.3. Double-exponential class of ultracontractivity. We say that a

semigroup (Tt)t>0 with generator A belongs to the double-exponential class

of ultracontractivity of order γ > 0 if c(t) = exp2(c1t
−γ) in (1.3) where

exp2 = exp ◦ exp and c1 > 0. For this class, the situation is quite different.

Ultracontractivity is strictly stronger than the other functional inequalities

introduced in this paper. More precisely, if the semigroup (Tt)t>0 belongs to

the double-exponential class of order γ > 0 then it implies

(1) The generator A satisfies Nash type inequality (1.9) with

(3.6) Λ(log x) = k1 log+ (k2x)
[

(log+)2 (k2x)
]

1

γ .

(2) The generator A satisfies super log Sobolev inequality (1.7) with

β(t) = exp(k0t
−γ).
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(3) The generator A satisfies Orlicz-Sobolev type inequality (1.10) with

Λ as in (3.6).

Here ki are positive constants for i = 0, 1, 2.

Ultracontractivity implies Nash type inequality by (1.6) and super log

Sobolev inequality by (1.7). Theorem 1.1 says that Orlicz-Sobolev type in-

equality is equivalent to Nash type inequality and super log Sobolev inequal-

ity. The use of (1.11) fails for the converse. We postpone the discussion of

the non equivalence of one of these functional inequalities with ultracontrac-

tivity to Section 5. Note that these functional inequalities are equivalent to

each other by Theorem 1.1, independently of the ultracontractivity assump-

tion.

These results apply to the family of examples of Section 4.2 described

below.

4. Examples of ultracontractive semigroups

In this section, we describe briefly examples of semigroups belonging

to the one and double-exponential classes of ultracontractivity for which

results of Section 3 apply. The polynomial class of ultracontractivity is clas-

sical and many examples of operators can be found in the literature. So, we

will not provide a detailed account for this class but indicate very briefly

some examples of operators. The first example is the Laplacian on R
n and

examples elaborated on this model, see [N]. Sub-Laplacians on Lie groups

of polynomial growth also provide many examples, see [VSC] and reference

therein, as well as Laplace-Beltrami operators on some Riemannian mani-

folds, see [G, p.368], Laplacians on fractals, see e.g. [K]. The list above is

not exhaustive.

Here, we focus on examples in the one- and double-exponential classes.

These examples are taken from [B] and concern convolution semigroups on

the infinite dimensional torus T∞. Other examples can be found for instance

in [BCS, Section 8]. Note that the study of the convolution of distributions

of probability measures on topological groups is an old and vast subject and

goes back at least to [ST]. See also the selected open problems described in

the recent paper [S] and references therein.

Let X = T
∞ be the product of countable many copies of the torus T with

its ordinary product structure. The group T
∞ is an abelian compact group.

We denote by 0 the neutral element and by µ the normalized Haar measure

of the group. This measure is the countable product of the normalized Haar

measure on T.
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Let µt be the brownian semigroup on T. To a sequence A = {ak}∞k=1 of

positive numbers, we associate the product measure µA
t on T

∞ defined by

µA
t = ⊗∞

k=1µakt, t > 0.

This family of probability measures (µA
t )t>0 defines a symmetric convolution

semigroup on T
∞ denoted by (TA

t )t>0. Ultracontractivity reads as

||TA
t ||1→∞ = µA

t (0) ∈ (0,+∞]

where µA
t (0) denotes the density of µA

t (when it exists) evaluated at 0. The

infinitesimal generator A of (TA
t )t>0 acts on the cylindrical functions, i.e.

functions depending on a finite number of variables, as

Af =

∞
∑

k=1

ak
∂2f

∂2xk
.

The associated counting function NA defined by

NA(x) = ♯{k ≥ 1 : ak ≤ x}, x > 0,

is of fundamental importance for the study of ultracontractivity as it can

be seen by the following examples.

4.1. Examples in one-exponential class. Let α > 0. If the sequence

(ak)k≥1 is chosen such that NA(x) ∼ xα as x → +∞ then

log µA
t (0) ∼ k(α)t−α as t ց 0,(4.1)

see [B, Theorem 3.18]. Hence, the semigroup (TA
t )t>0 belongs to the one-

exponential class of ultracontractivity and results of Section 3.2 hold true

for such families of (ak)k≥1. For example, one can take ak = k1/α.

4.2. Examples in double-exponential class. Let γ > 0. If the sequence

(ak)k≥1 is chosen such that

logNA(x) ∼ xγ/(γ+1) as x → +∞.

Then

log log µA
t (0) ∼ c(γ)t−γ as t ց 0,(4.2)

see [B, Theorem 3.27]. Hence, the semigroup (TA
t )t>0 belongs to the double-

exponential class of ultracontractivity and results of Section 3.3 hold true

for such families of (ak)k≥1. For example, one can take ak = [log(k + 2)]δ

with δ = (γ + 1)/γ.
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4.3. A borderline case of the double-exponential class: Davies-

Simon’s counterexample. In this section, we show that ultracontrac-

tivity and super log Sobolev inequality are not equivalent properties in the

double-exponential class. For that purpose, we describe the Davies-Simon’s

counterexample i.e. a generator of a submarkovian semigroup satisfying a

super log Sobolev inequality (1.7) with β(t) = exp(c/t) but not ultracon-

tractive, see [DS, Theorem 6.1 (b) and Remark 1 p.359]. Later on, a more

detailed study have been provided for a family of examples including this

one in [KKR],[BCL], [BGL, Sect.7.3]. See also the comments after Proposi-

tion 7.3.1 of [BGL] on the examples treated by this proposition concerning

the one- and double-exponential classes.

Let A be the operator Af = ∆f +∇U.∇f defined on smooth functions

f on the real line R with ∆ = − d2

dx2 and let U : R → R be a function

of class C2. Let µ be the invariant measure dµ(x) = e−U(x) dx where dx

denotes the Lebesgue measure on R. The Dirichlet form associated to A is

given by E(f) =
∫

R
|∇f |2 dµ. The expected counterexample corresponds to

the choice U(x) = (1+ x2) log(1 + x2). In the sequel, we denote by ||.||22 the
L2-norm with respect to the measure µ.

Theorem 4.1. Let (Tt)t>0 be the semigroup associated with the infinitesimal

generator A defined above. Then

(1) The following log Sobolev inequality holds true. For any function

f ∈ D(E),

(4.3)

∫

R

f 2 log

(

f 2

||f ||22

)

dµ ≤ tE(f) +H(t)||f ||22, t > 0

where H(t) is such that there are four constants c3, c4, c
′
3, c

′
4 > 0

(4.4) c3e
c4t−1 ≤ H(t) ≤ c′3e

c′4t
−1

,

for t small enough.

(2) The Nash type inequality (1.9) and the Orlicz-Sobolev inequality

(1.10) hold true with Λ given by (3.6) where γ = 1.

(3) The semigroup (Tt)t>0 is not ultracontractive.

Gathering the arguments of the proof given in [DS] is rather difficult.

Thus we propose a direct but different proof of super log Sobolev inequality

following [BCL]. Here, we do not pretend for novelty. A simple proof of non

ultracontractivity (using subsolution method for instance) is known and well

detailed in [KKR, Example 5.3].
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Proof. Here we only prove the first statement. We divide the proof into two

steps. In the first step, we prove super log Sobolev inequality (4.3) with

(4.5) H(t) = −1

2
log(πe2t) + sup

x∈R
Vt(x)

where Vt(x) = −t
[

−1
2
U ′′(x) + 1

4
(U ′(x))2

]

+ U(x) = −tV (x) + U(x). In the

second step, we provide the estimates (4.4) of H(t).

Step 1. We follow the arguments of Proposition 3.1 of [BCL], see also

[BGL, Prop.7.3.1]. We start from Gross’ inequality which reads as

∫

R

v2 log

(

v2

||v||2L2(dγ)

)

dγ ≤ 2

∫

R

|∇v|2 dγ

where v is a smooth function with compact support and dγ(x) = 1√
2π
e−

x2

2 dx

is the gaussian measure. We set G(x) = 1√
2π
e−

x2

2 and g = v
√
G. By inte-

gration by parts, it yields

∫

R

g2 log

(

g2

||g||2L2(dx)

)

dx ≤ 2

∫

R

|∇g|2 dx− 1

2
log(2πe2)

∫

R

|g|2 dx.

Let h be a smooth function with compact support on R. We set g(x) =

h(x
√
2−1t) with t > 0. The previous inequality becomes

∫

R

h2 log

(

h2

||h||2L2(dx)

)

dx ≤ t

∫

R

|∇h|2 dx− 1

2
log(πe2t)

∫

R

|h|2 dx.

Now, let f be a smooth function with compact support on R. Choose h =

fe−
U
2 in the preceding inequality. Again by integration by parts, we obtain

∫

R

f 2 log

(

f 2

||f ||2L2(dµ)

)

dµ ≤ t

∫

R

|∇f |2 dµ− 1

2
log(πe2t)||f ||2L2(dµ)

+

∫

R

(

−t

[

−1

2
U ′′(x) +

1

4
(U ′(x))2

]

+ U(x)

)

f 2 dµ.

This immediately implies (4.3) with H given by (4.5).

Step 2. Upper bound on H(t).

Let 0 < t < 1. To obtain the upper bound (4.4) on H(t), it is enough to

find a similar upper bound on Vt where Vt(x) is given by

Vt(x) = t
[

−x2 log2(e(1 + x2)) + log(e(1 + x2))
]

+
2tx2

1 + x2
+(1+x2) log(1+x2).

The function Vt(x) is clearly uniformly bounded by a constant on the set

{x ∈ R : |x| ≤ 1} when 0 < t < 1. By symmetry, it suffices to bound the
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supremum of Vt(x) for x ∈ [1,+∞). For any δ > 0 and any x ≥ 1, it is

easily shown that

δe log2(e(1 + x2)) + log(e(1 + x2)) ≤
(

δe+
1

log(2e)

)

x2 log2(e(1 + x2)).

Now, choose δ such that 0 < δ ≤ 1
2e

(

log 2
1+log 2

)

. It implies δe+ 1
1+log 2

≤ 1− δe

and

δe log2(e(1 + x2)) + log(e(1 + x2)) ≤ (1− δe)x2 log2(e(1 + x2)).

Then we deduce

−x2 log2(e(1 + x2)) + log(e(1 + x2)) ≤ δ[−e(1 + x2) log2(e(1 + x2))],

for all x ≥ 1. This yields

Vt(x) ≤ tδ[−e(1 + x2) log2(e(1 + x2))] + 2t+ e(1 + x2) log(e(1 + x2)).

DefineWs(y) := −sy log2 y+y log y+2t with y > 1. The functionWs attains

its supremum at y0 = exp
(

(1− 2s+
√
1 + 4s2)(2s)−1

)

. Since Vt(x) ≤ Ws(y)

for any x and y such that y = e(1 + x2) and s = tδ, we deduce that

sup
x≥1

Vt(x) ≤ Ws(y0) ≤
e−1

2s+
√
1 + 4s2

exp

(

1

2s
+

√
1 + 4s2

2s

)

+ 2t.

Thus for any 0 < t <
√
3

2δ
, we have supx≥1 Vt(x) ≤ e−1

2δt
exp

(

3
2δt

)

+
√
3
δ
. From

this inequality, we deduce the upper bound (4.4) on H(t) for t small enough.

Lower bound on H .

Let t > 0 and x0 > 0 be such that log(e(1 + x2
0)) = (2t)−1. Thus for any

0 < t < 1
8
,

sup
x∈R

Vt(x) ≥ Vt(x0) =

(

1

4t
− 1

)

e
1

2t
−1 +

1

4t
+

1

2
+ 2t(1− e1−

1

2t ).

Thus

sup
x∈R

Vt(x) ≥
(

1

4t
− 1

)

e
1

2t
−1 ≥ 1

8t
e

1

2t
−1 ≥ e−1e

1

2t .

This proves the lower bound (4.4) on H(t) and completes the proof of the

first statement of Theorem 4.1. �

5. Open problems and concluding remarks

In this section, we address questions about equivalence between ultra-

contractivity and the functional inequalities introduced in this paper for

the double-exponential class and beyond this class. These problems deserve

to be studied due to the existence of many different ultracontractivity be-

haviours, see for instance [BCS, Section 6 and 8].

Here is a list of questions and open problems.
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Theorems of equivalence.

(i) To the authors’ knowledge, characterization of the largest class of

functions Θ in Nash type inequality or Λ in Orlicz-Sobolev inequality or β

in super log Sobolev inequality for a generator to be equivalent to ultracon-

tractivity of the semigroup remains an open problem.

(ii) It would be of interest to describe new stable classes of ultracontrac-

tivity as in Section 3.1 and 3.2 in view of (i).

Sharpness of known theorems.

(iii) By (1.6), ultracontractivity for a semigroup with c(t) = exp2 (kt
−γ)

in (1.3) implies a Nash type inequality for the generator with Θ of the form

Θ(x) ≃ x log x (log log x)
1

γ , for x large enough.

It would be interesting to know whether there are (Dirichlet) operators such

that both ultracontractivity and Nash type inequality are sharp with c(t)

and Θ(x) as above, for all or some γ > 0. If the answer is positive, this

would show that (1.6) is sharp for the double-exponential class.

(iv) In the opposite direction, if an operator satisfies a Nash type in-

equality with Θ(x) ≃ x log x (log log x)
1

γ for x large enough then by (1.11)

the semigroup is ultracontractive with c(t) = exp2 (kt
−α) and the defec-

tive exponent α = γ
1−γ

when γ ∈ (0, 1). It would be interesting to know

whether there are (Dirichlet) operators such that both ultracontractivity

and Nash type inequality are sharp with Θ(x) and c(t) as above for some or

all γ ∈ (0, 1). If the answer is positive, this would show that (1.11) is sharp

for the double-exponential class.

(v) Also in another direction, if an operator satisfies a stronger Nash

type inequality with Θ(x) ≃ x log x (log log x)
1

γ
+1 for x large enough then by

(1.11) the semigroup is ultracontractive with c(t) = exp2 (kt
−γ). A similar

question to the one of (iv) arises for some or all γ > 0. If the answer is

positive, this would show that (1.11) is sharp but (1.6) is not.

Concluding remarks.

At the present time, we are not able to formulate a conjecture on a theo-

rem of general equivalence. In this regard, it will be interesting to compare

Theorem 2.2.7 of [D] and Coulhon’s result (1.11) in light of Theorem 1.1, see

also Theorem 7.1.2 and Theorem 7.4.5 of [BGL]. Indeed, such a relation is

not clear despite the fact that ultracontractivity (1.11) appears to be more

direct for the double-exponential class. In that direction, the contribution

of Theorem 1.1 is important since it describes the exact correspondence

between super log Sobolev inequalities and Nash type inequalities. As a

consequence, it should be possible to compare the ultracontractive bounds
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obtained by both methods discussed above. The authors of this paper do

not know if such a comparison is really possible due to the fact that The-

orem 7.1.2 of [BGL] treats also hypercontractivity and Theorem 7.4.5 of

[BGL] apparently does not. A restricted open problem is to find under what

general conditions on β in super log Sobolev inequality (1.7) and Λ in Nash

type inequality (1.6) related by (1.5) lead to comparable ultracontractive

bounds by applying both methods.

To conclude this paper, we conjecture that the super log Sobolev profile

H0 defined by

(5.1)

H0(t) = sup

(
∫

X

f 2 log f 2dµ− tE(f) : f ∈ D(E), ||f ||22 = 1

)

, t > 0

of Davies-Simon’s counterexample satisfies the same lower estimate as H in

(4.4). Note that the upper bound holds trivially by minimality of H0.
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