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Abstract

1 We study relationships between Logarithmic Sobolev inequalities with one parameter of
Davies-Simon type, energy-entropy inequality, Nash-type inequality and Sobolev-type inequal-
ities. The inequalities of Sobolev-type apply in the general setting of symmetric sub-Markovian
semigroups (and some generalizations). We provide several examples of application of theses
results for ultracontractive semigroups but also for some non-ultracontractive like Ornstein-
Ulhenbeck semigroup.

1 Introduction

The main motivation of this work is to prove equivalence theorems for symmetric sub-Markovian
semigroups, generalizing the case of polynomial ultracontractivity, between decay of the semi-
group and functional inequalities satisfied by the Dirichlet form associated to the generator of the
semigroup.

For general (let say symmetric sub-Markov) semigroups, E-B.Davies and B.Simon proved a
Logarithmic Sobolev inequality with parameter for general ultracontractive semigroups and some
partial converses (see[DS],[Ma]). By a direct approach, T.Coulhon ([C]) obtained a Nash-type
inequality from the ultracontractivity property of the semigroup and gave also partial converse
(See [C],[BCS],[Ma]).

In this paper, we show that, from Logarithmic Sobolev inequality, we can also deduce Nash-type
inequality and obtain the same Nash function as in [C]. Since ultracontractivity implies Logarith-
mic Sobolev inequality, we obtain an indirect proof of Coulhon’s result. But one advantage of our
approach is that for non-ultracontractive semigroups but satisfying a Logarithmic Sobolev inequal-
ity, we can deduce a Nash-type inequality for these semigroups. This can be applied as well as
to the Ornstein-Ulhlenbveck hypercontractive semigroup or to Davies-Simon counter-example (See
[D] Example 2.3.5. and [DS]. Remark 1 p.359) or to Γ-type semigroups.

Our results have closed relationships with F -Sobolev inequalities obtained by F-Y-Wang (See
[W1] and also the book [W2]). In these papers, the assumption used is Super-Poincaré inequality
(Poincaré inequality with one parameter) closed to Logarithmic Sobolev inequality with parameter.

In the case of ultracontractivity, we apply this to several classes of decay of semigroups of par-
ticular interest: one-exponential and double-exponential classes (See below for definitions). The
F -Sobolev obtained for the polynomial class has a weaker formulation than the Lp-Sobolev in-
equality but, in fact, is equivalent.

To summarize, we study relationships between Logarithmic Sobolev inequalities with one pa-
rameter of Davies-Simon-type, energy-entropy inequality, Nash-type inequality and Sobolev-type
inequalities (also called F -Sobolev). The inequalities of Sobolev-type applies in the general setting
of symmetric sub-Markovian semigroups (and some generalizations). We give several examples of
application of theses results for ultracontractive semigroups as well as for some non-ultracontractive
semigroups.

Let’s describe the setting and recall some well-known facts.

Let (Tt)t>0 be a symmetric sub-Markovian semigroup defined on L2(X,µ) with (X,µ) a σ-
finite measure space and L as infinitesimal generator. We denote by E(f) = (Lf, f) the associated
Dirichlet form (See for instance [Fu] for the general theory). Following [D], a semigroup is said to
be ultracontractive if

‖Ttf‖∞ ≤ a(t)‖f‖2, t > 0, (1.1)

1Several years ago, a French version was available but with a limited diffusion.
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with a : (0,+∞) → (0,+∞) a positive decreasing function. In other words, Tt sends L2 into L∞

for any t > 0. We shall say that the semigroup is (at most) of polynomial type if we can take
a(t) = an(t) = c t−

n
4 , t > 0 with n > 0 (not necessarily an integer). Note also that, with this

terminology if (Tt) is in the class a then it is also in the class b whenever a ≤ b.

In a well-known paper [V] (See also [VSC]), N.Varopoulos has shown that polynomial ultracon-
tractivity (1.1), with n > 2, is equivalent to an L2-Sobolev inequality (in the setting of symmetric
sub-Markovian semigroups) that is

‖f‖2
q ≤ c E(f) (1.2)

with q = 2n
n−2 , for all f ∈ D where D is the domain of the Dirichlet form E .

In their paper [CKS], E. Carlen, S.Kusuoka and D. Strook have shown that ultracontractivity
property (1.1) with a = an is also equivalent to the following Nash inequality:

‖f‖2+ 4
n

2 ≤ c E(f)‖f‖
4
n
1 , f ∈ D (1.3)

using old ideas of Nash ([CKS],[N]). See also [N] for the proof of this inequality in R
n
.

Also independently , E.B. Davies et B. Simon ([DS]) following ideas of L.Gross ([G]), have
introduced Logarithmic Sobolev inequalities with one parameter of the following form:

∫

X

f2 ln f dµ ≤ tE(f) +M(t)‖f‖2
2 + ‖f‖2

2 ln ‖f‖2 (1.4)

for any t > 0 and for any 0 ≤ f ∈ D ∩ L1 ∩ L∞.

They proved that if the semigroup is ultracontractive (1.1) then (1.4) is satisfied avec M(t) =
log a(t). Clearly, Sobolev inequality with parameter (LSP for short) allows to deal with with more
general classes of ultracontractivity. A complete converse doesn’t hold in general but for some
classes of a, the converse holds true (up to constants) (See [DS] p.359) see also [Ma]). For instance
in the polynomial class {an, n > 0} (See [D]). It is important to note that we pass from the
polynomial ultracontractivity with an(t) = c t−

n
4 to LSP and vice-versa with exactly the same

exponent n (But the constant c may change). Another important class we are interested in is
the one-exponential class a(t) = ec(1/tα+1), α > 0, we also have a converse with no loss on the
exponent α (See [Ma] for instance). Examples of such behavior of the heat kernel really ocure
(at least for small time t). Contrary to the one-exponential case, the double exponential class

a(t) = ee1/tα

, α > 0 has no converse. But we can show that if (1.4) is satisfied with 0 < α < 1 then
the known techniques allow us only to prove that the semigroup is also in the double-exponential
class but with another index index α′ = α

1−α . Moreover in this double-exponential class, a converse
cannot hold. Indeed, there exists a counter-example due to Davies and Simon with the ”boundary”
case α = 1 (See [DS] remark 1 p.359).

We now summarize the results mentioned above. Some part of these equivalences have been
generalized (See Coulhon ???) but we shall only describe them in the common setting of symmetric
sub-Markovian semigroups.

Theorem 1.1 Let (Tt)t>0 be a symmetric sub-Markovian semigroup on L2(X,µ) with (X,µ) σ-
finite measure space. We denote by E the Dirichlet form associated to the semigroup (Tt). Let
n > 2. The following statements are equivalent

1. For any f ∈ L2 and for any t > 0,

‖Ttf‖∞ ≤ c1 t
−n

4 ‖f‖2. (1.5)
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2. For any f ∈ D,

‖f‖2
2n

n−2
≤ c2 E(f). (1.6)

3. For any f ∈ D ∩ L1,

‖f‖2+ 4
n

2 ≤ c3 E(f)‖f‖
4
n
1 . (1.7)

4. For any t > 0 and for any 0 ≤ f ∈ D ∩ L1 ∩ L∞,
∫

X

f2 ln f dµ ≤ tE(f) +M(t)‖f‖2
2 + ‖f‖2

2 ln ‖f‖2 (1.8)

avec M(t) = log(c4 t
−n

4 ).

5. For any n > 0, (1.5),(1.7), (1.8) are equivalent.

The aim of this paper is to find a general formulation of this theorem. The fundamental fact is
to determine a general version of the Sobolev inequality (1.6). Indeed by the theorem above, only
the polynomial decay can be dealt by this inequality. In that paper, we obtain such inequality for
the general setting. We shall call this inequality a Sobolev-type inequality closed to energy-entropy
inequality as we shall show in Section 2 ??? (See [B]). Unfortunately, in the case of polynomial de-
cay, this Sobolev-type inequality is not the Sobolev inequality (1.6) above. It is apparently weaker
but in fact it is equivalent to Sobolev inequality as already noted in [B],[BCL] (See also Section
3)..

We also introduce the so-called energy-entropy inequalities, in a natural way, from Log-Sobolev
inequalities with parameter. They appear as optimization of these Log-Sobolev inequalities with
parameter.

About tools used in the proof, we shall apply cut-off method widely developed in [BCLS] for
generalized Nash inequalities (See Theorem 2.9).

The content of the paper is the following:
1. Introduction.
2. Relationships between functional inequalities.
3. Equivalence theorems between some functional inequalities.
4. Applications to some family ultracontractive semigroups.
5. Applications to some non- ultracontractive semigroups.
6. Application to some sub-laplacians on Lie groups.

Now we give more details about the results of each sections above.

In Section 2, we study diverses general relationships between Logarithmic Sobolev inequalites,
energy-entropy inequalities, Nash-type inequalities and Sobolev-type inequalities.

In Section 3, we state the main Theorem of equivalence between these functional inequalities.

In Section 4, we provide some applications of the main results for several important classes
of ultracontractivity. These classes are the motivation of this work. We, particularly, study the
one-exponential class and the double-exponential class (See section 3 for definitions). For the par-
ticular class of double-exponential class, we shall make some comments about the fact that there
is no equivalence between this class of behavior and the corresponding Log-Sobolev inequality. It
will be interesting to clarify the limit case to this equivalence.
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In Section 5, we show how we can apply our results to non-ultracontractive semigroups. In
particular, we study Davies-Simon counter-example satisfying a Log-Sobolev inequality but not
ultracontractive (See [DS] p.359).

In Section 6, we apply our results in the explicit setting of sub-laplacians on Lie groups. (citer
Lohou et Mustapha ).

2 Relationships between some functional inequalities

In that section, we study relationships between Logarithmic Sobolev inequalities (with one para-
mater), the optimized form of theses inequalities (Energy-Entropy inequalities), Nash-type inequal-
ities and weakened Sobolev-type inequalities (See definition (2.22) below).

We begin by studying relationships between Logarithmic Sobolev inequalities (with one para-
mater), the optimized form of theses inequalities i.e. Energy-Entropy inequalities. Here, we do not
need to assume that we are dealing with a Dirichlet form.

We recall the defintion of Nash-type inequality (See [C]). By convexity lemma (2.3), we show
that an Energy-Entropy inequality (2.3) always implies a Nash-type inequality. We introduce weak
form of Sobolev inequality which are the main subject of this paper. In [?], a Super-Poincaré in-
equality satisfied by an operator A (or Poincaré inequality with parameter) has been introduced
to study the spectrum of A.

We also show we easily obtain a LSP from a F -Sobolev inequality. For some implications,
our arguments are elementary arguments of convexity (Jensen inequality) and are independant of
the Dirichlet form involved in these inequalities. In some implication, the Dirichlet form can be
replaced by a homogeneous form of degree two which well behaves with respect to cutt-off method
(See [BCLS])
In the last part of this section, we state the main result of that paper a Nash-type inequality always
implies F -Sobolev inequality with a similar from.

This will show that all these inequalities are equivalent in the abstract setting of semigroups.
In particular, we shall follow the constants appearing in the main theorem 3.

In the main Theorem 2.9, the assumptions we need on the form W which allows us to get a
F -Sobolev inequality are the following Let D the domain of W in L2. We assume that there exists
ρ > 1 tel que pour tout k ∈ Z, fρ,k = (f − ρk)+ ∧ ρk(ρ− 1) ∈ D and a constant A(ρ) > 0 tels que :

∑

k∈Z

W(fρ,k) ≤ A(ρ)W(f). (2.1)

We now present an easy relationship between a LSP and Entropy-Energy inequality.

Proposition 2.1 Let W be a non-negative map homogeneous of degree 2 on its domain D ⊂ L2.

a) We assume that the following LSP is satisfied by W: for any t > 0 and any 0 ≤ f ∈
D ∩ L1 ∩ L∞,

∫

X

f2 ln f dµ ≤ tW(f) +M(t)‖f‖2
2 + ‖f‖2

2 ln ‖f‖2 (2.2)

with M a real-valued function defined ]0,+∞).
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For any t ∈ R, we set A0(t) = sups>0(st − sM(1/s)) and A+
0 = max(A0, 0). We assume that

A0(t) is finite for any t ∈ R. Then the following inequality is satisfied : for any f ∈ D ∩ L1 ∩ L∞

with ‖f‖2 = 1,

A0

(∫

X

f2 ln f dµ

)

≤ W(f) (2.3)

Or equivalently,

A+
0

(∫

X

f2 ln f dµ

)

≤ E(f). (2.4)

b)Conversely, if (2.3) or (2.4) is satisfied then (2.2) holds true

Proof : Let f ∈ D ∩ L1 ∩ L∞, f ≥ 0, ‖f‖2 = 1. Then by setting s = 1/tf or any t > 0, (2.2)
implies

s(

∫

X

f2 ln f dµ) − sM(1/s) ≤ W(f). (2.5)

We deduce (2.3) by optimizing over s > 0. The converse is then obvious. The equivalence between
(2.3) et (2.4) follows for the fact that W is non-negative. The proof is completed.

Following [BCL], we shall call (2.3) Entropy-Energy inequality. We denote Ent2,µ(f) =
∫

X
f2 ln f dµ.

The proposition just above make use of the so-called Legendre transform of a function b defined
by the formula

A(t) = sup
s>0

(st− b(s)), t ∈ R. (2.6)

The function A is also called the conjugate function when b is a N-function (voir [A]). Thus
A0 is nothing else than the Legendre transform of b(s) = sM(1/s). In particular, this function is
non-decreasing. We also note that M(s) = s b( 1

s ) is defined by the same relation as b with respect
to M . Note that we do not assume that M is continuous and strictly increasing as in [D]. But we
assume that A0(t) is finite for all t ∈ R. This implies the conditions limt7→+∞A0(t)/t = +∞ and
limt7→0M(t) = +∞.

In that paper, this technique will be called relation-optimization. This is our first method. The
second method used is the cut-off method widely used in [BCLS].

Remark 2.2 1- The hypthesis (2.2)implies that A0(t) is finite for any t ∈ M = {Ent2,µ(f), f ∈
D ∩ L1 ∩ L∞, f ≥ 0, ‖f‖2 = 1}. Moreover is M is not bounded above in R then the assumption
A0(t) finite for any t ∈ R is always satisfied since A0 is non-decreasing

2- In some cases, M(t) is bounded below i.e. for all t > 0, M(t) ≥ C0 thus A0(t) ≤ 0 et
A+

0 (t) = 0 pour t ≤ C0.

3- The fact that E is a Dirichlet from plays no rôle in this proposition. But these inequalities
are usually obtained in the setting of Dirichlet forms.

The preceding proposition and the next lemma allows us to deduce Nash-type inequality under
LSP assumption. The Nash-type inequality is analogue to the one obtained in [C]. This lemma
relies also on a convexity argument.
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Lemma 2.3 Pour tout f ∈ L1 ∩ L∞ avec f ≥ 0, on a :

‖f‖2
2 ln

(‖f‖2
2

‖f‖1

)

≤
∫

X

f2 ln f dµ. (2.7)

Proof : A simple proof consists in applying Jensen’s inequality to the convex function Φ(t) =
t ln t, t > 0 assuming that dν = fdν is a probability measure.

An alternative proof, in the same spirit of Proposition 2.1 is as follows. We set B(t) = t ln t,
t > 0 and B∗(s) = e(s−1) , s ∈ R. We have B(t) = sup

s∈R
(st− B∗(s)). We deduce for all s ∈ R

the following inequality µ-a.e.,

sf2 −B∗(s)f ≤ fB(f). (2.8)

Integrating with respect to the measure µ, we get:

s‖f‖2
2 −B∗(s)‖f‖1 ≤

∫

X

fB(f) dµ. (2.9)

For any non-zero f , we can, write this inequality as

‖f‖1

(

s
‖f‖2

2

‖f‖1
−B∗(s)

)

≤
∫

X

fB(f) dµ. (2.10)

Now we optimize over s and use the relation between B∗ and B. So,

‖f‖1B

(‖f‖2
2

‖f‖1

)

≤
∫

X

fB(f) dµ. (2.11)

We conclude the lemma by expliciting B.

We note that we don’t need to know explicitly B∗ in the proof but only its existence. So this
lemma can be generalized to any function B given by a Legendre transform of some function B∗.
We shall not need such generaliy in that paper..

From the Lemma (2.3), we obtain information on the set M above. The lower bound

Ent2,µ(f) ≥ ln(1/‖f‖1), 0 ≤ f ∈ L1 ∩ L∞, ‖f‖2 = 1 (2.12)

shows that in general M is unbounded above. When µ is a finite measure, Hölder’s inequality

‖f‖1 ≤ ‖f‖2 µ(X)

shows that M is bounded below by − 1
2 logµ(X). In particularr, M is bounded below by zéro

when µ is a probability measure.

By definition, we say that the functional W satisfies a Nash-type inequality (or generalized
Nash inequality) if there exists a Θ : [0,+∞[−→ [0,+∞[ such that for any f ∈ D ∩ L1 ∩ L∞ with
f ≥ 0 and ‖f‖1 = 1,

Θ(‖f‖2
2) ≤ W(f). (2.13)

In [C], for a Dirichlet from E , the hypthesis on f is solely f ∈ D∩L1 instead of f ∈ D∩L1∩L∞

. If Θ is left-continuous then we can replace the assumption on f of (2.13) by f ∈ D ∩L1. Indeed,
let f ∈ D ∩ L1 with f ≥ 0 tehn, for n ∈ N, fn = f ∧ n ∈ D ∩ L1 ∩ L∞ andE(fn) ≤ E(f) since E is
a Dirichlet form. we deduce

Θ(‖f‖2
2) = Θ(lim

n
‖fn‖2

2) = lim
n

Θ(‖fn‖2
2) ≤ lim

n
E(fn) ≤ E(f).
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We cal also remove the assumption f ≥ 0 because E(| g |) ≤ E(g) for any g ∈ D (See [Fu]
Thm1.4.1(e)).

In the next proposition, we get Nash-type inequality where we can precise the function Θ of
(2.13) under the assumption of Energy-Entropy inequality (2.3.

Proposition 2.4 Supposons que, pour tout f ∈ D ∩ L1 ∩ L∞, f ≥ 0 et ‖f‖2 = 1, l’inégalité
suivante est satisfaite:

A1

(∫

X

f2 ln f dµ

)

≤ W(f) (2.14)

pour une fonction A1 croissante. Alors, on a

‖f‖2
2A1(ln

‖f‖2

‖f‖1
) ≤ W(f) (2.15)

pour tout f ∈ D ∩ L1 ∩ L∞, f ≥ 0.

Inequality (2.15) is a Nash-type inequality since we can write it in the form (2.13) where

Θ(x) = xA1(
1

2
lnx), x > 0. (2.16)

Proof : Let f ∈ D ∩ L1 ∩ L∞, f ≥ 0 and ‖f‖2 = 1. We apply Lemma (2.3):

ln

(

1

‖f‖1

)

≤
∫

X

f2 ln f dµ. (2.17)

and since the function A1 is non-decreasing,

A1

(

ln
1

‖f‖1

)

≤ A1

(∫

X

f2 ln f dµ

)

. (2.18)

So for any g ∈ D ∩ L1 ∩ L∞, g ≥ 0 with g 6= 0, we set f = g/‖g‖2. We deduce from the preceding
inequality

‖g‖2
2A1

(

ln
‖g‖2

‖g‖1

)

≤ W(g) (2.19)

due to the hypothesis (2.14). The proof is completed

We have the following corollary :

Corollary 2.5 Let W as above such that the LSP (2.2) is satisfied so we have the following Nash-
type inequality, for any 0 ≤ f ∈ D ∩ L1 ∩ L∞ :

‖f‖2
2A0(ln

‖f‖2

‖f‖1
) ≤ W(f) (2.20)

with function A0 defined in Proposition 2.1.

A So the corollary assets that, if LSP holds true then NTI (2.13) also holds with:

Θ(x) = xA0(
1

2
lnx), x > 0. (2.21)

Proof : From Proposition (2.1), LSP (2.2) implies Entropy-Energy inequality (2.3). So (2.14)
is satisfied with A1 = A0. We deduce the result by applying Proposition 2.4.
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By definition, we say that the Dirichlet form Esatsifies a weak Sobolev inequality if there exists
anon-decreasing function B such that

∫

X

f2B

(

ln
f

‖f‖2

)

dµ ≤ W(f) (2.22)

for any f ∈ D ∩ L1 ∩ L∞, f ≥ 0.

Under the assumption that B is the Legendre transform of some function, we prove that a weak
Sobolev inequality implies a LSP.

We begin by showing that, under a more general convexity assumption on B that a weak
Sobolev inequality always implies an Energy-Entropy inequality. .

Proposition 2.6 Assume taht there exists a function A2 : R −→ R such that for any f ∈
D ∩ L1 ∩ L∞, f ≥ 0 , the following inequality is satisfied

∫

X

f2A2 (ln f/‖f‖2) dµ ≤ W(f). (2.23)

Then

1. If A2 is convex, we have

A2

(∫

X

f2 ln f dµ

)

≤ W(f). (2.24)

with f ∈ D ∩ L1 ∩ L∞, f ≥ 0 et ‖f‖2 = 1.

2. In particular, if A2 is the Legendre of some function b i.e

A2(t) = sup
s>0

(st− b(s)), t ∈ R

Then the following LSP is satisfied
∫

X

f2 ln f dµ ≤ tW(f) +M0(t)‖f‖2
2 + ‖f‖2

2 ln ‖f‖2 (2.25)

pour tout t > 0 et 0 ≤ f ∈ D ∩ L1 ∩ L∞ avec M0(t) = tb(1/t), t > 0.

Remark 2.7 1. None bounded function is the Legendre transform of some function. Indeed, if
there exists b(s) and a constant M tsuch that st− b(s) ≤ M for any t, s > 0. Letting t goes
to infinity, we get a contradiction.

2. In case 1)of Proposition 2.6 and if additionaly A∗
2(t) = sups∈R(st−A2(s))is finite for t ∈ R,

then we can write a LSP with A∗∗
2 (t) = supt∈R(st − A∗

2(t)), s ∈ R instead of A2 in 2) of
Proposition 2.6. Indeed, A∗∗

2 (s) ≤ A2(s), s ∈ R. Then we get (2.25) with M0(t) = tA∗
2(1/t)

pour tout t > 0.

Proof :

1. Assume that A2 is convex. We set dν = f2dµ with ‖f‖2 = 1 and f ≥ 0 then dν is a
probability measure. By Jensen’s inequality, (2.23) implies

A2

(∫

X

ln f dν

)

≤
∫

X

A2(ln f) dν. (2.26)

Therefore

A2

(∫

X

f2 ln f dµ

)

≤ W(f) (2.27)

which is the expected Energy-Entropy inequality.
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2. Since Legendre are convex function, we deduce (2.24). We then apply part b) of Proposition
2.1.

Now we are interested by the converse of the preceding proposition. This is the main work of
this paper. More precisely, we prove that LSP implies an Orlicz-Sobolev-type inequality (2.22).
In fact, we show that NTI imlies (2.22). Until now, properties of the functional W we used were
possibly positivity and homogeneity of order two. Now we shall assume for W to satisfy a good
behavior with respect to cut-method Of course, this good behavior is satisfied by Dirichlet form
as shown in the next lemma.

Lemma 2.8 (See [Al]). Let E be a Dirichlet form on L2 with domain D. Let 0 ≤ f ∈ D ⊂ L2.
We set for any ρ > 1 and any k ∈ Z, fρ,k = (f − ρk)+ ∧ ρk(ρ− 1) then fρ,k ∈ D and

∑

k∈Z

E(fρ,k) ≤ E(f). (2.28)

This a particular case of Corollaire 2.3 of [BCLS] where
√

6E(f) is improved by E(f). We give
here a proof 2.

Proof : To simplify notation, we shall denote E(f) = E(f, f). The starting point is the
following important remark. Let g, h non-negatives functions in the domain D. Then, if h is equal
to a constant λ on the support of g, suppg = {x ∈ X : g(x) 6= 0} and if 0 ≤ h ≤ λ then E(h, g) ≥ 0.
Indeed, for any ǫ > 0, we have (h+ ǫg) ∧ λ = h. So,

E(h) = E((h+ ǫg) ∧ λ) ≤ E(h+ ǫg) = E(h) + 2ǫE(h, g) + ǫ2E(g).

Therefore E(h, g) ≥ 0.

The proof of the lemma is the following for any n ∈ N, we set fn
ρ = f ∧ ρn+1, then fn

ρ =
n

∑

k=−∞
fρ,k and fn

ρ =

n
∑

k=−n

fρ,k + f−(n+1)
ρ . We apply the remark just above with h = f

−(n+1)
ρ ,

λ = ρ−n and g = fρ,k for k = −n to n. Thus E(fρ,k, f
−(n+1)
ρ ) ≥ 0.

In the same way, for any (p, k) ∈ Z
2

with p < k, we again apply the remark above now with
h = fρ,p, λ = ρp(ρ− 1) and g = fρ,k. It yields E(fρ,p, fρ,k) ≥ 0. Finally, we get

E(f) ≥ E(fn
ρ ) = E(

n
∑

k=−n

fρ,k) + 2

n
∑

k=−n

E(fρ,k, f
−(n+1)
ρ ) + E(f−(n+1)

ρ ). (2.29)

Thus

E(f) ≥
n

∑

k,p=−n

E(fρ,p, fρ,k) =

n
∑

k=1

E(fρ,k, fρ,k) +

n
∑

k 6=p,k,p≥−n

E(fρ,p, fρ,k) (2.30)

en particulier

E(f) ≥
n

∑

k=−n

E(fρ,k, fρ,k). (2.31)

The lemma is proved by passing to the limit n→.

2I thank G.Allain for mentioning to me this result and the reference ([Al])
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Theorem 2.9 Assume that the following NTI is satisfied with function a non-decreasing A3 :
R −→ R,

‖f‖2
2A3

(‖f‖2

‖f‖1

)

≤ E(f) (2.32)

for any f ∈ D∩L1∩L∞, f ≥ 0. Assume that there exists ρ > 1 and D = Dρ : [0,+∞) −→ [0,+∞)
a non-decreasing function satisfying

H(ρ, k) := ρ2D(ρk+1) −D(ρk) ≤
(

ρ− 1

ρ

)2

A+
3

(

ρk (ρ− 1)

ρ2

)

. (2.33)

Then for any f ∈ D ∩ L1 ∩ L∞, f ≥ 0, ‖f‖2 = 1, we have

∫

X

f2Dρ(f) dµ ≤ E(f). (2.34)

Remark 2.10 Condition (2.33) is rather a technical condition coming from the cut-off method
used in the proof.

Corollary 2.11 Assume that NTI (2.32) is satisfied. For any ρ > 1, we set :

Vρ(x) =
(ρ− 1)2

ρ4
A3

(

(ρ− 1)

ρ3
x

)

. (2.35)

Then
∫

X

f2V +
ρ (f) dµ ≤ E(f) (2.36)

for any f ∈ D ∩ L1 ∩ L∞, f ≥ 0,‖f‖2 = 1.

Proof : We apply Theorem 2.9 with Dρ = V +
ρ .

In the course of the proof of Theorem 2.9, we shall use in a crucial way of the property (2.28)
of the Lemma 2.8 satisfied by Dirichlet forms.

Proof of Theorem 2.9 : With some variations, we essentially follows the cut-off method
developed and used intensively in [BCLS].

Let f ∈ D ∩ L1 ∩ L∞, f ≥ 0,‖f‖2 = 1. For any ρ > 1 and any tout k ∈ Z, we set
fρ,k = (f−ρk)+∧ρk(ρ−1). Then fρ,k ∈ D and f =

∑

k∈Z
fρ,k a.e.. Moreover, ‖fρ,k‖2 ≤ ‖f‖2 = 1

et ‖fρ,k‖1 ≤ ‖f‖1.

For any k ∈ Z, we have the following estimates

‖fρ,k‖2

‖fρ,k‖1
≥ ρ(k−1)(ρ− 1). (2.37)

Indeed, by Hölder’s inequality

‖fρ,k‖1 ≤ ‖fρ,k‖2 µ(Ωρ,k)
1
2 . (2.38)

with Ωρ,k = {f ≥ ρk} and since

[ρk(ρ− 1)]2µ(Ωρ,k+1) =

∫

Ωρ,k+1

f2
ρ,k ≤ ‖fρ,k‖2

2 ≤ 1. (2.39)
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So the measure of the level set Ωρ,k is bounded as follows

µ(Ωρ,k)
1
2 ≤

[

ρk−1(ρ− 1)
]−1

(2.40)

Using (2.38) and (2.40), we egt (2.37).

We now apply (2.32) to fρ,k, we get

‖fρ,k‖2
2A3

(‖fρ,k‖2

‖fρ,k‖1

)

≤ E(fρ,k) (2.41)

Because A3 is non-decreasing, E(f) is non-negative and by inequalities (2.37) and (2.39), we
have for any k ∈ Z et tout ρ > 1,

(ρk(ρ− 1))2µ(Ωρ,k+1)A
+
3 (ρk−1(ρ− 1)) ≤ E(fρ,k). (2.42)

This fondamental estimate on the level sets Ωρ,k allows us to estimate the integral
∫

X
Φ(f) dµ

for some functionΦ. by the Dirichlet from E under the constaint ‖f‖2 = 1.

The second steps consists in discretising the following integral

I =

∫

X

f2D(f) dµ.

For any f ∈ D ∩ L1 ∩ L∞, f ≥ 0, ‖f‖2 = 1, the following series converges for any ρ > 1,

∑

k∈Z

(ρk+1)2D(ρk+1)µ(Ωρ,k) <∞. (2.43)

We now prove this fact. The following series summing over the positive integers is convergent
because this is a finite sum.

∑

k∈N

(ρk+1)2D(ρk+1)µ(Ωρ,k) <∞. (2.44)

Indeed f ∈ L∞ implies that there exists an integer k0 ∈ N such that for any k ≥ k0, µ(Ωρ,k) = 0.
For the series summing over the negative integers, we write this series as

∑

k∈Z
−

ρk+1
[

D(ρk+1)ρk+1
]

µ(Ωρ,k). (2.45)

Since f ∈ L1, we have ρk+1µ(Ωρ,k) ≤ Cρ‖f‖1 pour tout k ∈ Z with Cρ = ρ2

ρ−1 . This bounds by
above the preceding series by

Cρ‖f‖1D(ρ)





∑

k∈N

ρ−k+1



 =
ρ4

(ρ− 1)2
D(ρ)‖f‖1. (2.46)

We get the bound

I ≤
∑

k∈Z

(ρk)2H(ρ, k)µ(Ωρ,k) (2.47)

with
H(ρ, k) = ρ2D(ρk+1) −D(ρk).
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Finally, using assumption (2.33) and the inequality, we get (2.42) :

∫

X

f2D(f) dµ ≤
∑

k∈Z

E(fρ,k). (2.48)

But the right-hand side is bounded by E(f) by Lemme 2.8.

This completes the proof of the theorem.

The following corollary allows us to quantify the lost in the implication between weak Sobolev
inequality and LSP. Indeed, corollaries 2.5 and 2.11 says that LSP always implies a weak Sobolev
inequality. More precesely, we have

Corollary 2.12 If the folllowing LSP is satisied

∫

f2 ln f dµ ≤ tE(f) +M(t)‖f‖2
2 + ‖f‖2

2 ln ‖f‖2 (2.49)

for any t > 0 and any 0 ≤ f ∈ D ∩ L1 ∩ L∞.
Then we have the following weak Sobolev inequality, for any ρ > 1,

∫

f2Wρ(log f) dµ ≤ E(f) (2.50)

for any f ∈ D ∩ L1 ∩ L∞, f ≥ 0, ‖f‖2 = 1, with

Wρ(t) = sup
s>0

(st− sM̃ρ(1/s)), t ∈ R (2.51)

where

M̃ρ(t) = M(c1,ρt) + c2,ρ (2.52)

and c1,ρ = (ρ−1)2

ρ4 , c2,ρ = log ρ3

(ρ−1) .

We shall note that 0 < c1,ρ ≤ 1
16 and c2,ρ ≥ log 6, 75.

Proof : Under the assumption LSP and by Corollary 2.5, we have

‖f‖2
2A0(ln

‖f‖2

‖f‖1
) ≤ E(f) (2.53)

for any f ∈ D ∩ L1 ∩ L∞, f ≥ 0,‖f‖2 = 1, with

A0(t) = sup
s>0

(st− sM(1/s)), t ∈ R.

So the hypothesis (2.32) of Corollaire 2.11 is satisfied and A3(t) = A0(log t), t > 0. Corollary 2.11
gives us

∫

f2Wρ(log f) dµ =

∫

f2Vρ(f) dµ ≤ E(f) (2.54)

for any f ∈ D ∩ L1 ∩ L∞, f ≥ 0, ‖f‖2 = 1. We have set

Wρ(log t) = Vρ(t) =
(ρ− 1)2

ρ4
A0(log t+ log

(ρ− 1)

ρ3
).

13



(See (2.35)). We write Wρ in the form

Wρ(t) =
(ρ− 1)2

ρ4
A0(t+ log

(ρ− 1)

ρ3
)

for any t ∈ R.

If we denote Legendre transform of b by L(b)(t) = sups>0(st − b(s)), t ∈ R, we have the
following elementary properties:

λL(b)(t) = L(λb(
.

λ
))(t)

for any λ > 0. And also
L(b)(t+ γ) = L(b(s) − sγ)(t)

for any γ ∈ R.

Then it is easy to deduce that for λ = λρ = (ρ−1)2

ρ4 , γ = γρ = log (ρ−1)
ρ3 ,

Wρ(t) = L(b̃ρ)(t)

with b̃ρ(s) = λb(s/λ) − sγ. We recall b(s) = sM(1/s). If we set M̃ρ such that b̃ρ(s) = sM̃ρ(1/s)
therefore

M̃ρ(t) = M(λt) − γ

which gives exactly the expression of M̃ρ and completes the proof.

Conversly, from the weak Sobolev inequality (2.50) and Proposition 2.6, we can write the
Entropy-Energy inequality (2.24) with A2 = Wρ, ρ > 1 and deduce (2.25) withM0 = M̃ρ. Now we
can state the following corollary

Corollary 2.13 If (2.50) is satisfied with Wρ of the form (2.51) for some ρ > 1the we have LSP

inequality with M̃ρ,

∫

f2 ln f dµ ≤ tE(f) + M̃ρ(t)‖f‖2
2 + ‖f‖2

2 ln ‖f‖2 (2.55)

for any t > 0 and 0 ≤ f ∈ D ∩ L1 ∩ L∞. The function M̃ρ is given by the formula (2.52).

We denote (2.55) by (LSP )M̃ρ
.

The sequence of implications (LSP )M =⇒ weak Sobolev inequality with Wρ) =⇒ (LSP )M̃ρ

change the function M by the function M̃ρ. This function is obtained by change of the parameter
t with λρt and by translation γρ.

In some cases, M̃ρ stays in the same class as M(t). For instance, let δ > 0 and Pδ = {M(t) =

log(C0t
−δ), C0 > 0}. If M ∈ Pδ then M̃ρ(t) = log(C0Cρt

−δ) with Cρ = ρ4δ+3

(ρ−1)2δ+1 . So M̃ρ ∈ Pδ .

By definition of the class Pδ, the accepted lost comes from the constant C0 but not on the exponent
δ > 0. We shall call this class Pδ the polynomial class of exponent δ. This terminology comes from
the fact that ultracontractivity property

‖Ttf‖∞ ≤ C0t
−δ‖f‖2

implies (LSP )M according to Theorem 2.2.3 of [D].

We can state the following corollary which allows us to built functions D in terms of A3 and
of the parameter ρ > 1 :
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Corollary 2.14 Assume that NTI (2.32) is satisfied. For ρ > 1, we set

Eρ(t) = (ρ− 1)2
∞
∑

k=0

1

ρ2(k+2)
A+

3

(

(ρ− 1)t

ρk+3

)

(2.56)

Then we have for any f ∈ D ∩ L1 ∩ L∞, f ≥ 0, ‖f‖2 = 1,

∫

f2Eρ(f) dµ ≤ E(f). (2.57)

Moreover inequality (2.33) is an equality for any k ∈ N and ρ > 1.

Proof : First note that the series defining Eρ is absolutely convergent since A+
3 is non-negative,

non-decreasing and ρ > 1. We apply Theorem 2.9 with D = Eρ which satisfies

ρ2D(ρt) −D(t) =
(ρ− 1)2

ρ2
A+

3

(

t
(ρ− 1)

ρ2

)

. (2.58)

In the particular case, t = ρk, (2.33) is satisfied. This completes the proof

Remark 2.15 1. Note that for any ρ > 1, we can built a function Dρ which satisfies (2.33)
(In fact an equality).

2. The function V +
ρ of Corollary 2.11 is in fact the first term of the series defining Eρ.

Anagously to Corollary 2.12, we can state the following corollary which improves inequality (2.50)
with a better constant C1

ρ in (2.52).

Corollary 2.16 Under the assumption (2.49), the inequality (2.50) is satisfied with Mρ(t) =

M(G(ρ)t) − I(ρ)
G(ρ) instead of M̃ρ in (2.51) with constants G(ρ) and I(ρ) given by

G(ρ) =
(ρ− 1)

ρ2(ρ+ 1)

and

I(ρ) = G(ρ) log(ρ− 1) − (log ρ)
3ρ2 − 2

ρ2(ρ+ 1)2
.

Moreover, G(ρ) > C1
ρ et −I(ρ)/G(ρ) > C2

ρ .

Remark 2.17 In applications, we can choose ρ = ρ0 such that G(ρ0) = supρ>1G(ρ). Indeed,
G(ρ) < 1 for ρ > 1 and in the examples, the function M is non-increasing with a singularity when
t −→ 0+ of the type limt−→0+ M(t) = +∞. The lost on the constant Cρ

2 is of less importance for
applications.

Proof : Set Fρ(t) = sups>0(st− sMρ(1/s)), t ∈ R. It is enough to show that for all t > 0 :

Fρ(log t) ≤ Eρ(t)

and apply inequality (2.57) of Corollary 2.14. Details are left to the reader.
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3 Equivalence theorems between some functional inequali-

ties.

In that section, we state the main theorem of that paper. More precisely, we discuss the relation-
ship between LSP, Energy-entropy inequality, Nash-type inequality and weak Sobolev inequality.
Legendre transform plays an important role in the description in these inequalities.

The main interest of this result is that we do not assume that the semigroup is ultracontractive.
This is important for application where ultracontractivity property is not available.

In the next section, we first provide applications for some classes of ultracontractivity (one-
exponential and double-exponential , see defginitions below).
For particular relations between two such inequalities, we refer to Section 2.

Theorem 3.1 Let E be a Dirichlet form of domain D ∈ L2(X,µ). The following statements are
equivalent:

(LSP) There exists M :]0,+∞[−→ R such that sups>0(sr−sM(1/s)) is finite for all r ∈ R

and which satisfies, for any f ∈ D ∩ L1 ∩ L∞, f ≥ 0 for all t > 0 :

∫

f2 log f dµ ≤ tE(f) +M(t)‖f‖2
2 + ‖f‖2

2 log ‖f‖2 (3.1)

(EE) There exists b0 :]0,+∞[−→ R such that f ∈ D ∩ L1 ∩ L∞, f ≥ 0 et ‖f‖2 = 1:

B0(

∫

f2 log f dµ) ≤ E(f) (3.2)

with B0(t) = sups>0(st− b0(s)).

(NTI) There exists b1 :]0,+∞[−→ R such that f ∈ D ∩ L1 ∩ L∞, f ≥ 0 :

‖f‖2
2B1

(

log(
‖f‖2

‖f‖1
)

)

≤ E(f) (3.3)

with B1(t) = sups>0(st− b1(s)).

(WS) There exits b2 :]0,+∞[−→ R such that f ∈ D ∩ L1 ∩ L∞, f ≥ 0 et ‖f‖2 = 1:

∫

f2B2(log f) dµ ≤ E(f) (3.4)

with B2(t) = sups>0(st− b2(s)).

Proof :

• ”(LSP) implies (EE) ” with b0(s) = sM( 1
s ) from a) of Proposition 2.1 .

• ”(EE) implies (LSP)” with M(s) = sb0(
1
s ) from b) of Proposition 2.1.
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We note that the assumption of finitness of sup defining B0 for any t ∈ R is useless because B0 is
only evaluated at the value

∫

f2 log f dµ. The assumption insures that the value B0(
∫

f2 log f dµ)
is finite.

We set T (M)(s) = sM( 1
s ) then T−1 = T and T is the tranformation which passes from e M

to b0 in the first application and from b0 to M in the seconde application.

• ”(EE) implies (NTI) ” with b1 = b0. So, B1 = B0. This results of Proposition 2.4.

• ”(NTI) implies (WS) ” . We apply Corollary 2.11. The hypothesis (2.32) is satisfied with
A3(t) = B1(log t), t > 0. By this Corollary

∫

f2Vρ(f) dµ ≤ E(f) (3.5)

with f ∈ D ∩ L1 ∩ L∞, f ≥ 0 and ‖f‖2 = 1.

We can choose B2in the following way,

B2(log t) = Vρ(t) =
(ρ− 1)2

ρ4
A3(

(ρ− 1)

ρ3
t)

for some fixed ρ > 1. We get the following relation between B1 and B2 : B2(r) = (ρ−1)2

ρ4 B1(r +

log (ρ−1)
ρ3 ) , r ∈ R.

With the same relations Legendre transforms given in the course of the proof of Corollary 2.12,

B2 can be written as B2(r) = λB1(r + γ) with λ = (ρ−1)2

ρ4 and γ = log (ρ−1)
ρ3 . Therefore

B2(r) = λL(b1)(r + γ) = L(λb1(
.

λ
) − sγ).

So, B2 is the Legendre transform of b2 when we set

b2(s) = λb1(
.

λ
) − sγ.

Inequality (WS) is satsified with B2 above. This conclude this implication.

We note that a natural way to choose ρ is to minimize ρ4

(ρ−1)2 which is the factor in b1. This

expression is minimal for ρ = 2. So, b2(s) = 1
16b1(16s) + 3s log 2.

• ”(WS) implies (EE) ” with b0 = b2 and B0 = B2 by Proposition 2.6 1).

This completes the proof of this theorem.

We note that in the sequence of implications (LSP ) =⇒ (EE) =⇒ (NTI) =⇒ (WS) =⇒
(LSP ), the function M from (LSP ) is transform in M̃ by the relation :

M̃(t) = log λ2 +M(
t

λ1
) (3.6)

with λ1 = 16, λ2 = 8. By exponentiation of these functions appearing in the ultracontractivity
property, we get

eM̃(t) = λ2e
M( t

λ1
) (3.7)
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This theorem also allows us to give another proof of LSP under ultracontractivity assumption.
This proof avoids the complex interpolation argument used in [D] (see p. 65). Indeed, for an
ultracontractive semigroup we apply Theorem ?? of T.Coulhon ( See [C] p.514) which gives a NTI
with function θ related to A which is a Legendre transform. The proof of [C] used the log-convexity
of the semigroup. In a second step, we apply Theorem 3.1 from which we deduce (SW). It is easy
to deduce (LSP) when A is a Legendre tansform which is the case.

In some sense, the implication LSP ⇒ NTI generalize theorem ??? of [C]. Indeed, a LSP can
be satisfied without ultracontractivity property (See Section ??).

Before going to applications, we compare Theorem 3.1 to Theorem 1.1 in the particular case of
polynomial ultracontractivity i.e. M(t) = log c− n

4 log t.
First, we defined several kind of decay of ultracontractivity for semigroups.

Definition 1 : We say that a semigroup (Tt) has, respectively, a polynomial decay ,a one-
exponential or double-exponential decay if :

(p) a(t) = c1t
−n
4 , n > 0

ou
(oe) a(t) = c1 exp(

c2
tγ

) , γ > 0

ou
(de) a(t) = c1 exp(c2 exp(

c3
tα

)) , α > 0

in the inequality

‖Ttf‖∞ ≤ a(t)‖f‖2,∀t > 0. (3.8)

At the level of LSP, we translate these definitions as follows

Definition 2 : We say that a Dirichlet form E satisfies a LSP, respectively, of polynomial type
,of one- exponential type or double-exponential type if it satisfies

∫

f2 ln f dµ ≤ tE(f) +M(t)‖f‖2
2 + ‖f‖2

2 ln ‖f‖2 (3.9)

for any t > 0 and any f ∈ D ∩ L1 ∩ L∞, with M(t) = log a(t) where a(t) satisfies (p) ou (oe) ou
(de) just above.

This definition is coherent with the implication ”ultracontractivity implies LSP” given by The-
orem 2.2.3 in [?] since (3.8) implies (3.9) with M(t) = log a(t). Recall that the converse implication
doesn’t hold in general.

Proposition 3.2 (Polynomial decay) Let n > 0 be fixed (not necessarily an integer). The follow-
ing inequalities are equivalent.

(LSPp) There exists k1 > 0 such that
∫

X

f2 ln f dµ ≤ tE(f) + log(k1t
−n
4 )‖f‖2

2 + ‖f‖2
2 ln ‖f‖2 (3.10)

for any t > 0 and any 0 ≤ f ∈ D ∩ L1 ∩ L∞.

(EEp) There exists k2 > 0 such that

exp

(

4

n

∫

X

f2 ln f dµ

)

≤ k2E(f) (3.11)
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with ‖f‖2 = 1, 0 ≤ f ∈ D ∩ L1 ∩ L∞.

(NTp) There exists k3 > 0 such that

‖f‖2+ 4
n

2 ≤ k3E(f)‖f‖
4
n
1 (3.12)

with 0 ≤ f ∈ D ∩ L1 ∩ L∞.
(WSp) There exists k4 > 0 such that

∫

X

f2+ 4
n dµ ≤ k4E(f)‖f‖

4
n
2 (3.13)

with 0 ≤ f ∈ D ∩ L1 ∩ L∞.

The constants ki, i = 1 · · · 4 doesn’t depend on f .

All these inequalities are equivalent to the polynomial deacy of the corresponding semigroup.
The inequality (EEp) can be re-written as

∫

X

f2 ln f dµ ≤ log
(

k′2E(f)
n
4

)

(3.14)

with ‖f‖2 = 1 and k′2 = k
n
4
2 .

This inequality is called Energy-Entropy inequality more appropriate than the usual expression
”weak Sobolev inequality” (See [B]), [BCL]). The inequality (WSp) is not the usual Lp-Sobolev
(p = 2n

n−2 ) (See (1.2)). This inequality seems to be weaker but in fact is equivalent to Sobolev
inequality(See ???cite or section). Indeed the (WSp) can be deduce Hölder inequality. More
precisely,

‖f‖q
q ≤ ‖f‖2

p‖f‖
4
n
2 (3.15)

with q = 2 + 4
n . So we deduce (3.13) from (1.2).

The weakness of this inequality is only appearent since it is equivalent to NTI of ”polynomial
type” which is equivalent to the Lp-Sobolev inequality by Varopoulos ’s result (See Theorem ?? in
[VSC]). We can see that the Lq-norm induced by (WSp) is given by . q = 2 + 4

n . Compare with
Lp-Sobolev inequality where p = 2 + 4

n−2 > q (When n > 2).
Note that we do not assume n > 2 in (Wsp). This inequality has been used by J. Moser [Mo]

in R
n

as mentioned in [BCLS].

4 Applications to some classes of ultracontractive semigroups

The main interest of the main Theorem 3.1 is to formulate Sobolev-type inequality generalizing
the Lp-inequality:

||F ||2p ≤ cE(f)

with p = 2n
n−2 .

By Varopoulos’ result such Sobolev inequality is equivalent to polynomial ultracontractivity.
So generalization of this Sobolev inequality need to introduce a formulation less restrictive than Lp
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norm with p related to some ” dimension” n and, consequently, we have to weaken this inequality
to take into account of different behavior or semigroups.

In this section, we give several examples of applications of the main theorem 3.1 These examples
corresponds to natural examples which appear in the infinite dimensional torus T

∞
for instance

but which can also be built on the real line (See Bendikov-Maheux 2). Many more examples
could be found but we restrict to some classes of examples. Our theorem of equivalence will
be applied following two points of view. The first point of view is: if the semigroup satisfies
an ultracontractivity property with an explicit bound and we shall consider several classes of
ultracontractivity. The second point of view is when no ultracontractivity is satisfied by the
semigroup but a LSP is satisfied.

4.1 One-exponential class

Recall that a symmetric sub-marovian semigroup (Tt) satisfies a one-exponential decay if there
exist c1, c2 > 0 , α > 0 such that, for any t > 0,

‖Ttf‖∞ ≤ c1 exp(
c2
tα

)‖f‖2. (4.1)

This definition is equivalent to the definition of one-exponential LSP. We shall apply Theorem 3.1
to this class of decay.

Theorem 4.1 (One exponential)
We fix γ > 0. The following statements are equivalent:

(LSPoe) There exist c1, c2 > 0 such that
∫

X

f2 ln f dµ ≤ tE(f) + [c1 + c2t
−γ ]‖f‖2

2 + ‖f‖2
2 ln ‖f‖2 (4.2)

for any t > 0 and any 0 ≤ f ∈ D ∩ L1 ∩ L∞.

(EEoe) There exist c3, c4 > 0 such that

[∫

X

f2 ln
f

c3
dµ

]1+ 1
γ

+

≤ c4E(f) (4.3)

with ‖f‖2 = 1 and 0 ≤ f ∈ D ∩ L1 ∩ L∞.

(NTIoe) There exist c5, c6 > 0 such that

‖f‖2
2

[

log

(‖f‖2

c5

)]1+ 1
γ

+

≤ c6E(f) (4.4)

with ‖f‖1 = 1 and 0 ≤ f ∈ D ∩ L1 ∩ L∞.

(WSoe) There exist c7, c8 > 0 such that

∫

X

f2

[

log

(

f

c7

)]1+ 1
γ

+

dµ ≤ c8E(f) (4.5)

with ‖f‖2 = 1 and0 ≤ f ∈ D ∩ L1 ∩ L∞.

Constants ci, i = 1 · · · 8 doesn’t depend on f .
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Proof: From Theorem 3.1, it is enough to compute (or estimate) the function B0(t) = sups>0(st−
b0(s)) with b0(s) = sM( 1

s ) and M(t) = c1 + c2t
−γ . The computation shows that there exist

β1, β2 > 0 such that

B0(t) = β1[t− log β2]
1+ 1

γ

+ (4.6)

with β2 which doesn’t depend on c1. It is easy to complete the proof.

The inequality (WS) essentially says that if 0 ≤ f ∈ D then f is in an Orlicz space of type

L2(logL+)
1+ 1

γ

+ . We note that Gross’ inequality or LSP is expressed with the Zygmund space
L logL. This space is universal in the sense that it doesn’t depend on the semigroup.

In the case of polynomial ultracontractivity, we have seen that the space involved is L2+ 4
n .

So it was expected that in the case of one-exponential the space involved is intermediate between

L logL and L2+ 4
n , namely L2(logL+)

1+ 1
γ

+ .

4.2 Double-exponential class

We recall the definition of the class of double-exponential type for a symmetric submarkovian
semigroup (Tt):

There exist c1, c2, c3 > 0 , α > 0 such that, for any t > 0 :

‖Ttf‖∞ ≤ c1 exp(c2 exp(
c3
tα

)) (4.7)

But it can be more interesting to use the definition of LSP of double-exponential for a wider range
of applications. Recall that LSP of double-exponential is not equivalent to the double-exponential
ultracontractivity. Indeed, in the next section, we shall apply our result to a non-ultracontractive

semigroup but satisfying a double-exponential LSP. We set Dα(t) = t+ [log t+]
1
α
+ .

Theorem 4.2 (Double exponential )
We fix α > 0. The following statements are equivalent,

(LSPd) There exist d1, d2 > 0 such that

∫

X

f2 ln f dµ ≤ tE(f) + d1 exp(d2t
−α)‖f‖2

2 + ‖f‖2
2 ln ‖f‖2 (4.8)

for any t > 0 and any 0 ≤ f ∈ D ∩ L1 ∩ L∞.

(EEd) There exist d3, d4 > 0 such that

d3Dα(d−1
4

∫

X

f2 ln f dµ) ≤ E(f) (4.9)

with ‖f‖2 = 1 and 0 ≤ f ∈ D ∩ L1 ∩ L∞.

(NTId)There exist d5, d6 > 0 such that

d5‖f‖2
2Dα(d−1

6 log ‖f‖2) ≤ E(f) (4.10)

with ‖f‖1 = 1 and 0 ≤ f ∈ D ∩ L1 ∩ L∞.
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(Wsd) There exist d7, d8 > 0 such that

d7

∫

X

f2Dα

(

d−1
8 log

(

f

8‖f‖2

))

dµ ≤ E(f) (4.11)

with ‖f‖2 = 1 and 0 ≤ f ∈ D ∩ L1 ∩ L∞.

Constants di, i = 1 · · · 8 doesn’t depend on f .

Remark 4.3 As in the preceding examples, we didn’t try to get the best constants.

Proof: We apply Theorem 3.1. It is enough to estimate B0 of this theorem. But the compu-
tation of B0 seems to be more diffucult. We have,
for any β > 1 and any t ∈ R,

(β − 1)d1d
− 1

α
2 Dα(

t

c1β
) ≤ B+

0 (t) ≤ c1c
− 1

α
2 Dα(

t

c1
) (4.12)

where B+
0 (t) = sup(B0(t), 0).

We note that the upper bound doesn’t depend of β. Because β can as close as we want of 1 by
above the estimate (4.12) is optimal up to constants.

The WS can be written more explicitely,

∫

X

f2 log

(

f

8‖f‖2

) [

log

(

1

d8
log+

(

f

8‖f‖2

))]
1
α

+

dµ ≤ kE(f) (4.13)

with k = d7

d8
. The underlying space is symbolically

L2 logL
[

log log+ L
]

1
α

+
. (4.14)

We recall that at the autors’ knowledge, we don’t know if LSPd implies double-ultracontractivity
when 0 < α < 1 with the same exponent (See section ??). Indeed, the method of proof associated
to NTI give some lost in the exponent. The new exponent is α′ = α

1−α with 0 < α < 1.

4.3 Another example

We consider the case where M(t) = c1 + c2
[

log c3

t

]
1
α

+
in LSP (1.4). Recall that the ultracontractive

bound

||Ttf ||∞ ≤ e
c1+c2[log c3

t ]
1
α
+ , t > 0,

implies LSP with M(t) just above. In such a situation, we have

Theorem 4.4 Let α > 0. Assume that, for any t > 0 and for any f ∈ D ∩ L1 ∩ L∞, we have the
following LSP,

∫

X

f2 log

(

f

||f ||2

)

dµ ≤ t E(f) +

(

c1 + c2

[

log
c3
t

]
1
α

+

)

||f ||22.

We have the following weak Sobolev inequality, for any f ∈ D ∩ L1 ∩ L∞, ||f ||22 = 1,

∫

X

f2Wρ (log f) dµ ≤ E(f)
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for any ρ > 1, with

Wρ(x) ∼
(

k2

k3

)α

e−1α−1

(

x− k1

k3

)1−α

exp

(

x− k1

k2

)α

as x→ +∞, where k1 = c1 + c2,ρ, k2 = c2, k3 = c3

c1,ρ
with c1,ρ, c2,ρ as in Corollary 2.12.

Note that M(t) = c1 for any t ≥ c3. To the behavior of M(t) as t goes to zero corresponds to the
behavior of Wρ(x) as x goes to infinity. It is due to the inversion t = 1

s in the formula

Wρ(x) = sup
s>0

(

sx− sM̃ρ

(

1

s

))

of Corollary 2.12.

Proof: By Corollary 2.12, we just have to estimate

Wρ(x) = sup
s>0

Hx(s), x ∈ R

with Hx(s) = s(x − k1) − sk2 [log k3s]
1
α
+ where k1, k2, k3 are in Theorem 4.4. Letting v = k3s, we

get

Wρ(x) = sup
v>0

(

v

(

x− k1

k3

)

− v
k2

k3
[log v]

1
α
+

)

.

Let a = x−k1

k3
and c = k2

k3
. So

Wρ(x) = Max

(

sup
0<1≤1

Ix(v), sup
v>1

Ix(v)

)

= Max

(

a, sup
v>1

Ix(v)

)

with Ix(v) = av if 0 < s ≤ 1 and Ix(v) = av − cv(log v)
1
α if v > 1. For v > 1, the derivative

I ′x(v) = a− cK(v) with K(v) = (log v)
1
α + 1

α (log v)
1
α−1.

If 0 < α ≤ 1, K : [1,+∞[→ [0,+∞[ is strictly increasing so bijective. Therefore, there exists
v0 ≥ 1 such that a

c = K(v0) and Ix is increasing on [1, v0] and decreasing on [v0,+∞[. So the
supremum is realized at v0.

If α > 1, K is decreasing from 1 to its minimum and increasing from its minimum to infinity.
So there are two extremum for Ix. The first one denoted by v− which give a local minimum for
Ix and is bounded uniformly with respect to x and v+ > v− which gives a maximum for Ix and
tends to infinity as x goes to infinity.

Let v1 = v0 if α ≤ 1 and v1 = v+ if α > 1. So I ′x(v1) = 0 i.e. a
c = (log v1)

1
α + 1

α (log v1)
1
α−1

gives the relation a− c(log v1)
1
α = c

α (log v1)
1
α−1. Thus

Ix(v1) = v1
c

α
(log v1)

1
α−1

and also the estimates
(a

c

)α

∼ log v1

and
e−1e(

a
c )

α

∼ v1.

It yields

Ix(v1) =
cα

α
e−1e(

a
c )

α

a1−α.

23



For x large i.e. a large, we deduce

Wρ(x) ∼
cα

α

(

x− k1

k3

)1−α

e−1e

(

x−k1
k2

)α

.

The proof is completed.

5 Examples

In this section, we provide explicit examples of semigroup in the classes one-exponential and
double-exponential ultracontractivity (See the preceding subsection for definitions or Section 4 ).
These examples comes from the existing literature. First, we start by recalling some results of A.
Bendikov 3 [B2]. These examples are convolution symmetric semigroups of the infinite dimensional
torus T

∞
. Similar examples can built on the real line [BM2], [BCS].

5.1 Brownian semi-groups on T
∞.

Let X = T
∞

be the infinite dimensional torus and Z
(∞)

= {θ = (θk)∞k=1, θk ∈ Z, ...} ⊂ Z
∞

its dual
group (See [BF], [B3]). The compact group T

∞
is endowed of its normalized Haar measure denoted

by dµ. For a given sequence of positive numbers A = {ak}∞k=1 . we denote by gt the Brownian
semigroup on the one-dimensional torus T. That is gt are a semigroup of probability measures on
T, we shall also denote by gt their density with respect to the normalized Haar measure on T.
Then we can consider the infinite product µA

t = ⊗∞
k=1gtak

. This defines a convolution probability
semigroup on T

∞
(See Section 3 of [B2] and also [B3]). The Fourier transform of µt = µA

t is given
by

µ̂t(θ) = e−tΨ(θ), Ψ(θ) =

∞
∑

k=1

akθ
2
k, θ ∈ Z

(∞)
.

The counting function associated to the coefficients

NA(x) = Card{ak ≤ x}, x > 0.

plays a fundamental rôle in the analysis of the behavior of the semigroup µA
t .

Indeed, there exists a continuous density for µA
t for any t > 0 with respect to Haar measure on

T
∞

iff logNA(x) = o(x) pour x 7→ +∞ (See [BF] P. ??? [] Berg?). We also denote by µt = µA
t (x)

this density and 0 the neutral element of T
∞

. We have the following formula

logµt(0) =

∫ ∞

0

NA(x)G(xt)
dx

x

where G is a function independent of the sequence A ( See [B2] Section 2.3). The value at 0 of µA
t

is related to the property of ultracontractivity as follows

‖Tt‖1,∞ = µt(0)

where (Tt) is the associated semigroup of operators (Let say on L2) to µt. We denote by M(t) =
logµt(0). Then the following LSP is satisfied

∫

T
∞

f2 log f dµ ≤ tE(f) +M(t), t > 0, ‖f‖2
2 = 1

3The authors thank A.Bendikov for mentioning the existence of such examples during theconference of Anoya
1995 ? Creete)
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with ‖f‖2
2 =

∫

T
∞

|f |2dµ. We denote by E(f) = EA(f) =

∫

T
∞

LAf(x)f(x) dµ(x) the associated

Dirichlet form where LA =

∞
∑

k=1

ak∂
2
k is (formally) the generator of EA. With the help of the Fourier

transform, we also have E(f) =

∞
∑

k∈Z
(∞)

akθ
2
k|f̂(θk)|2. So a particular choice of the sequence A de-

termines the behavior of the counting function NA from which we deduce the behavior of µt(0)
for small time t.

The following examples deserve to illustrate both type of ultracontractivity mentioned above
and descrived in 4.1 and 4.2. These examples come from [B2].

5.2 One-exponential decay on T
∞

With notations and formulas above. Let 0 < α and ak = k1/α, k ≥ 1 then NA(x) = [xα] ∼ xα, x 7→
∞. We apply Theorem (ii): there exists c1 > 0 such that

logµA
t (0) ∼ c1t

−α, t 7→ 0

Ultracontractivity property is obtained by the relation

‖Tt‖1→∞ = µt(0)

where ‖Tt‖1→∞ is the norm L1 − L∞ of the operator Tt. So we have

Theorem 5.1 [B2]. Let ak = k1/α, k ≥ 1. then for any 0 < ǫ < 1, there exists t(ǫ) > 0 such for
any t ∈]0, t(ǫ)[,

ec−(ǫ)t−α ≤ ‖Tt‖1→∞ ≤ ec+(ǫ)t−α

with c±(ǫ) = (1 ± ǫ)c1.

Then we deduce the following functional inequalities,

Theorem 5.2 Let 0 < α and ak = k1/α, k ≥ 1. Then there exist c7, c8 > 0 such that, for any
0 ≤ f ∈ D(LA) ∩ L1 ∩ L∞ with ‖f‖2 = 1,

∫

T
∞

f2

[

log

(

f

c7

)]1+ 1
γ

+

dµ ≤ c8(LAf, f) (5.15)

5.3 Double-exponential decay on T
∞

Similarly to the preceding section, we build explicitly a convolution semigroup on T
∞

satisfying
the double-exponential ultracontractivity for a convenient choice of A = (ak)k.

For any fixed α > 0, we set ak = (log k)1/β , k ≥ 2 et a1 = 1/2 with β = α/(α + 1). Then
logNA(x) ∼ xβ , x 7→ ∞. We have the following asymptotic estimate [B2](Thm 3.27),

log logµt(0) ∼ cαt
−α, t 7→ 0, cα = αα/(α+ 1)α+1.

In terms of ultracontractivity, it is expressed by the following inequalities,

Theorem 5.3 (Thm 3.27 p.59 [B2]). For any 0 < ǫ < 1, there exists t(ǫ) > 0 such that for any
t ∈]0, t(ǫ)[,

exp(exp(c−(α, ǫ)t−α)) ≤ ‖Tt‖1,∞ ≤ exp(exp(c+(α, ǫ)t−α))

with c±(α, ǫ) = (1 ± ǫ)cα.
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5.4 Convolution semigroups on the real line

The first family of examples give the existence of convolution semigroups on the real line satisfying
(??). In fact, ||Tt||1,∞ is computed explicitly.

Proposition 5.4 For any ν > 0, there exists a convolution semigroup of probability (µt)t>0 on R

such that the corresponding semigroup of operators (Tt)t>0 satisfies

||Tt||1,∞ =
1

t
exp(t−ν)

for any t > 0. Consequently, as t tends to 0 :

log ||Tt||1,∞ ∼ (t−ν)

and for any ǫ > 0 and any η > 0, there exist Cǫ,η > 0 such that

||Tt||1,∞ ≤ Cǫ,η exp(ηt−ǫ + t−ν).

In particular, for any η > 0 :
||Tt||1,∞ ≤ Cη exp((1 + η)t−ν)

This family of examples comes from [HJ]. The approach for the treatment of these examples comes
from the potential theory on abelian locally compact groups (See [BF] and also the sketch of the
proof below). On R

n
, by tensorization of measures of convolution, we get for any νi > 0, i = 1...n,

we can built convolution symmetric semigroup satisfying,

||Tt||1,∞ =
1

tn
exp(

n
∑

i=1

t−νi)

By the same argument of the construction of W.Hoh et N.Jacob, we easily show

Proposition 5.5 For any ν ≥ 1, there exists a symmetric convolution semigroup such that

||Tt||1,∞ = exp(t−ν) − 1

for any t > 0.

Proof : We recall the construction of such semigroups (See [HJ]).

Let a(t) = exp(t−ν) − 1. We look for a non-decreasing function f : R
+ −→ R

+
such that

f(x) > 0 for any x > 0and such that a(t) = Lf(t) =
∫ +∞
0

e−xtf(x) dx is the Laplace transform of
f . For any ν > 1, we find

f(x) = fν(x) =

∞
∑

k=1

xνk−1

k!Γ(νk)

Then the semigroup is built in the following way, we set F (x) =
∫ x

0
f(u) du, F is continuous,

strictly increasing and convex with F (0) = 0 and F (+∞) = +∞. Let F−1 the inverse, we set
ψ(ξ) = F−1(|ξ|/π) then ψ is an even non-decreasing concave continuous function. From Proposi-
tion 10.6 of [BF] : ψ is negative definite (See p.39 of [BF] for the definition and the next pages for
properties).

We then define the convolution semigroup (µt)t>0 by setting for its Fourier transform

µ̂t(ξ) = exp(−tψ(ξ))

for ξ ∈ R (See Theorem 8.3 of [BF]). We then check that the norm satisfies

||Tt||1,∞ = Lf(t), t > 0.
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We shall note that this construction of convolution semigroup applies to other type of ultra-
contractivity. On R

n and for any νi > 0, i = 1...n, by tensorization of semigroups there exists a
convolution semigroup

||Tt||1,∞ =
n

∏

i=1

(exp(t−νi) − 1)

5.5 Semigroups generated by very degenerate differential operators

(Examples of semigroups with one-exponential ultracontractivity for small time).
In [FL], P.Florchinger et R. Léandre studied the density of very degenerate diffusions. We first

start by recalling some of their results and apply Theorems of Section ?? to these diffusions.

On R
2
, we consider the generator A define by

A =
1

2

∂2

∂x2
+

1

2
g2(x)

∂2

∂y2
+ h(x)

∂

∂y

with h and g bounded continuous functions. We suppose for any x ∈ R
2

:

g(x) > C exp(− c

|x|α )

with α ∈ [0, 2[.
We have the following uniform bound pt ((x, y), (x′, y′)) for pt the heat kernel associated to A (See
[FL]) :

Theorem 5.6 For any (x, y) and (x′, y′) ∈ R
2
and every t > 0 :

pt((x, y), (x
′, y′)) ≤ 1

t
exp(

C0

tγ
)

Moreover if α ∈ [0, 1[ then γ < 1 and γ tends to infinity as α tends to 2.

This upper bound is essentially optimal when h = 0 and g is exponentially flat that is

c1 exp(− c2
|x|α ) < g(x) < c3 exp(− c4

|x|α )

with α ∈]0, 2[. Then

pt((0, 0), (0, 0)) ≥ exp(
c1

t
α+γα

2

) exp(
−c2
tγ

) (5.16)

If γ < α
2−α , we have the following lower bound

pt((0, 0), (0, 0)) ≥ exp(
c1

t
α+γα

2

) (5.17)

In the sequel, we assume that h = 0. We set Q(f) = (Af, f)L2(dxdy) then Q is a Dirichlet form
(See [Fu]). We denote by Tt the associated sub-marovian semigroup.

We have LSP for Q,

Theorem 5.7 For any ǫ > 0 and all f > 0 with f ∈ D(Q) ∩ L1 ∩ L∞ then
∫

R
2
f2 ln f dxdy ≤ ǫQ(f) + F (ǫ)‖f‖2

2 + ‖f‖2
2 ln ‖f‖2 (5.18)

with ‖f‖2 =
∫

R
2 h2(x, y) dxdy and F (ǫ) = C

ǫγ − 1
2 ln ǫ+ C .
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Proof : It seems that we can avoid to reproduce probabilistic computations using the Brownian
bridge Ilof [FL] p.139, by using an interpolation theorem ( ( Riesz-Thorin) since Tt is a contraction
on L∞. We then obtain two inequalities

||Ttf ||∞ ≤ sup

X,Y ∈R
2

pt(X,Y )||f ||1 ≤ 1

t
exp(

C0

tγ
)||f ||1

and
||Ttf ||infty ≤ ||f ||∞

Then by interpolation ([?], p. 3), we get: for any 1 ≤ p ≤ ∞,

||Ttf ||∞ ≤ 1

t
1
p

exp(
C0

ptγ
) ||f ||p (5.19)

Thus we can explicite the constants appearing in (A.5)p.140 of [FL]. In the particular case p = 2,
we obtain the L2,∞-norm of the semigroup: Ttis bounded above by 1√

t
exp( C0

2tγ ). We deduce the

expected theorem by applying 2.2.3 de [?].
From that LSP, we can get that the semigroup HL

t generated by

L =
∂

∂x
(a1,1(x, y)

∂

∂x
) +

∂

∂x
(a1,2(x, y)

∂

∂y
) +

∂

∂y
(a2,1(x, y)

∂

∂x
) +

∂

∂y
(a2,2(x, y)

∂

∂y
)

where the matrix a is such that

a(x, y) ≥
(

1 2
0 g(x)

)

possesses a density hL
t uniformly bounded above by 1

t exp( C
tγ ). Indeed, the operator L is formally

self-adjoint on L2(dxdy) and the Dirichlet forms satisfy :

QL ≥ QA

So LSP (5.18) is also satisfied by QL. By applying the converse (See [FL],[?]), we deduce that HL
t

satsifies

||HL
t f ||∞ ≤ C√

t
exp(

C

tγ
)||f ||2 (5.20)

Or more generally,

||HL
t f ||∞ ≤ C1

t
1
p

exp(
C2

ptγ
)||f ||p (5.21)

for any 1 ≤ p ≤ +∞. By symmetry of the semigroup HL
t , we obtain from (5.21) with p = 1 that

the density hL
t is bounded above C

t exp( C
tγ ).

We easily deduce from(5.21),

||HL
t f ||∞ ≤ κ1 exp(

κ2

ptγ
)||f ||p, t > 0. (5.22)

So the hypothesis of Theorem l ?? are satisfied. We have

Theorem 5.8 For any function f ≥ 0 and f ∈ D(Q) ∩ Lp.
1)

∫

f2

(

ln(
f

2κ||f ||p
)

)
1
γ

+

dxdy ≤ C2

(

(Lf, f) + ||f ||2p
)

(5.23)
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2) For any nm ≥ 1 and any ν > 0,

∫

f2

(

ln(
f

ν||f ||p
+m)

)
1
γ

dxdy ≤ C3

(

(Lf, f) + ||f ||2p + ||f ||22
)

(5.24)

In particular if p = 2,

∫

f2

(

ln(
f

ν||f ||2
+m)

)
1
γ

dxdy ≤ C4

(

Q(f) + ||f ||22
)

(5.25)

We note that the interesting situation is when α = 1
γ ≥ 1. This is the case when 0 < α < 1 by

[FL]. Indeed, we easily deduce (5.25),
∫

f2 ln(
f

||f ||2
) dxdy ≤ C

(

Q(f) + ||f ||22
)

(5.26)

We get what is called the local version of LSP (i.e. the L2-norm of f ???) of LSP (5.18) for
some fixed ǫ fixé. This is explained by the fact we use only use the one-exponential behavior for
small time in this example.

6 Applications to some non-ultracontractive semigroups

In this section, we recall the example of Davies and Simon (See [DS] (Section 6.Remarque 1 p.359))
of the semigroup which satisfies no ultracontractivity property but satisfies a double exponential
LSP with α = 1

We also recall of an example of Kavian-Kerkyacharian-Roynette [KKR] for which explicit com-
putations of lower and upper bound for the heat kernel ht(x, y) proves that the semigroup is not
ultracontractive.

7 Application to some sub-laplacians on Lie groups

Let G be a real connected Lie group. We assume that G is unimodular i.e. the Haar measure dg
is left and right invariant:

∫

G

f(gx) dx =

∫

G

f(xg) dx =

∫

G

f(x) dx (7.1)

for any g ∈ G and f ∈ C∞
0 (G).

We consider X = (X1, · · · , Xk) a familly of k left-invariant vector fields i.e.

Xifg = (Xif)g, avec fg(x) = f(gx) (7.2)

for any x, g ∈ G and f ∈ C∞
0 (G). We assume that X satisfied the Hörmander condition that is X

generates the Lie algebra of G. The operator ∆ = −∑k
i=1X

2
i called sub-laplacian is sub-elliptic.

We note Ht = e−t∆, t ≥ 0 the symmetric sub-markovian semigroup associated to l ∆ (See [VSC]).
The semigroup Ht admit a kernel ht (called heat kernel) for the right convolution symmetric for
the Haar measure such that

Htf(x) =

∫

G

ht(y
−1x)f(y) dy = f ∗ ht(x) (7.3)

Moreover 0 < ht ∈ C∞
0 (R

+∗ ×G).
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The semigroup Ht satisfies the ultracontractive bound

‖Htf‖1,∞ = ht(e) (7.4)

where ‖f‖p =
∫

G
|f |p dg and e is the neutral element of G.

To apply our theory we just need to bound above the heat kernel at the origin. For that purpose,
we recall a theorem due to N.Varopoulos under the assumption of exponential growth of the volume
function. We denote by ρ(x, y) the Carnot-Carathéodory distance between two points x and y ∈ G
and B(x, t) the metric ball associated to d (See [VSC]). By invariance of the metric we have
B(x, t) = xB(e, t) where xA denotes the product of x ∈ G and the set A ⊂ G. By invariance of
the Haar measure, we have for all x ∈ G,

V (x, t) =

∫

G

XB(x,t)(g) dg = V (e, t) = V (t) (7.5)

where XA denote the characteristic function of the set A. The behavior of the volume V (t) is given
by a dichotomy result of Y.Guivarc’h,

• G has a polynomial volume growth i.e. there exists D ∈ N such that

V (t) ∼ tD, t −→ +∞. (7.6)

• Or G has exponential volume growth i.e.

V (t) ∼ et, t −→ +∞. (7.7)

the following results come from [VSC] (See also references there in).

Theorem 7.1 Let G be a connected real Lie group of exponential volume growth. Then

(i) There exits c1 > 0 such that for any 0 < t ≤ 1,

c−2
1 t−d/2 ≤ ht(e) ≤ c21t

−d/2. (7.8)

(ii) There exist κ0, κ1, c2, c3 > 0 such that for any t ≥ 1,

κ2
0 exp(−κ1t

1/3) ≤ ht(e) ≤ c22 exp(−2c3t
1/3) (7.9)

(iii) For any 0 < t ≤ 1 :

‖Htf‖∞ ≤ c21t
−d/2‖f‖1 (7.10)

and
(iv) For any t ≥ 1 :

‖Htf‖∞ ≤ c22 exp(−2c3t
1/3)‖f‖1. (7.11)

We deduce (iii) from (ii). The integer d is called the local dimension. This exponent is related
to the volume behavior for small time, let say V (t) with 0 < t ≤ 1 (See [VSC]). The estimates
(7.10) and (7.11) are optimal up to constants. Indeed, we have the lower bounds (7.8) and 7.9)and
the relation,

‖Ht‖1→+∞ = ht(e) (7.12)

From Theorem 3.1, we get the following WS inequality
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Theorem 7.2 Let G,∆, d be as in Theorem 7.1. Then there exist t0 = t0(c1, d, c2, c3) > 0 and
λ3 > 0, λ4 > 0 such that for any 0 ≤ f ∈ D ∩ L1 ∩ L∞ ,‖f‖2 = 1,

∫

G

f2[− log(
f

λ4
)]−2X dg +

∫

G

f2+4/d(1 −X ) dg ≤ λ3

∫

G

| ∇f |2 dg (7.13)

with | ∇f |2= ∑k
i=1 | Xif |2 and X = X{f≤t0}

and also
∫

G

f2W (f) dg ≤ λ3

∫

G

| ∇f |2 dg (7.14)

with W (f) = [− log(f/λ4)]
−2 X + f4/d(1 −X )

Note that to the different behavior of the heat kernal (small or large time) corresponds to
different control by W (f) a logarithmic one when f(x) is small (0 ≤ f ≤ t0) and a polynomial
behavior when f(x) is large (f ≥ t0).

The small value of f(x) correspond to large value of t in (7.11) and large value of f correspond
small value of t in (7.10). This phenomenon is in fact general (See details of proof of Theorem 2.9
above).

Constants λ3 and λ4 depend also on c1, d, c2, c3. The value of λ4 is such that t0/λ4 < 1, there
no singularity concerning the logarithm.

In fact, (7.13) is equivalent to ultracontractivity bound (7.10) and (7.11) for different constants.

Acknowledgements: The second author warmly thanks the Italian CNR for funding a one month
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