
HAL Id: hal-00465160
https://hal.science/hal-00465160

Preprint submitted on 19 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nash-type inequalities and decay of semigroups of
operators

Patrick Maheux

To cite this version:

Patrick Maheux. Nash-type inequalities and decay of semigroups of operators. 2010. �hal-00465160�

https://hal.science/hal-00465160
https://hal.archives-ouvertes.fr


Nash-type inequalities and decay of semigroups of

operators.

Patrick Maheux∗,1

Fédération Denis Poisson, Département de Mathématiques MAPMO,

Université d’Orléans, F- 45067 Orléans, France

Abstract

In that paper, we prove an equivalence between Nash-type inequalities and an
exponential decay (in the sense of the definition 2.2) for symmetric submarko-
vian semigroups. This exponential decay generalizes the notion of spectral gap
where this number is replaced by a function. We discuss different formulations
of the decay associated to the usual Nash inequality in terms of Lyapunov-type
functional. We apply this to different classes of ultracontractive semigroups as
well as non-ultracontractive semigroups. In particular, we show that any ul-
tracontractive semigroups always satisfy an exponential decay in the sense of
2.2. We treat different classes of examples, one of them containing the Ornstein-
Uhlenbeck-type semigroup and Γ∗-semigroup. We apply our results to fractional
powers of non-negative self-adjoint semigroup. We derive a simple criterium on
the function charaterizing the exponential decay to deduce ultracontractivity
property and relations that must satisfy the ultracontractive bounds an heat
kernel of the semigroup.

Key words: Submarkovian semigroup, Nash-type inequality, Functional decay
of semigroup, Lyapunov functional, Ultracontractivity, Hypercontractivity,
Log-Sobolev inequality, Ornstein-Ulhenbeck semi-group, Fractional powers,
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1. Introduction

Let (X,µ) be a σ-finite measure space and (Tt) a symmetric C0-semigroup
on L2(X,µ) with infinitesimal generator L which can be extended as a contrac-
tion semigroup on Lp(X), 1 ≤ p ≤ ∞. We also write with the same notation
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(Tt) the semigroup acting on Lp. We shall consider more precisely symmetric
sub-markovian semigroups that is: for any 0 ≤ f ≤ 1 and for any t > 0, we have
0 ≤ Ttf ≤ 1 . So (Tt) extents as a contraction semigroup on Lp, 1 ≤ p ≤ +∞.
In some cases, we shall assume that (Tt) is Markov that is Tt1 = 1 for any t > 0
and µ can be a probability measure or not.

Recently, generalizations of the exponential spectral decay

(SG) ||Ttf ||22 ≤ e−2λt||f ||22 (1.1)

with λ > 0 has been extensively studied for semigroups (Tt) (see [W1] and also
[W2] -[W7], [W-Z],[R-W] and references therein). See also the recent paper
[C-G 2] proving equivalence between (SG) and Lp-analogues (1 < p < +∞)
when (Tt) is Markov in rather general situation with µ a probability measure.

One purpose, among the others of these papers, is to describe a function ξ
such that

(GSG) ||Ttf ||p ≤ ξ(t)φ(f) (1.2)

(for instance φ(f) = ||f ||q) where φ : R −→ [0,+∞) is an homogeneous function
of degree one and ξ a decreasing function on (0,+∞)). This is a possible gen-
eralization of the L2- spectral gap (SG) corresponding to the case ξ(t) = e−λt,
p = 2 and φ(f) = ||f ||2. In general situation, ξ can be weaker than exponential
like polynomial for instance i.e. ξ(t) = 1

tγ and φ(f) = ||f ||1. For example, this
is the case (by definition) for ultracontractive semigroups of polynomial decay
i.e. for some ν > 0 and for all t > 0,

||Ttf ||2 ≤ c

tν/2
||f ||1. (1.3)

Recall also that the spectral gap inequality (SG) is equivalent to Poincaré
inequality

(P ) λ||f ||22 ≤ (Lf, f). (1.4)

The spectral gap is defined by

λ0 = inf{(Lf, f) : ||f ||22 = 1}

that is the largest λ > 0 satisfying (1.4).

Other functional inequalities have been introduced to study (GSG). For in-
stance, the so-called super-Poincaré (SP) inequality

(SP ) ||f ||22 ≤ s(Lf, f) + β(s)φ(f), s > 0 (1.5)

with φ(f) = ||f ||2q and q = 1 or q = +∞ (but other cases can be considered,
see [W1]-[W5] and also [Z] and [A-B-D]). Another important case is super-Log-
Sobolev inequality i.e.

∫

X

f2 log
f

||f ||2
dµ ≤ t E(f) +M(t) ||f ||22
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which is stronger than Log-Sobolev inequality of Gross (see [D],[D-S],[Bi-Ma],[BM1]).

It is well-known that super-Poincaré inequality is equivalent to a Nash-type
inequality (NTI for short) and it has been proved by F-Y Wang that it is equiv-
alent to the fact that the essential spectrum is empty, see [W0]. Indeed, (SP)
clearly implies a (NTI) of the form

(NTI) Θ(||f ||22) ≤ (Lf, f), φ(f) ≤ 1

with Θ(x) = supt>0(tx−tβ(1/t)). Usually φ(f) = ||f ||1 but also other cases can
be considered. The original case of (NTI) is on R

n
with Θ(x) = c x1+2/ν , ν > 0,

see [N],[C-L],[C-K-S]. Nash-type inequalities are used in different settings. See,
for instance [C-K, H-K], for recent results on fractal sets and for jump processes .

Also in the case of super-Log-Sobolev inequality, it is proved in [Ma] that it
implies Nash-type inequality with Θ(x) = xN (log x) with N (y) = supt>0(ty/2−
tM(1/t)), y ∈ R. It is also shown in [Ma] that super-Log-Sobolev inequality and
Nash-type inequality for Dirichlet forms are equivalent when Θ is given by such
expression above.

Note that, (NTI) above formally also includes the case of Poincaré inequality
(with Θ(x) = λx). So, we can guess that (NTI) can also be used to study divers
notions of functional decay for semigroups enlarging the case of the spectral gap.
We start by generalizing (NTI) in Lp-spaces as

(NTI)p,q Θ(||f ||pp) ≤ (Lf, fp), ||f ||q ≤ 1.

for 1 ≤ q < p < ∞. So, (NTI)2,1 corresponds to (NTI). Such inequality is
used as a tool to study different types of functional decays: ultracontractivity,
Sobolev inequalities, spectral gap ... It is also deduced from them, see for in-
stance [Co],[BM1]. In this paper, we are mainly interested by the control of
the form φ(f) = ||f ||q. In particular, we show that (NTI)2,1 implies (NTI)p,q
inequalities for some other couples (p, q). Note that in general, it is necessary
to introduce a control on f of the form φ(f) ≤ 1 because Θ(x) is not necessarily
of the linear form cx.

In this paper, we shall study functional decay with another point of view. We
introduce a new functional decay which also generalizes the spectral gap in Lp

for sub-markovian symmetric semigroups. We shall show that this functional
decay is equivalent to Nash-type inequality (see Th. 2.5 and Th. 2.8). Our
approach, first, consists in noting that the spectral gap (SG) on Lp can be also
written as

(EFD)p,q G
(

||Ttf ||pp
)

≤ e−ptG
(

||f ||pp
)

, ||f ||q ≤ 1.

with G(x) = x1/λ with λ the spectral gap. So, the spectral gap can be seen
as a function, namely G. The normalization above is artificial when G is an
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homogeneous function but it is necessary in other situations.

Note that the idea to see a dimension as a function has been previously
introduced to study the generalization of isoperimetric dimension, see [C-G-L]
for instance. In our case, the function G can be seen as a generalization of the
spectral dimension. Such function may exists even if there is no spectral gap in
the usual sense, for instance with the Laplacian on R

n
(see Section 4.1).

Our aim is to study what we call exponential functional decay (EFD for
short) described by inequality (EFD)p,q where G is an increasing function (see
definitions 2.2 and 2.3). In particular, we study (EFD)p,q in relation with
(NTI). In fact, we show that these two functional inequalities (EFD)p,q and
(NTI)p,q are equivalent when Θ has the following form Θ(x) = xN (log x).
This assumption on Θ which includes many interesting cases will be made
throughout all this paper. Note that it contains the case of the spectral gap
with N (log x) = λ. We also give explicit formulas relating both functions Θ
in (NTI)p,q and G in (EFD)p,q. The inequality (EFD)p,q can be interpreted
as Lyapunov functional (with φ-control), see the comment after definition 2.2.
We give several examples of function Θ where the function G can be computed
easily. In the course of the discussion, related to (EFD)p,q, we shall see some
relations with other functional inequalities like Sobolev, log-Sobolev, Sobolev-
Orlicz inequalities, ultracontractivity, hypercontractivity ...

The contents of this paper is the following:

In Section 2, we introduce the definitions of (NTI)p,q and (EFD)p,q and
the main theorems of this paper which show the equivalence between these two
notions (Th. 2.5, 2.8).

In Section 3, we show or recall how Nash-type inequalities can be obtained
from other functional inequalities. In particular, extending some results of
[Bi-Ma] (see also [C-G-L]) we show that super Lp-log-Sobolev inequalities im-
plies (NTI)p,q with q = p − 1 (Th.3.1). We prove that (NTI)2,1 implies
(NTI)p,p/2 (Th. 3.3) with p ≥ 2 and deduce (EFD)p,q with q = p/2 (p ≥ 2)
from (EFD)2,1 or equivalently from (NTI)2,1. We also apply our results to
ultracontractive and hypercontractive semigroups (Th.3.2).

In Section 4, we give different family of examples of semigroups and compute
explicitely the corresponding function G. More explicitely,

Subsection 4.1: we deals with polynomial ultracontractive semigroups (in
particular the heat semigroup on R

n
). We describe explicitly the function G of

(EFD)p,q in that case and give an application in terms of space-time mixed-
norms and deduce a Hardy-Littlewood-Sobolev-type inequality.

Subsection 4.2: we generalize the preceding subsection by introducing more-
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over a spectral gap. Of course, we recover the case with no spectral gap (λ = 0)
letting λ→ 0+.

Subsection 4.3: we study ultracontractive semigroups with one-exponential
decay which corresponds to Θ(x) = x log x1+1/α, α > 0 with x large (see defini-
tion 4.31).

Subsection 4.4: we consider the case of double-exponetial case or more gener-
ally the corresponding Nash-type inequality (NTI)2,1 with Θ(x) = x log x(log log x)1/γ

with x large.

Subsection 4.5 is devoted to examples of Ornstein-Ulhenbeck semigroups-
type. We also discuss hypercontractivity, Gross-type inequality and a modified
super-Poincaré inequality adapted to this situation.

Subsection 4.6 deals with Γ∗-semigroup on R. This case is closed to Ornstein-
Ulhenbeck semigroups and share similar properties up to some points. In par-
ticular, we prove a Gross-type inequality.

In Section 5, we apply our theory to fractional power of generators of semi-
groups. We use in a crucial way a result of [BM1] which states that a Nash-type
inequality always implies Nash-type inequality for the fractional powers. This
enable us to deduce (EFD)p,q for these operators. In particular, we can apply
this to fractional powers of the Laplacian on R

n
.

In the last Section 6, we revisit some inequalities as spectral gap, ultracon-
tractivity from the point of our (EFD) inequalities. In particular, we study the
case where the measure is a finite measure. We also reinterpret the implication
(NTI) → ultracontractivity of [Co] in terms of boundedness of G in (EFD). We
also give a consequence of (EFD) on the best ultracontractive bound of the
semigroup (if it exists) and also for the heat kernel related the function G of
(EFD)2,1.

2. Nash-type inequality and functional decay

We introduce the following definition of a (p, q)-Nash-type inequality. Let f
be a measurable function. We denote by fp = sgn(f)|f |p−1 for 1 < p < +∞
with sgn(x) = x

|x| , x 6= 0 and sgn(0) = 0.

Definition 2.1. Let 1 ≤ q ≤ p < ∞ and 2 ≤ p. We say that a generator
L of a L2-symmetric semigroup Tt = e−tL of contraction on Lr, 1 ≤ r ≤ ∞,
satisfies a (p, q)-Nash-type inequality if there exists a non-decreasing function
Np,q : R −→ R such that : for all f ∈ D0 with ||f ||q ≤ 1,

||f ||pp Np,q

(

log ||f ||pp
)

≤ (Lf, fp) (2.1)
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The set D0 is some subdomain of the domain D of L. We shall call the
function Np,q a (p, q)-Nash function for L. By homogeneity argument, it is
necessary to introduce some control in (2.1) on the function f , namely ||f ||q ≤ 1.
If Np,q has the form Np,q(y) = c exp(α y), α > 0, then (2.1) reads

c||f ||(1+α)p
p ≤ (Lf, fp)||f ||αpq . (2.2)

When L = ∆ on R
n

(or a Riemannian manifold), the inequality just above
implies a Gagliardo-Nirenberg type inequalities. Thus (2.1) can be seen a gen-
eralization of such inequality. We shall not continue in that direction in this
paper.

We now introduce a general definition of functional decay in normed spaces.
We give a slightly different definition in Lp setting (see definition 2.3 below). In
that paper, we shall not attempt to give results in its greatest generality. But
some results also hold true in this abstract setting.

Definition 2.2. Let X and Y two normed spaces with norms respectively ||.||X
and ||.||Y . We assume that X ∩ Y is non-empty. We suppose that we are given
a continuous semigroup of operators (Tt) which is defined on X and Y . We
say that (Tt) satisfies a decay inequality on X relatively to Y if there exists G a
non-decreasing function defined on [0,∞) with value in [0,∞) and λ ≥ 0 such
that, for all t > 0 and for all ||f ||Y ≤ 1,

G( ||Ttf ||X) ≤ e−λt G( ||f ||X). (2.3)

We shall say that (Tt) satisfies a (G, λ,X, Y )-decay.

When λ = 0, we shall say that the decay is degenerate.

The decay of t −→ G(||Ttf ||X) is obvious if the semigroup is a contraction
on X. So, we have got some gain when λ > 0. If the semigroup is a contraction
on Y , the inequality (2.3) is equivalent to the fact that the map γf (t) = γ(t) :=
eλt G(||Ttf ||X) is non-increasing. Indeed, if γ is non-increasing then γ(t) ≤ γ(0)
which is exactly (2.3). Conversely, if (2.3) is satisfied, then for all s > 0,
||Tsf ||Y ≤ ||f ||Y ≤ 1. We apply (2.3) to Tsf . By semigroup property,

eλt G(||Tt+sf ||X) ≤ G(||Tsf ||X).

Therefore
eλ(t+s) G(||Tt+sf ||X) ≤ eλs G(||Tsf ||X)

i.e γ(t+ s) ≤ γ(s), for any t, s > 0. Let u(t, x) = Ttf(x) be the solution of the

parabolic equation Lu(t, x) = ∂u(t,x)
∂t , u(0, x) = f(x), we shall call γ a (time-

dependent) Lyapunov functional with Y -control for this equation.

For t = 0, the inequality (2.3) is an equality. Note also that if (G, λ) satisfies
(2.3) then (αGβ , λβ) also satisfies (2.3) for all α, β > 0.
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We give an equivalent definition for semigroups acting on Lp-spaces more
suitable for computations. Namely, we substitute G(xp) to G(x). More ex-
plicitely,

Definition 2.3. Let 1 ≤ q ≤ p ≤ +∞. A continuous semigroup (Tt) acting
on Lp is said to satisfy a (G, λ)-decay inequality on Lp relatively to Lq if there
exists G a non-decreasing function defined on [0,∞) with value in [0,∞) and
λ ≥ 0 such that, for all t > 0 and for all ||f ||q ≤ 1,

G( ||Ttf ||pp) ≤ e−λt G( ||f ||pp). (2.4)

Remark 2.4. 1. When λ = 0 and G(x) = x, we recover the definition of a
contraction on Lp.

2. When λ > 0, p = 2, G(x) =
√
x, we recover the definition of the spectral

gap λ on L2 for the semigroup (Tt).

3. (EFD)p,q that is (2.4) says that there exits a function of the Lp-norm of
Ttf which decays exponentially fast in t when f is in Lq. This motivates
the expression Exponential Functional Decay , (EFD) in short.

In Section 6.2, we discuss the relation between the decay (2.4) and the prop-
erty of ultracontractivity of (Tt) from Lq to Lp i.e.

||Ttf ||pp ≤ epM(t)||f ||pq .

In the following theorem, we prove that (NTI)p,q satisfied by a generator
L of a symmetric semigroup of contractions is equivalent to (EFD)p,q for the
semigroup. Moreover, we specify the relationship between the functions N in
(2.5) and G in (2.6) below. Recall that we say that a semigroup is equicontinuous
on Lq if supt>0 ||Tt||q,q ≤ M < ∞. We recall also the definition of fp =
sgn(f)|f |p−1 for 1 < p < +∞ with sgn(x) = x

|x| , x 6= 0 and sgn(0) = 0.

Theorem 2.5. Denote by L the generator of a symmetric submarkovian semi-
group (Tt). Let 1 ≤ q < p < ∞ and D be the domain of L. The two following
statements (1) and (2) below are equivalent:

1. There exists N : R −→ (0,+∞) a non-decreasing continuous function
such that for all f ∈ D with ||f ||q ≤ 1,

||f ||ppN
(

log ||f ||pp
)

≤ (Lf, fp). (2.5)

2. There exits G ∈ C1((0,∞), (0,∞)) an increasing function such that for all
t > 0 and for all f ∈ D with ||f ||q ≤ 1,

G( ||Ttf ||pp ) ≤ e−pt G( ||f ||pp ). (2.6)

Moreover (2.5) implies (2.6) with G = exp oF o log with the derivative of
F satisfiying F ′ = 1/N .

Conversely (2.6) implies (2.5) with N (y) = G(ey)
eyG′(ey) , y ∈ R.
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3. Let (Tt) be a symmetric Markov semigroup (i.e Tt1 = 1). The two state-
ments (1) and (2) above are equivalent with the additional assumption
∫

X
f dµ = 0 in (2.5) and (2.6).

4. Let (Tt) be a C0-semigroup of contraction on Lp which has an equicontin-
uous extension on Lq for some 1 ≤ q < p < +∞. Let M ≥ 1 such that,
for any t > 0, ||Ttf ||q ≤M ||f ||q.
(a) Assume that (2.5) holds with ||f ||q ≤ M then (2.6) holds true with

||f ||q ≤ 1.
(b) Conversely, if (2.6) holds true with ||f ||q ≤M1 then (2.5) holds with

||f ||q ≤M1.

We shall call a (G, p, q)-decay the inequality (2.6) and (NTI)p,q the inequal-
ity (2.5). The exponential factor exp(−pt) of (2.6) doesn’t depend on the Nash
function N .

Remark 2.6. 1. Assume G be continuous. Let γ(t) = eλtG( ||Ttf ||pp ). Then
the two statements ”γ is non-increasing” and

G( ||Ttf ||pp ) ≤ e−λt G( ||f ||pp ), ∀t > 0.

are equivalent (see the general remark after Definition 2.2).

2. For instance, if p = 2 and q = 1 and N (y) = λ > 0, y ∈ R, we re-
cover a well-known result. The inequality (2.5) (with or without the con-
dition

∫

X
f dµ = 0), namely Poincaré inequality (1.4). We easily compute

G(x) = x1/λ (x > 0) and the corresponding decay is the exponential decay

||Ttf ||22 ≤ e−2λt||f ||22, t > 0. (2.7)

The L1-control of f can be removed by homogeneity of the norm ||.||2.

3. Note that, in practice, the function N may be non-positive on some in-
terval ] −∞, a] with a > 0 or only bounded below by a negative constant.
In that case, we change N by δ + N+ where N+ is the non-negative part
of N and δ > 0. So the quadratic form E(f) = (Lf, f) is changed by
((L + δ)f, f) (see Section 4 for examples of applications). We give a gen-
eral formulation of our theorem 2.5 taking into account of this fact in view
of some applications (see Th. 2.8).

Proof of Theorem 2.5: We first prove that Nash-type inequality (NTI)p,q
implies (G, p, q)-decay inequality. We assume that N satisfies the assumptions
above. Fix f ∈ D with ||f ||q ≤ 1. Since (Tt) is a contraction on Lq, we have
||Ttf ||q ≤ 1 and Ttf ∈ D for any t > 0. We apply (NTI)p,q to Ttf ,

||Ttf ||pp N
(

log ||Ttf ||pp
)

≤ (LTtf, (Ttf)p).

Let ϕ(t) = ||Ttf ||pp. We have ϕ′(t) = −p(LTtf, (Ttf)p) (see [V-S-C] p.15). It
follows

ϕ(t) N (logϕ(t)) ≤ −1

p
ϕ′(t)
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which can be rewritten as

p ≤ 1

N (logϕ(t))

(−ϕ′(t)

ϕ(t)

)

. (2.8)

We integrate this inequality: let s > 0,

ps ≤
∫ s

0

d(− logϕ(t))

N (logϕ(t))

By change of variable,

ps ≤
∫ logϕ(0)

logϕ(s)

dy

N (y)
.

Thus by definition of F , we get

F(logϕ(s)) ≤ −ps+ F(logϕ(0)).

We conclude by taking the exponential on both sides of this inequality:

G(ϕ(s)) ≤ e−ps G(ϕ(0)).

We have proved the first implication.

Converse. We prove that (G, p, q)-decay inequality implies Nash-type in-
equality (NTI)p,q. We obtain this result simply by differentiation at s = 0+

inequality (2.6) as follows. With the same notations as above, we write for
all s > 0, ϕ(s) = ||Tsf ||pp with ||f ||q ≤ 1. Thus (G, p, q)-decay inequality is
equivalent to

[G(ϕ(s)) − G(ϕ(0))] /s ≤
[

(e−ps − 1)/s
]

G(ϕ(0)).

We take the limit as s goes to zero and get

−p(Lf, fp)G′
(

||f ||pp
)

≤ −pG
(

||f ||pp
)

.

Therefore,
G
(

||f ||pp
)

/G′
(

||f ||pp
)

≤ (Lf, fp).
We define the function N as the solution of

xN (log x) = G(x)/G′(x), x > 0.

That is N (y) = e−yG(ey)/G′(ey), y ∈ R. This proves the converse.

Now we prove statement (3) just by saying that, for a fixed f ∈ D satisfying
∫

X
f dµ = 0, then

∫

X
Ttf dµ = 0,∀t > 0 since (Tt) is a (symmetric) Markov

semigroup. We conclude the proof by the same arguments as above. The state-
ment (4) follows with a similar proof as above. This completes the proof of
Th.2.5.

Note that G and F are conjugate by the intertwining function log.
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Remark 2.7. The first implication holds true for H (instead of F) satisfying
the following condition : for some c > 0 and all a ≤ b,

c(H(a) −H(b)) ≤ F(a) −F(b).

When it is not possible to find an explicite expression of F , it is useful to find
an explicit expression of H comparable to F in the following sense: there exists
c1, c2 > 0 such that

c1 (H(a) −H(b)) ≤ F(a) −F(b) ≤ c2 (H(a) −H(b)) , a ≤ b.

This allows us to keep track of the function F . Indeed, let GF := exp oF o log,
So, if GF satisfies (2.6) then Gc1H = (GH)

c1 also. Now, if Gc1H satisfies (2.6)

then G c1
c2

F = (GF )
c1
c2 also. Note that the Lyapunov exponent p in (2.6) with GF

is replaced by p′ = c2
c1
p in this process. (for an application, see subsection 4.6).

In order to deal with examples, we are now interested by the same kind of
results but with a slightly weaker assumptions on Nash-function N . Indeed,
we need to treat examples where the function N may not be positive on an
interval of the form ] −∞, a] for some a > 0 see subsection 4.3, 4.4. We have
the following generalization of Th. 2.5.

Theorem 2.8. Assume that L is the generator of a submarkovian semigroup
(Tt). Let N be a non-decreasing continuous function and assume there exists
α ∈ [0,+∞) such that N ≤ 0 on (−∞, logα] and N > 0 on (logα,+∞) and
F such that F ′ = 1/N on (logα,+∞). We define G = exp oF o log on the set
(α,+∞) . The two following statements are equivalent:

1. For all f ∈ D with ||f ||q ≤ 1,

||f ||ppN
(

log ||f ||pp
)

≤ (Lf, fp). (2.9)

2. For all t > 0 and for all f ∈ D with ||f ||q ≤ 1 such that α < ||Ttf ||pp,

G( ||Ttf ||pp ) ≤ e−pt G( ||f ||pp ). (2.10)

3. Analogue statements as in (3) and (4) of Th.(2.5) hold true.

Remark 2.9. Recall that ||Ttf ||pp is a non-increasing and continuous function
of t. If α < ||f ||pp then there exists t0 ∈ (0,∞] depending on f such that for all
0 ≤ t < t0, α < ||Ttf ||pp and for all t ≥ t0, ||Ttf ||pp ≤ α.

Proof. The proof is similar to the proof of Theorem 2.5 so we only sketch the
arguments. First, we show the implication ”(1) ⇒ (2)”. Let f ∈ D be such that
||f ||q ≤ 1. We can assume α < ||f ||pp if it is not the case there is nothing to
prove (see Remark 2.9). Let t0 be as in Remark 2.9. For all t and s such that
0 < t < s < t0, we have α < ||Ttf ||pp and the inequality (2.8) holds true. Now,
we integrate over (0, s] with respect to t and conclude in the same way as in

10



Theorem 2.5.

The converse is proved as follows. We can assume that α < ||f ||pp. If this

condition is not satisfied there is nothing to prove. Indeed, N
(

log ||f ||pp
)

≤ 0

and (Lf, fp) = −1
p
d
dt ||Ttf ||pp ≥ 0 since the semigroup is a contraction on Lp. So,

there exists t0 > 0 such that for 0 < t < t0, the inequality (2.10) holds true.
Thus we can take the derivative at t = 0+ as in the proof of Theorem 2.5 and
conclude. The proof is completed.

3. Related inequalities

We study the relationship between G-decay and other families of inequal-
ities. In particular, we recall (with proof or a sketch of the proof) that Lp-
log-Sobolev inequality with parameter implies a Lp-Nash-type inequality (see
[Bi-Ma] for the L2-version). We also recall that ultracontractivity property of
the semigroup implies Lp-log-Sobolev inequality with parameter and therefore
Nash-type inequality. We also prove that (2, 1)-Nash-type inequality implies
(p, p − 1) Nash-type inequality (with p ≥ 2). Lp-log-Sobolev inequality with
parameter will be also called super-log-Sobolev inequality.

Theorem 3.1. Let Tt = e−Lt be a symmetric submarkovian semigroup. Assume
that (Tt) satisfies Lp-log-Sobolev inequality with one parameter for a fixed p ∈
[2,+∞) that is:

∫

gp log g dµ ≤ t
p

2(p− 1)
(Lg, gp) + 2M(t)p−1||g||pp + ||g||pp log ||g||p (3.1)

for all g ∈ D+ := ∪t>0e
−Lt(L1 ∩ L∞)+ with gp = gp−1.

1. Then for all q such that 1 ≤ q < p and g ∈ D+, satisfying ||g||q ≤ 1, we
have

||g||pp N ♯
p,q

(

log ||g||pp
)

≤ (Lg, gp) (3.2)

where N ♯
p,q(y) = 4(p−1)

p2 N ( qy
p−q ) with N (y) = supt>0 (ty/2 − tM(1/t)),

y ∈ R.

2. Let F such that F ′ = 1/N . We define F ♯
p,q(y) = p2(p−q)

4q(p−1)F
(

qy
p−q

)

, y ∈ R

and G♯p,q(x) = exp o F ♯
p,q o log(x). So,

G♯p,q(x) =
[

G(x
q

p−q )
]

p2(p−q)
4q(p−1)

,

with G(x) = exp o F o log(x). Then for all f ∈ D+, ||f ||q ≤ 1 and for all
t > 0, we have

G♯p,q( ||Ttf ||pp ) ≤ e−pt G♯p,q( ||f ||pp ). (3.3)

11



or equivalently

G( ||Ttf ||
pq

p−q
p ) ≤ e−p̃t G( ||f ||

pq
p−q
p ) (3.4)

with p̃ = 4q(p−1)
p(p−q) .

Note that N ♯
2,1(y) = N (y) is the Legendre (or conjugate) transform of

t → tM(1/t) evaluated at y/2 ∈ R. Recall that the inequality (3.1) can be
deduced from the same inequality with p = 2 (see [D] Lemma 2.2.5 p.67). Such
inequality will be called log-Sobolev inequality with parameter or super-log-
Sobolev inequality. Our theorem above says that a Nash-type inequality can
be deduced from super-log-Sobolev inequality and consequently a G-decay can
be obtained from super-log-Sobolev inequality. Recall that (3.2) and (3.3) (or
(3.4)) are equivalent by Th.2.5.

Proof. Let g ∈ D+. So g is non-negative and g ∈ Ls for any s ∈ [1; +∞]. Let
2 ≤ q < p < +∞. We assume that

∫

gq dµ = 1 then dν = gq dµ is a probability
measure. We apply Jensen inequality to the convex function Φ(x) = x log x
with the probability measure dν. We get

∫

gp log g dµ =
1

p− q

∫

gp−q log gp−q dν

=
1

p− q

∫

Φ(gp−q) dν ≥ 1

p− q
Φ

(∫

gp−q dν

)

=
1

p− q
||g||pp log ||g||pp.

From this inequality and the assumption (3.1), we easily deduce for all t > 0:

q

p− q
||g||pp log ||g||p ≤

pt

2(p− 1)
(Lg, gp) +

2M(t)

p
||g||pp.

Hence,

||g||pp
[

2q(p− 1)

tp2(p− q)
log ||g||pp −

4(p− 1)

tp2
M(t)

]

≤ (Lg, gp).

For ||g||q = 1, our result (3.2) follows from optimization over t > 0 and defini-
tions of N and N ♯

p,q.

We now prove that inequality (3.2) hold true when ||g||q ≤ 1. We set g =
f/||f ||q with f ∈ D+ := ∪t>0e

−Lt(L1 ∩ L∞)+ and get from (3.2) applied to g:

||f ||pp N ♯
p,q

(

log
||f ||pp
||f ||pq

)

≤ (Lf, fp). (3.5)

Since N ♯
p is non-decreasing and ||f ||pq ≤ 1

log ||f ||pp ≤ log ||f ||pp − log ||f ||pq = log
||f ||pp
||f ||pq

.
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We deduce (3.2) for f . This proves the first statement.

To prove the second statement, we apply Th.2.5. Indeed, with the definition

of F ♯
p,q(y) = p2(p−q)

4q(p−1)F
(

qy
p−q

)

, y ∈ R, we easily check that
(

F ♯
p,q

)′
(y) = 1

N ♯
p,q(y)

.

Thus G♯p,q is given by G♯p,q = exp oF ♯
p,q o log and the rest of the proof is a simple

computation. This completes the proof.

Note that (3.5) and (3.2) are equivalent under the assumption ||f ||q ≤ 1 by
homogeneity.

Corollary 3.2. Let (Tt) be a symmetric submarkovian semigroup and assume
(Tt) that satisfies the following ultracontractivity property: for all t > 0,

||Ttf ||2 ≤ eM̃(t)||f ||1 (3.6)

where M̃ is monotonically decreasing continuous function of t. Then (3.1) is
satisfied with M = M̃ and therefore (3.2)-(3.3)- (3.4) hold true.

We only sketch the proof of this corollary. Ultracontractivity property im-
plies Lp-log-Sobolev inequalities with parameter by Th.2.2.3 and Lemma 2.2.6
of [D]. We apply Th.3.1 to conclude.

Note that (3.6) and (3.1) are not equivalent in general. There exits a semi-
group satisfying (3.1) but not ultracontractive (see example 2.3.5 p. 73 of [D]).

In some concret situations, we are able to prove Nash-type inequality, but
nor the property of ultracontractivity, nor the inequality of log-Sobolev with
parameter are satisfied (see [BM1]). In case of existence of a (2, 1)-Nash-type
inequality, we state a similar result in Lp but with some restriction on the index
q of the Lq-norm.

Theorem 3.3. Let Tt = e−Lt be a symmetric submarkovian semigroup. Assume
that there exists a non-decreasing function N : R −→ R such that the following
inequality holds true for all f ∈ D ∩ L1 ∩ L∞ with ||f ||1 ≤ 1,

||f ||22 N
(

log ||f ||22
)

≤ (Lf, f). (3.7)

Then

1. For all g ∈ D+ := ∪t>0e
−Lt(L1 ∩L∞)+, satisfying ||g||p/2 ≤ 1 with p ≥ 2,

we have
||g||pp Np,p/2

(

log ||g||pp
)

≤ (Lg, gp) (3.8)

where Np,p/2(y) = 4(p−1)
p2 N (y), y ∈ R.
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2. Let F2,1 such that F ′
2,1 = 1/N . We define Fp,p/2(y) = p2

4(p−1)F2,1(y), y ∈

R and Gp,p/2 = exp oFp,p/2 o log. Then Gp,p/2 = [G2,1]
p2

4(p−1) with G2,1 =
exp oF2,1 o log and for all f ∈ D+, ||f ||p/2 ≤ 1 and for all t > 0, we have:

Gp,p/2( ||Ttf ||pp ) ≤ e−pt Gp,p/2( ||f ||pp ). (3.9)

or equivalently,
G2( ||Ttf ||pp ) ≤ e−p

⋆t G2( ||f ||pp ) (3.10)

with p⋆ = 4(p−1)
p . The converse also holds true i.e. (3.9) or (3.10) implies

(3.8).

Proof. Recall that E(f) = (Lf, f) is a Dirichlet form. So we have for g ∈
D, g ≥ 0:

E(gp/2) ≤ p2

4(p− 1)
(Lg, gp). (3.11)

(see [V-S-C] p.23, [D].p.67). Now, we set f = gp/2 in (3.7), we easily deduce the
inequality (3.8) from the inequality (3.7) and (3.11). We complete the proof by
applying Th.2.5.

Note that Np of Th.3.3 and N ♯
p,q of Th.3.1 can be compared when q = p/2:

Np = N ♯
p = 4(p−1)

p2 N .

In this last theorem, we have only considered (p, p/2)-Nash-type inequalities
in Th.3.3 deduced from (2, 1)-Nash-type inequality. The motivation comes from
the fact that, on R

n
, for some operators L, we use Fourier analysis to prove

inequality (3.7) as in the original proof (see [N] and Section 4.6). Indeed, it is
not clear if such analysis can be carry on the Lp-setting with p 6= 2. Of course,
if a (p, q)-Nash-type inequality is available with (p, q) 6= (2, 1), we directly apply
Th.2.5.

4. Examples

In this section, we compute the function G of the decay of Th. 2.5 or Th.2.8,
G♯p of Th. 3.1 and Gp of Th.3.3. Some examples are classical and some are new.
We give a specific or simplified presentation of each of these inequalities and
some consequences. We also mention the settings where such situations appear.

In subsection 4.1, we start with the classical Nash inequality with polynomial
exponent in abstract setting (see [N], [C-L] for R

n
). In Section 4.2, we deal the

same case with an additional spectral information. In subsection 4.3 and 4.4,
we also study some families of examples, respectively what we call the one-
exponential case and the double-exponential case (see [Bi-Ma] for other results
on these examples).
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We also consider the situation analogue to the Ornstein-Uhlenbeck semi-
group (subsection 4.5). We study the Γ∗-semigroup in subsection 4.6 closed to
Ornstein-Uhlenbeck semigroup. For explicit examples satisfying ultracontrac-
tive bounds of type (4.31) of section 4.3 or (4.37) of section 4.4, we refer the
reader to [B2] where such semigroups appear in a natural way on the infinite
dimensional torus for some Laplacians.

In Section 5, for all these examples above, we deduce inequalities of func-
tional decay for fractional powers Lβ of the infinitesimal generator L of the
corresponding semigroup. But we shall not give complete details of the proofs
to avoid a too lengthy paper.

4.1. N (y) = c eγy, γ, c > 0.

This section deals with the classical Nash inequality. Namely, for all f ∈
D ∩ L1 with ||f ||1 ≤ 1,

k1||f ||2+
4
ν

2 ≤ (Lf, f). (4.1)

With our notation,

||f ||22 N
(

log ||f ||22
)

≤ (Lf, f). (4.2)

with N (y) = k1e
2y
ν , y ∈ R.

Such inequality first appeared in [N] and it has been generalized for sub-
markovian semigroups, see [C-K-S], [V-S-C]. We start by recalling connections
between polynomial ultracontractivity, Sobolev inequality and Nash inequality
(4.1), see also Prop 6.5.

Throughout this section, we assume that (Tt) is submarkovian semigroup
and its non-negative generator L on L2 with domain D. It has been proved by
Carlen-Kusuoka-Strook ([C-K-S]) that the following property, called polynomial
ultracontractivity,

||Ttf ||2 ≤ k3t
−ν/4||f ||1, ∀t > 0, (4.3)

for some ν > 0, is equivalent to the following Nash inequality: for all f ∈ D,
||f ||1 ≤ 1,

k1||f ||2+4/ν
2 ≤ (Lf, f), (4.4)

for some constant k1 > 0 (with the same ν).
For instance, L = ∆, the laplacian on the Euclidean space R

n
satisfies both

inequalities (with independent proofs) with ν = n, see [N] for (4.4). The best
constants k1 and This theory has been applied to sub-Laplacians on Lie groups,
see [V-S-C] p.56 and p.108.
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In the abstract theory, we distinguish two cases 0 < ν ≤ 2 and ν ≥ 2 (ν need
not be an integer). When ν > 2, (4.4) (or (4.3)) is equivalent to the following
L2-Sobolev inequality:

||f ||22q0 ≤ k2(Lf, f) (4.5)

with q0 = ν
ν−2 with (see [V-S-C]). From this inequality we can also deduce

(p, q)-Nash-type inequalities as shown in proposition 4.1 just below.

To summarize the situation, for sub-markovian semigroups, Sobolev inequal-
ity (4.5), ultracontractivity property (4.3) and Nash inequality (4.4) are equiv-
alent when ν > 2 (see [V-S-C]). For a direct proof of the equivalence between
(4.5) and (4.4) using properties of Dirichlet forms see [B-C-L-S]. The best con-
stants k1, k2 and k3 just above are known.

We first focus on the case ν > 2, we prove that Nash-type inequalities are
available for a large class of indices (p,q) (see Prop.4.1 just below). The (p, q)-
Nash inequality of this section is the motivation of our general study in this
paper. We deduce the corresponding G-decay which can be reformulated as an
improved contraction on Lp with constraint (see Cor.4.4 and Cor. 4.5). From
this reformulation, we deduce some space-time mixed-norms inequalities for the
semigroup in Cor.4.6 and, in particular, is related to Hardy-Littlewood-Sobolev
type inequality.

In the next proposition, we explicit the G-decay in terms of the Sobolev
constant.

Proposition 4.1. Assume that Tt = e−tL is a submarkovian semigroup which
satisfies Sobolev inequality (4.5) with ν > 2. Let 1 ≤ q < p < ∞ with p ≥ 2.

We set b = 2q
ν(p−q) (so b > 0), cp = 4(p−1)

k2p2
with k2 of (4.5) and Ñp,q(y) =

cp exp(by), y ∈ R. Then we have

||f ||pp Ñp,q

(

log ||f ||pp
)

≤ (Lf, fp), ||f ||q ≤ 1. (4.6)

and the inequality (2.6) holds true with the corresponding function G̃p,q(x) =
exp

(

−ax−b
)

(x > 0) with a = 1
bcp

.

Recall that the inequalities (4.3)-(4.4)-(4.5) are equivalent when ν > 2.

Proof. These inequalities are deduced from (4.5) as follows: let 1 ≤ q < p <∞
with p ≥ 2. We set fp = fp−1. Changing f by fp/2 with f ∈ D in Sobolev
inequality (4.5) and using the fact that (Lf, f) is a Dirichlet form, we get by
(3.11),

||f ||ppq0 ≤ k2
p2

4(p− 1)
(Lf, fp).

Now we apply Hölder inequality (q0 > 1),

||f ||p ≤ ||f ||αpq0 ||f ||1−αq
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with 1
α = 1/pq0−1/q

1/p−1/q > 0. It yields the following Nash-type inequality:

cp
(

||f ||pp
)1/α ≤ (Lf, fp), ||f ||q ≤ 1. (4.7)

with cp = 4(p−1)
k2p2

. We apply the assertion ”(1) ⇒ (2)” of Th.2.5 and de-

duce the expression of Ñp,q in (4.6): Ñp,q(y) = cp exp (b y) , y ∈ R, with

b = 1
α − 1 = 1

p

1− 1
q0

1
q −

1
p

= 2q
ν(p−q) > 0. The function G̃p,q of (2.6) is easily computed

from Ñp,q by the formulas given in 2) of Th.2.5. The proof is completed.

Because, the relationship between the best constant in Sobolev, Nash and
ultracontractivity are not clear. We compute the G function for each case.
First, we present the G-decay in terms of Lp-contraction of the semigroup with
Lq-constaint under Sobolev inequality.

Corollary 4.2. Assume that the generator L of the semigroup (Tt) satisfies
Sobolev inequality (4.5) with ν > 2. Let 2 ≤ p < +∞ and 1 ≤ q < p. We

set δ = p
a = 8q(p−1)

k2pν(p−q)
, and 1/α0 = 1

pb = 2pq
ν(p−q) with constant k2 in Sobolev

inequality (4.5). Then for any f ∈ Lp ∩ Lq with ||f ||q ≤ 1 and any t > 0,

||Ttf ||p ≤ Hp,q(f, t) ||f ||p (4.8)

with

Hp,q(f, t) :=

[

1 + δt

( ||f ||p
||f ||q

)1/α0
]−α0

.

The inequality (4.8) is equivalent to the following G-decay

G
(

||Ttf ||pp
)

≤ e−ptG
(

||f ||pp
)

.

with G(x) = exp
(

−ax−b
)

, a = k2p
2ν(p−q)

8q(p−1) and b = 2q
ν(p−q) .

Remark 4.3. 1. We note that Hp,q(f, t) depends on f only through the ratio

of the norms
||f ||p
||f ||q

so Hp,q(f, t) is homogeneous of degree 0 .

2. For all f and t > 0, we have 0 ≤ Hp,q(f, t) ≤ 1 and Hp,q(f, 0) = 1. The
map t −→ Hp,q(f, t) is non-increasing. For large t, we have the asymptotic
estimate:

Hp,q(f, t) ∼
( ||f ||q
||f ||p

)

(δt)−α0 .

On one side, we recover that the semigroup is a contraction on Lp from
the fact Hp,q(f, t) ≤ 1. One the other side, from the following inequality,
for any t > 0:

Hp,q(f, t) ≤
( ||f ||q
||f ||p

)

(δt)−α0 .

we recover the ultracontractivity property of the semigroup (Tt) from Lq

to Lp:
||Ttf ||p ≤ (δt)−α0 ||f ||q.
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If p = 2 we get the usual exponent α0 = ν
4 . So our G-decay interpolates

between Lp-contraction and ultracontractivity property of the semigroup.

Proof. By Proposition 4.1, we have for any f ∈ Lp ∩ Lq, ||f ||q ≤ 1 and any
t > 0,

G
(

||Ttf ||pp
)

≤ e−ptG
(

||f ||pp
)

. (4.9)

with G(x) = exp
(

−ax−b
)

, a = k2p
2ν(p−q)

8q(p−1) and b = 2q
ν(p−q) . By taking the log

and changing sign of (4.9), we deduce

pt+ a||f ||−pbp ≤ a||Ttf ||−pbp .

i.e.

||Ttf ||p ≤ ||f ||p
[

1 +
p

a
t||f ||pbp

]−1/pb

which is clearly equivalent to (4.9). We change f by f/||f ||q (renormalisation).
We set 1/α0 = pb = 2pq

ν(p−q) and δ = p
a and conclude the proof.

Now, we deal with the general case ν > 0 but with some restriction on (p, q).
When ν > 2, we have recalled that (4.4) and (4.5) are equivalent. In the case
0 < ν ≤ 2, the situation is different with respect to Sobolev inequality which
cannot be defined by (4.5). But we can also apply Th. 3.1 and Th. 3.3 to
compute explicitely the function G♯p and also Gp which corresponds to different
controls of Lq-norm in these theorems. Of course, we can apply these results to
the case ν > 2. Below, we explicit these functions G♯p and Gp.

Now, we present the G-decay in terms of Lp-contraction of the semigroup
with Lq-constaint under ultracontractivity property of the semigroup (Tt).

Corollary 4.4. Under the assumtions of Th.3.1 with M(t) = log(k3t
−ν/4),

t > 0 in (3.1) for some ν > 0. Then the G♯p,q-function of decay of Th.3.1 is
given by

G♯p,q(x) = exp
(

−a′x−b′
)

, x > 0, (4.10)

with a′ =
ek

4
ν
3 p

2(p−q)
2q(p−1) , b′ = 2q

ν(p−q) . We have, for all t > 0 and all 1 ≤ q < p,

2 ≤ p < +∞, f ∈ Lp ∩ Lq, ||f ||q ≤ 1,

G♯p,q( ||Ttf ||pp ) ≤ e−pt G♯p,q( ||f ||pp ). (4.11)

or equivalently,
||Ttf ||p ≤ H♯

p,q(f, t) ||f ||p. (4.12)

where

H♯
p,q(f, t) :=

[

1 + δ t

( ||f ||p
||f ||q

)1/α0
]−α0

.

with 1/α0 = pb′ = 2pq
ν(p−q) and δ = p

a′ = 2q(p−1)

p(p−q)ek
4
ν
3

.
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Proof. We apply Th.3.1 with the assumption M(t) = log(k3t
−ν/4), t > 0 in

(3.1). So, by computations, we obtain successively:

N2(y) := sup
t>0

(ty/2 − tM(1/t)) =
ν

4ek
4
ν
3

exp

(

2

ν
y

)

and the function F2 satisfying the condition F ′
2 = 1

N2
is given by

F2(y) = −2ek
4
ν
3 exp

(

−2

ν
y

)

.

From both formulas F ♯
p,q and G♯p,q in 2) of Th.3.1, we obtain (4.10). The

inequality (4.12) is obtained as in Cor.4.2. This concludes the proof.

This result applies to the Laplacian on the Euclidean space R
n
. The decay

function G2(x) is given by

G2(x) = G♯2(x) = exp
(

−ax−2/n
)

, x > 0. (4.13)

with a = e
4π by applying Cor.4.4 with k3 = (8π)−n/4 (see [D] p. 60). The best

constant a is related to the best constant of Nash inequality: see the end of
Section 6 Prop.??).

Note that, conversely, if e−tL satisfies a (G, 2)-decay inequality with G(x) =
exp(−ax−b) with a, b > 0 then Nash inequality (4.4) is satisfied. So, combining
Cor.4.4 and Th.2.5 we obtain a variant for the proof of polynomial ultracontrac-
tivity implies Nash inequality. This also shows that G-decay is at the cross-road
of Nash inequality, Sobolev inequality, ultracontractivity property.

We recall Varopoulos’ result which asserts that polynomial ultracontractivity
with ν > 2, is equivalent to Sobolev inequality

||f ||2ν/ν−2 ≤ c(Lf, f)

in the setting of submarkovian semigroups.

In particular, Sobolev inequality is equivalent to the contraction inequality
(4.12) or (4.16) below with p = 2 and q = 1 up to constants.

Now , we present the G-decay in terms of Lp-contraction of the semigroup
with Lq-constaint under Nash inequality.

Corollary 4.5. Assume that Nash-type inequality of polynomial decay (4.4) is
satisfied with ν > 0 for the generator L of a submarkovian semigroup (Tt). Then
the G-function of decay of Th.3.1 is given by

Gp,p/2(x) = exp

( −νp2

8k1(p− 1)
x−

2
ν

)

, x > 0, (4.14)
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with k1 of (4.4).

Then, for all t > 0 and all f ∈ Lp ∩ Lp/2, 2 ≤ p <∞,

Gp,p/2( ||Ttf ||pp ) ≤ e−pt Gp,p/2( ||f ||pp ), ||f ||p/2 ≤ 1, (4.15)

or equivalently

||Ttf ||p ≤ Hp,p/2(f, t) ||f ||p, ||f ||p/2 ≤ 1, (4.16)

with

Hp,p/2(f, t) :=

[

1 + δ t

( ||f ||p
||f ||p/2

)1/α0
]−α0

with δ = 8k1(p−1)
pν , 1/α0 = 2p

ν .

Proof. We only sketch the proof. Nash inequality (4.4) can be written as

||f ||22 N (log ||f ||22) ≤ (Lf, f), ||f ||1 ≤ 1

with N (y) = k1 exp( 2
ν y), y ∈ R. We then apply Th.3.3 and compute Gp,p/2

explicitely. The proof of (4.16) is similar to the one given in the proof of Cor.4.2.

From Cor.4.2 or Cor.4.4 or Cor.4.5, we can deduce mixed-norm estimates
for the semi-group (Tt). This is possible due to the fact that there is no singu-
larity at t = 0 in the function Hp,q(t) of (4.8). As particular cases, we deduce
Hardy-Littlewoood-Sobolev-type inequalities (see comments at the end of this
subsection). Let p, s, α > 0. We introduce the following mixed-norm

||f ||p,s,α =

[∫ ∞

0

||Ttf ||sp
dt

tα

]1/s

.

The space of functions f such that ||f ||p,s,α <∞ will be denoted by

Wp,s,α = Ls
(

(0,∞) → Lp(X, dµ),
dt

tα

)

.

This space is introduced to study the space-time regularity of the semigroup.
But other time-weights could certainly be considered.

Corollary 4.6. 1. Assume that the semigroup (Tt) satisfies the following
inequality for some (or any) 2 ≤ p < +∞ and 1 ≤ q < p: there exists
δ > 0 and α0 > 0 such that, for any f ∈ Lp ∩ Lq with ||f ||q ≤ 1 and for
any t > 0,

||Ttf ||p ≤ Hp,q(f, t) ||f ||p
with

Hp,q(f, t) :=

[

1 + δt

( ||f ||p
||f ||q

)1/α0
]−α0

.
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Then for any s > 0 and any α such that 1 − sα0 < α < 1 there exists a
constant K > 0 such that, for any f ∈ Lp ∩ Lq,

||f ||p,s,α ≤ K||f ||1−θp ||f ||θq (4.17)

with θ = 1−α
α0s

and K = δ
α−1

s

(∫ ∞

0

[1 + u]
−sα0

du

uα

)1/s

.

2. In particular, this result holds under the assumptions of Cor.4.2 or of
Cor.4.4 or of Cor.4.5 (with the corresponding α0 and δ).

The fact that 0 < θ < 1 shows that (4.17) is an interpolation result.

Proof. It is straightforward and we only sketch the main steps. By assumption,
we have for f ∈ Lp ∩ Lq,

||Ttf ||p ≤
[

1 + δt

( ||f ||p
||f ||q

)1/α0
]−α0

||f ||p.

We raise this inequality to the power s > 0 and integrate over (0,∞) w.r.t.
the weight dt

tα .

∫ ∞

0

||Ttf ||sp
dt

tα
≤





∫ ∞

0

[

1 + δt

( ||f ||p
||f ||q

)1/α0
]−sα0

dt

tα



 ||f ||sp.

Let η = δ
(

||f ||p
||f ||q

)1/α0

. We set u = tη, thus

∫ ∞

0

||Ttf ||sp
dt

tα
≤ ||f ||sp ηα−1

(∫ ∞

0

[1 + u]
−sα0

du

uα

)

.

The integral converges at t = 0 iff α < 1 and at t = ∞ iff sα0 + α > 1. We set
θ = 1−α

α0s
. The conditions just above corresponds exactly to 0 < θ < 1. Under

that condition on θ, we get

[∫ ∞

0

||Ttf ||sp
dt

tα

]1/s

≤ K ||f ||p
( ||f ||q
||f ||p

)θ

with K = δ
α−1

s

(∫ ∞

0

[1 + u]
−sα0

du

uα

)1/s

. This yields the result and completes

the proof.

It appears that Cor.4.6 has some links with the Hardy-Littlewood-Sobolev
(i.e. HLS) theory as stated in [V-S-C] Th. II.2.7 (ii) p.12. The HLS inequality
reads as

||Gγ0f ||p ≤ c||f ||q
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and holds under the assumption of ultracontractivity M(t) = log(k3t
−ν/4). The

indices are related by the formula γ0 = ν( 1
q − 1

p ) > 0 for 1 < q < +∞. The

operator Gγ0 is defined by Gγ0f =

∫ +∞

0

t
γ0
2 −1Ttf dt. Cor.4.6 gives us with

s = 1 and α = 1 − γ
2 , the inequality

||Gγf ||p ≤ Kθ||f ||1−θ1 ||f ||θq (4.18)

with 0 < γ < γ0 and θ = γpq
ν(p−q) ∈ (0, 1). The HLS inequality corresponds to

the limit case θ = 1 (i.e. γ = γ0). But unfortunately Kθ is not bounded as
θ → 1 (with δ and α0 as in Cor.4.4, for instance).

Conversely, HLS inequality implies (4.18). Indeed, let 0 < γ < γ0 with γ0 as
above and 2 ≤ p < +∞, 1 ≤ q < p. There exists q0 such that q < q0 < p and
γ = ν( 1

q0
− 1

p ) > 0. By HLS inequality,

||Gγf ||p ≤ c||f ||q0
and by Hölder inequality, with θ = γpq

ν(p−q) ,

||f ||q0 ≤ ||f ||1−θp ||f ||θq
which proves (4.18) but with a constant Kθ independent of θ.

4.2. N (y) = ce
2y
ν + ρ.

This case of study will be motivated by the applications (see Theorem 4.8) for
semigroups with polynomial ultracontractivity and spectral gap informations.
Our results allow us to deal in an unified way the spectral decay

ρ||f ||22 ≤ (Lf, f), ∀f ∈ D, ||f ||1 ≤ 1. (4.19)

and the Nash inequality

c0||f ||2+4/ν
2 ≤ (Lf, f), ∀f ∈ D, ||f ||1 ≤ 1. (4.20)

combined in the form

c0||f ||2+4/ν
2 + ρ||f ||22 ≤ (Lf, f), ∀f ∈ D, ||f ||1 ≤ 1. (4.21)

It corresponds to N (y) = c0e
2y
ν + ρ. Fortunately, in this case, the function G

can also be explicitely computed.

Theorem 4.7. Let L be the infinitesimal generator of a symmetric submarko-
vian semigroup. Assume that L satisfies for some ρ > 0 and some c > 0 the
following Nash-type inequality

c0||f ||2+4/ν
2 + ρ||f ||22 ≤ (Lf, f), ∀f ∈ D, ||f ||1 ≤ 1. (4.22)
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That is N (y) = c0e
2y
ν + ρ in (5.1). Then

G(x) = x1/ρ

(

x2/ν +
ρ

c0

)
−ν
2ρ

, x > 0. (4.23)

and for all t > 0,

||Ttf ||22
(

||Ttf ||4/ν2 +
ρ

c0

)−ν/2

≤ e−2ρt ||f ||22
(

||f ||4/ν2 +
ρ

c0

)−ν/2

(4.24)

Conversely (4.24) implies (4.22) with the same constants c0, ρ, ν (???).

Note that Theorem 4.7 generalize the case of section 4.1 (i.e. ρ = 0).

We have explicited only the case p = 2 and q = 1. Since the other (p, q)-
decays are obtained from G as in Th.3.1 and Th.3.3, it is immediate to formulate
the corresponding general results. We do not give details to avoid a too long
paper.

Proof. We apply Theorem 2.5 and we compute explicitly G of this theorem.

Indeed F ′(y) = 1

c0e
2y
ν +ρ

, y ∈ R then F(y) = y
ρ − ν

2ρ log(e
2y
ν + ρ

c0
). We get

G(x) = exp oFo log(x) = x1/ρ
(

x2/ν + ρ
c0

)
−ν
2ρ

, x > 0.

We now apply Theorem 4.7 to a familly of semigroups which justifies the

introduction of the case N (y) = ce
2y
ν + ρ when ν > 0. In fact, we introduce

the familly of semigroups which have both properties namely polynomial ultra-
contractivity (4.3) and spectral gap (4.19). See [V-S-C] chap.IX. for explicit
examples. Examples can be contruct from semigroups satisfying a Nash-type
inequality of the form

c0||f ||2+4/ν
2 ≤ (Lf, f), ∀f ∈ D, ||f ||1 ≤ 1.

Indeed, by adding λ||f ||22 with λ > 0, we obtain (4.22) for the generator L + λ
of the symmetric submarkovian semigroup Sλt = e−λte−tL.

We now give an application of Theorem 4.7.

Theorem 4.8. Let e−tL be a symmetric submarkovian semigroup satisfying for
some λ > 0 and ν > 0,

||Ttf ||2 ≤ c

tν/4
e−λt||f ||1, t > 0, (4.25)

then

G(x) = x1/λ

(

x2/ν +
λ

c0

)−ν/2λ

, x > 0. (4.26)

with c0 = ν
4 c

− 4
ν e−1 and the following decay inequality holds true

G( ||Ttf ||22 ) ≤ e−2t G( ||f ||22 ), t > 0. (4.27)
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Remark 4.9. The value ρ in N (y) = ce
2y
ν + ρ associated to (4.22) plays the

role of a spectral value λ of the exponential decay of the semigroup in L2 i.e.

||Ttf ||2 ≤ e−λt||f ||2 (4.28)

We can apply this result when the semigroup satisfies (4.28) and

||Ttf ||2 ≤ c

tν/4
||f ||1 (4.29)

but with some loss on λ since for all ε ∈ (0, 1),

||Ttf ||22 ≤ c2ε
e−2(1−ε)λt

tν/2
||f ||21. (4.30)

Indeed, by semigroup property, we get

||Ttf ||2 = ||T(1−ε)tTεtf ||2 ≤ e−λ(1−ε)t||Tεtf ||2 ≤ e−λ(1−ε)t cε
tν/4

||f ||1

with cε = c
εν/4 .

Proof of Theorem 4.8. We apply Prop.II.2 p.514 of [Co] with m(t) =
c2

tν/2 e
−2λt and compute Θ̃ of this theorem given by the formula Θ̃(x) = xN (log x)

where N (y) = sups>0 (sy − s logm(1/2s)). A simple computation gives us

N (y) = λ + c0e
2y
ν with c0 = ν

4 c
− 4

ν e−1. Thus we get (4.22) with ρ = λ and
c0 above. By Theorem 4.7, we finish the proof.

Remark 4.10. Note that the constant c0, the exponent ν and the spectral value
λ can be read on the function G.

Above we have assumed some properties on the semigroup. We can also
express this directly on the quadratic from E . Indeed, we can mixed spectral
gap and Nash-type inequality of the form (4.4) in the following way. Assume
that there exists c1, ν, λ1 > 0 such that

c1||f ||2+4/ν
2 ≤ E(f), ||f ||1 ≤ 1

and
λ1 ||f ||22 ≤ E(f).

Then theses two inequalities are equivalent to the following one

||f ||22 max
(

c1||f ||4/ν2 , λ1

)

≤ E(f), ||f ||1 ≤ 1.

The function G is easy to compute. We obtain

G(x) = x1/λ1 if 0 < x ≤
(

λ1

c1

)ν/2

and

G(x) =

(

eλ1

c1

)
ν

2λ1

exp

(

− ν

2λ1
x−2/ν

)

if x ≥
(

λ1

c1

)ν/2

.
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4.3. N (y) = y
1+1/γ
+ .

Here again this case is motivated by semigroups satisfying the following
ultracontractivity bound

||Ttf ||22 ≤ c0e
c1/t

γ ||f ||21, t > 0 (4.31)

with c0, c1, γ positive constants.
Such semigroups appear naturally associated to some laplacians on the infi-

nite dimensional torus (see [B2],[B1]).
We can also compute explicitely N (y) = sups>0 (sy − s logm(1/2s)) , y ∈ R

with m(t) = c0e
c1/t

γ

. A simple computation gives us

Na(y) = k (y − a)
1+1/γ
+ , a = log c0 ∈ R

with k depending on γ and c1 but not on c0. We denote by f+(y) = f(y) if
f(y) ≥ 0 and f+(y) = 0 if f(y) ≤ 0 and also y+ = y if y ≥ 0 and y+ = 0 if
y ≤ 0. We have the relation Na(y) = N0(y − a) for all a ∈ R. So it is enough
to deal with the case N0. We compute explicitely G0 associated to N0. We get

G0(x) = exp
(

−γ
k

[log x]
−1/γ

)

, x > 1. (4.32)

We deduce

Ga(x) = G0(x/c0) = exp
(

−γ
k

[log(x/c0)]
−1/γ

)

, x > c0. (4.33)

By applying Theorem 2.8 with α = c0, we have the following result.

Proposition 4.11. Let a ∈ R and c0 > 0 such that a = log c0. Assume that
the following inequality holds true:

|| f ||22 Na

(

log || f ||22
)

≤ (Lf, f), ∀f ∈ D(L), || f ||1= 1, (4.34)

with Na(y) = k(y − a)
1+1/γ
+ . Then, for all x > c0,

Ga(x) = exp
(

−γ
k

[log(x/c0)]
−1/γ

)

. (4.35)

4.4. N (y) = y+(log+ y+)1/γ

We now consider the following family of Nash-type inequalities. Assume
that the generator L of a symmetric submarkovian semigroup satisfies for some
γ > 0 the following inequality

c||f ||22
(

log ||f ||22
)

+

[

log+

(

(log ||f ||22)+
)]1/γ ≤ (Lf, f), ∀f ∈ D, ||f ||1 ≤ 1.

(4.36)
that is N (y) = y+(log+ y+)1/γ , γ > 0.

Such inequalities appear in natural way when one considers semigroups sat-
isfying a double-exponential decay of the following form

||Ttf ||22 ≤ m(t)||f ||21, t > 0, (4.37)
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with m(t) = c0 exp(c1 exp(c2/t
γ)), for some c0, c1, c2, γ > 0 (see the end of

this section for a more detailed discussion on this example). Here again, such
semigroups appear naturally associated to some laplacians on the infinite di-
mensional torus (see [B2],[B1]).

Under the assumption (4.36), we have explicitely the expression of the decay
function G. We get two expressions depending on γ = 1 or not. The theorem
2.8 applies in this case with α = e. We just describe the function G.

Proposition 4.12. Assume that the inequality

|| f ||22 N
(

log || f ||22
)

≤ (Lf, f), ∀f ∈ D(L), || f ||1= 1, (4.38)

holds true with N (y) = y+(log y+)
1/γ
+ . Then, for all x > e,

1. If γ 6= 1, the function G of (2.10) is given by

G(x) = exp

(

γ

γ − 1
(log log x)

1−1/γ

)

. (4.39)

2. If γ = 1, the function G of (2.10) is given by

G(x) = log(log x). (4.40)

Note that the function G is bounded if and only if 0 < γ < 1.

Proof. We compute the function G by Theorem 2.8. Let F ′(y) = 1
y(log y)1/γ

for y > 1 (i.e. α = e in Theorem 2.8). Then if γ 6= 1, we have

F(y) =
γ

γ − 1
(log y)

1−1/γ

If γ = 1, we get F(y) = log(log y), y > 1.

We deduce the expression of G by the formula G(x) = exp oFo log(x), x > e.
The proof is completed.

We now discuss when N (y) = y+(log+ y+)1/γ (or some variants) appears for
some ultracontractive semigroups. Let’s consider semigroups satisfying (4.37)
with m(t) = c0 exp(c1 exp(c2/t

γ)), for some c0, c1, c2, γ > 0. Because it seems
not possible to compute explicitly N , we prove an estimate for N . We note
that we are in the situation where Theorem 2.8 applies since N is only known
for large value of y (essentially we study the behavior of the function N when
y → +∞). For small value of y, we set N (y) = 0.

With the constants c0, c1, c2, γ > 0 defined above, let z = y− log c0. We now
prove that there exists z1 > c1 and constants k, k′ > 0 such that

kz

(

log
z

c1

)1/γ

≤ N (z + log c0) ≤ k′z

(

log
z

c1

)1/γ

. (4.41)
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Indeed, N (y) = sups>0 hy(s) with

hy(s) = sy − sm(1/2s) = s(y − log c0) − c1s exp(c22
γsγ).

Let k2 = c22
γ then h′(s) = z − c1e

k2s
γ

(1 + k2γs
γ). If z ≤ c1 the supremum is

obtained at s = 0+ since h is decreasing. Thus N (y) = 0 for y ≤ log c0 + c1.
If z > c1 the supremum is obtained at s = s0 satisfying h′(s0) = 0 since h′

is positive for s < s0 and negative for s > s0. We get the following relation
between z and s0:

z = c1e
k2s

γ
0 + c1k2γs

γ
0e
k2s

γ
0

We deduce from this relation that z → +∞ iff s0 → +∞. Then we deduce
the two following asymptotics for z and s0 large:

z ∼ (c1k2γ)s
γ
0 exp(k2s

γ
0)

from which we deduce
h(s0) ∼ zs0 (4.42)

and
log(z/c1) ∼ k2s

α
0

from which, with (4.42), we deduce (4.41).

4.5. N (y) = cy

Here, we consider the following Nash-type inequality

c ||f ||22 log ||f ||22 ≤ (Lf, f), ∀f ∈ D, ||f ||1 ≤ 1. (4.43)

with Nash function N (y) = c y, y ∈ R (c > 0) and the associated G-decay of
the corresponding semigroup.

We motivate this study by two examples: the Ornstein-Uhlenbeck semigroup
and the Γ∗-semigroup (see definition below). They satisfy Gross’ inequality just
below:

∫

X

f2 log
f2

||f ||22
dµ ≤ cLS (Lf, f). (4.44)

See for instance,[Gr1, Gr2, W5? ] and Section 4.6. It is well-known that the
generator L = ∆ − x.∇ of the Ornstein-Uhlenbeck semigroup on L2(R

n
, dµ)

with the gaussian measure dµ(x) = (2π)−n/2e−|x|2/2 dx satisfies Gross’ inequal-
ity (4.44) with cLS = 2 (see [Gr1],[A–S]). The extremal functions of Gross’
inequality (let’s say in one-dimensional case) are exactly fλ(x) = eλx, λ ∈ R,
but normalized functions fλ/||fλ||1 are no longer optimal for (4.43) (except the
trivial case f0).

For the Γ∗-semigroup the inequality (4.44) is satisfied for an infinite measure
(Lebesgue measure): see (4.66) below.
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Gross’ inequality (4.44) always implies inequality (4.43). It is deduced by the
same convexity argument as in Theorem 3.1. The inequality (4.43) is a priori
weaker than Log-Sobolev inequality (4.44). In fact we prove in Proposition 4.13
below that (4.43) and (4.44) are equivalent for Dirichlet forms on probability
space (but in this process the best constants are lost). See also [Ma], [BM1]
for a discussion on such an equivalence in more general cases. Note that, for
Ornstein-Uhlenbeck semigroup, the space is a probability space but inequalities
of the form (4.43) also appear for infinite measures, see for instance the Γ∗-
semigroup treated in Section 4.6.

We first start by a simple result. Recall that if µ is a probability mea-
sure, Gross’ inequality (4.43) implies Poincaré inequality ([A–S] p.6,[Gr2] Th.
2.5 ). In next proposition, we go further in the spirit of Section 1 and 2 of [A–S].

We set µ(f) =
∫

f dµ and Varµ(f) = ||f − µ(f)||22. For a Dirichlet form E
on L2(µ), we denote by Tt the associated symmetric (sub-)markov semigroup
and L the generator of Tt : E(f) = (Lf, f)µ, f ∈ D(L) (See [Fu]). For entropy
of f , we set: Entµ(f) :=

∫

f log f dµ− (
∫

f dµ) log(
∫

f dµ).

Proposition 4.13. Assume that µ is a probability measure. Let E be a Dirichlet
form with generator L such that 1 ∈ D(E) and for any h ∈ D(E) we have
E(1, h) = 0 (i.e. µ is invariant). Suppose that there exists c1 > 0 such that for
all f ∈ D(E), ||f ||1 ≤ 1:

||f ||22 log ||f ||22 ≤ c1E(f). (4.45)

Then

1. For any f ∈ D(E) ,
Varµ(f) ≤ c1E(f). (4.46)

2. For any f ∈ L2,
Varµ(Ttf) ≤ e−2t/c1 Varµ(f). (4.47)

3. For any f ∈ D(E):

∫

X

f2 log
f2

||f ||22
dµ ≤ c′1 (Lf, f). (4.48)

Conversely, the inequality (4.48) implies (4.43) with c1 = c′1.

4. If moreover, Pt is of diffusion type,

Entµ(Ptf) ≤ e−4t/c′1Entµ(f). (4.49)

As corollary, under the assumptions just above, Nash-type inequality (4.45)
and Gross’ inequality (4.48) are equivalent up to constants.

28



Proof. 1. Let g ∈ D(E) such that ||g||∞ ≤ 1/2 and µ(g) = 0. For any
0 < ε < 1, set f = 1 + εg. So f ≥ 0, ||f ||1 = 1 and ||f ||22 = 1 + ε2||g||22 ≥ 1. By
(4.45),

log
(

1 + ε2||g||22
)

≤ c1ε
2E(g).

Dividing by ε2 and taking the limit as ε → 0+, we get the result under the as-
sumption ||g||∞ ≤ 1/2. By homogeneity, we deduce (4.46) for any g ∈ D(E)∩L∞

with µ(g) = 0. Now, let h ∈ D(E) and set gn = (h∧ n)∨ (−n) for n ∈ N. Since
E is a Dirichlet form then gn ∈ D(E), gn ∈ L∞ and E(gn) ≤ E(h). Thus, we
have Varµ(gn) ≤ c1E(h). We conclude by taking the limit as n→ ∞.

2. The proof is well-known (see [A–S] p.30 for instance). Note that during
the course of the proof if µ is invariant then µ(f) = 0 implies µ(Ttf) = 0.

3. Under the hypothesis (4.45), it is proved in [Ma] (see also [B-C-L-S]) using
the cut-off method that there exist c′′1 , c

′
2 > 0 such that the defective log-Sobolev

inequality holds true:

Entµ(f
2) :=

∫

X

f2 log
f2

||f ||22
dµ ≤ c′′1 E(f) + c′2 ||f ||22.

Now, by Rothaus’ lemma (See [Ro] p.310 or [A–S] Lemma 4.3.8 ):

Entµ(f
2) ≤ 2 Varµ(f) + Entµ(f̃

2)

with f̃ = f − µ(f). So, we get

Entµ(f
2) ≤ 2 Varµ(f) + c′′1 E(f̃) + c′2 ||f̃ ||22

≤ (2 + c′2)Varµ(f) + c′′1 E(f) ≤ ((2 + c′2)c1 + c′′1) E(f)

by using Poincaré inequality (4.46) and E(f̃) = E(f). We conclude Gross’ in-
equality (4.48) with c′1 = ((2 + c′2)c1 + c′′1).

4. This is a classical result (see [A–S] p.35 ).

Remark 4.14. Note that Gross’ inequality implies (4.45) with c1 = 2 and
implies also Poincaré inequality with c1/2 = 1 and they are the best constants.
But under (4.45), we only get c1 for Poincaré inequality instead of c1/2 and
consequently the best constants are lost.

Now, we prove some relations between Nash-type inequality (4.43) and other
inequalities: hypercontractivity-like and super-Poincaré- like inequalities. In
fact, hypercontractivity-like inequality introduced here is nothing else that G-
decay for Nash funcfion N (y) = cy. To simplify, we just present the case
p = 1, q = 2 of the G-decay. A generalization to (p, q) G-decay can certainly be
adapted, but we shall not give details.
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Theorem 4.15. Let E be a Dirichlet form with generator L and µ a probabilty
measure. The following statements are equivalent:

1. There exists c1 > 0 such that for all f ∈ D(E), ||f ||1 ≤ 1:

c−1
1 ||f ||22 log ||f ||22 ≤ E(f). (4.50)

2. There exists t0 ∈ (0,∞], c2 > 0 and α2 : (0, t0) → (0, 1) non-increasing of
class C1, α2(0

+) = 1, α′
2(0

+) exists and α′
2(0

+) < 0 such that for any f ,
||f ||1 ≤ 1:

||e−tc2Lf ||22 ≤ ||f ||2α2(t)
2 (4.51)

3. There exists t0 ∈ (0,∞], c3 > 0 and α3 : (0, t0) → (0, 1) non-increasing
of class C1, α3(0

+) = 1, α′
3(0

+) exists and α′
3(0

+) < 0 such that for any
f ∈ D(E), ||f ||1 ≤ 1:

||f ||22 ≤ 2tc3 E(f) + ||f ||2α3(t)
2 . (4.52)

4. For any f ∈ D(E):
∫

X

f2 log
f2

||f ||22
dµ ≤ c (Lf, f). (4.53)

Moreover, (1) implies (2) with c2 = c1, t0 = ∞, α2(t) = γ(t) = e−2t. (2)
implies (3) with c3 = c2 and α3 = α2. (3) implies (1) with c1 = 2c3

−α′
3(0

+) .

Recall that (4.53) is equivalent to hypercontractivity (see [Gr1] Section 3).
Here, we particularly focus on new formulations (4.51) and (4.52).

Note that (2) implies (3) and (3) implies (1) for any function α2 (respectively
α3) satisfying the conditions of (2) (respectively (3)) without the assumptions
that E is a Dirichlet form and µ is a probability measure (See the proof below).
In particular if α′

3(0
+) = −2 the constant c1 and c3 are the same. The inequality

(4.52) is a new type of super-Poincaré inequality. Compare for instance with
the following super-Poincaré which has been extensively studied:

||f ||22 ≤ 2tc3 E(f) + a(t)||f ||22, ||f ||1 ≤ 1. (4.54)

There are many results about super Poincaré and examples in Wang’s work: see
for instance (but non exhaustive list) [W0]-[W6],[W-Z] and the book [W7]. See
also recent works of [Z] and [C-G 1] (via Lyapunov functions).

Note also that if µ is an ergodic probability measure that is limt→+∞ Ttf(x) =
∫

X
f dµ. Then for f ≥ 0, we have ||f ||1 =

∫

X
f dµ ≤ ||Ttf ||2 since t → ||Ttf ||2

is non-increasing. Hence, the condition 1 ≤ ||Ttf ||2 is automatically satisfied
for any t > 0 when ||f ||1 = 1 for which our discussion can be reduced.

The inequality (4.51) can be seen as a variant of the hypercontractivity
property. Indeed, under the assumption of Proposition 4.15, inequality (4.51)
or (4.52) is equivalent to Gross’ inequality and also to hypercontractivity (see
p.64-65 of ([Gr2])).
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Proof. (1) implies (2). We apply Theorem 2.8 with (c1Lf, f) as Dirichlet form
and N (y) = y with y > 0 so G(x) = log x, x > 1. Therefore, for all t > 0, for all
f such that ||f ||1 ≤ 1 and 1 < ||Ttf ||22 where Tt = e−tc1L:

log ||Ttf ||22 ≤ e−2t log ||f ||22. (4.55)

Assume that ||f ||1 = 1. Since µ is a probability measure: 1 = ||f ||1 ≤ ||f ||2. If
||Ttf ||22 ≤ 1 then (4.55) is also satisfied. Hence, for any f ∈ L1 ∩ L2:

||Ttf ||22 ≤ ||f ||2γ(t)2 ||f ||2(1−γ(t))1

with γ(t) = e−2t. Since 1− γ(t) > 0, we conclude (2) with t0 = ∞, c2 = c1 and
α2 = γ.

Note that (2) implies (1) by the converse part of Thm 2.8.

(2) implies (3). Let f ∈ D(E) with ||f ||1 ≤ 1. Set Tt = e−tc2L. We have

||f ||22 = (f − T2tf, f) + ||Ttf ||22
since (Tt) is symmetric with (., .) the inner product of L2(µ). We bound the
second term by

(f − T2tf, f) =

∫ 2t

0

− d

ds
(Tsf, f) ds = c2

∫ 2t

0

(LTsf, f) ds ≤ 2tc2(Lf, f)

because the function s→ (LTsf, f) is non-increasing. Assuming (2), we deduce
(3) with α3 = α2 and c3 = c2 by the inequality

||f ||22 ≤ 2tc2, (Lf, f) + ||Ttf ||22.

(3) implies (1). Under the assumptions of (3), we have
(

||f ||2α3(0)
2 − ||f ||2α3(t)

2

)

/2t ≤ c3E(f).

Taking the limit, we get

−α′
3(0)

2c3
||f ||22 log ||f ||22 ≤ E(f).

In Lp-norm and without assuming that µ is a probability measure, we have the
following result.

Proposition 4.16. Let 2 ≤ p < ∞ and 1 ≤ q < p. Assume that inequality
(4.43) holds true then: For all f such that ||f ||p/2 ≤ 1 and for all t > 0 satisfying
1 ≤ ||Ttf ||pp, we get

log ||Ttf ||pp ≤ e−pt log ||f ||pp. (4.56)

or equivalently,
||Ttf ||pp ≤ ||f ||pγ(t)p (4.57)

with γ(t) = e−pt. Conversely when p = 2, (4.56) implies (4.43).
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Proof. The proof follows the same arguments of Thm 4.15 using, moreover
Thm 3.3.

Suggested by the above considerations, we revisit the equivalence between
Gross’ inequality, hypercontractivity, Beckner’s interpolated inequality (between
Gauss and Poincaré) and another modified Nash-type inequality which is intro-
duced here. This modified Nash-type inequality implies Nash-type inequality
(4.52) above. All these inequalities are equivalent under usual assumptions on
the semigroup.

Theorem 4.17. Let µ be a probability measure and E be a Dirichlet form and
c0 > 0.

The following statements are equivalent:

1. (Hypercontractivity). For any 1 < p < ∞ and any t > 0, we set q(t) =

e
4t
c0 (p− 1) + 1,

||Ttf ||q(t) ≤ ||f ||p. (4.58)

2. (Modified Nash-type inequality). For any t > 0,

||f ||22 ≤ 2t E(f) + ||f ||2p(t) (4.59)

with p(t) = 1 + e−
4t
c0 .

3. (Interpolated inequalities). For any p ∈ (1, 2),

||f ||22 − ||f ||2p ≤
c0
2

log

(

1

p− 1

)

E(f). (4.60)

4. (Gross’ inequality).

∫

X

f2 log
f2

||f ||22
dµ ≤ c0 E(f). (4.61)

From modified Nash-type inequality (4.59), we can deduce the new type of
Poincaré inequality above (4.52). Indeed, by interpolation we have under the
assumption ||f ||1 ≤ 1:

||f ||p ≤ ||f ||1−θ(t)1 ||f ||θ(t)2 ≤ ||f ||θ(t)2

with θ(t) = 2(1 − 1/p) = 4e
−4t
c0

1+e
−4t
c0

= 4

1+e
4t
c0

. We deduce for ||f ||1 ≤ 1:

||f ||22 ≤ 2t E(f) + ||f ||2θ(t)2

with θ(t) different from α3(t/c3) := γ(t/c0) = e−2t/c0 obtained in (4.52) and
deduce from (4.50) with c1 = c0. In particular, θ(t) ∼ 2α2

3(t/c3) when t is
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closed to zero.

To prove (4.60), we do not use a specific spectral theory as in Bekcner’s
results [Bec1] for the generator of Ornstein-Uhlenbeck process or the Poisson
semigroup on the unit sphere. To work in our abstract setting, we use the semi-
group approach (see (4.62 below) and deduce interpolated Poincaré inequalities
also by hypercontractivity property as in [Bec1]. So, a priori we cannot expect

to get an optimal bound. Indeed, our bound in (4.60) is c0
2 log

(

1
p−1

)

and for

the Ornstein-Uhlenbeck semigroup c0 = 2 (see [A–S] p.25), we have 2 − p as a
bound in (4.60). It is easily shown that for any 1 < p < 2,

2 − p < log

(

1

p− 1

)

= log

(

1 +
2 − p

p− 1

)

.

Consequently, our bound (4.60) is not optimal for Ornstein-Uhlenbeck semi-

group and only asymptotically optimal when p goes to 2 since log
(

1
p−1

)

∼ 2−p.
But it is enough to deduce Gross’s inequality in the same way as in [Bec1].

Proof. (1) implies (2): For any t > 0, any f ∈ D(E),

||f ||22 ≤ 2tE(f) + ||Ttf ||22. (4.62)

Let p = p(t) = 1 + e−
4t
c0 ∈ (1, 2) then q(t) = 2. We apply hypercontractivity

and conclude.

(2) implies (3): Let 1 < p < 2. There exists a unique t > 0 such that

p = p(t) = 1 + e−
4t
c0 . Then 2t = c0

2 log
(

1
p−1

)

. So, from (2) we get (3).

(3) implies (4). The proof is similar to Beckner’s proof [Bec1]. We have

(

||f ||22 − ||f ||2p)
)

/(2 − p) ≤ c0
2(2 − p)

log

(

1

p− 1

)

E(f).

We get the result by taking the limit as p approaches 2 and by the fact that

log
(

1
p−1

)

∼ 2 − p.

(4) implies (1). The proof is well-known, see [Gr1, Gr2] see also [A–S] p. 38.

As a consequence of Wang’s theorem ([W5] Th 1.1) and Theorem 4.17 above,
we get:

Corollary 4.18. Let (M, g) be a Riemannian manifold with dvg the riemannian
volume. There exists V a smooth function on M \ D with D a closed set of

measure zero such that dµ = e−V

Z dvg with Z =
∫

M
e−V dvg satisfies all the

equivalent inequalities (4.58)-(4.61) with Dirichlet form E(f) =
∫

M
|∇f |2 dµ.
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Proof. For the Dirichlet form E(f) =
∫

M
|∇f |2 dµ, F-Y Wang proved that

there exists a measure µ as mentioned in the Corollary above such that (4.61)
holds true.

Other results concerning, in particular, super Poincaré inequality can be
drawn from Th 1.2 and Th. 1.3 of [W5]. But to avoid a too long paper we shall
not give details.

4.6. Γ∗-semigroup

In that section, we deal with the following Nash function

N (y) = k1 log
(

1 + k2e
2y
)

, y ∈ R, k1, k2 > 0.

Note that N (y) is close to cy for large y. So, this situation has some similarity
with the preceding section. We give an example (with an infinite measure µ)
which motivates this study (see below). We begin by a general result.

Proposition 4.19. Assume that inequality

k1||f ||22 log
(

1 + k2||f ||42
)

≤ (Lf, f). (4.63)

holds true for the generator of (Tt) a sub-markovian semigroup. Let 2 ≤ p <∞
and G defined by

G(x) =

[

log(1 + k2x
2) exp

( −1

log(1 + k2x2)

)]
1

2k1

, x > 0.

Then, for all f such that ||f ||p/2 ≤ 1 and for all t > 0 with 1 ≤ ||Ttf ||pp, we
have

G(||Ttf ||2pp ) ≤ e−ptG(||f ||2pp ).

Conversely, this inequality is equivalent to Nash inequality (4.63).

Proof. We apply Theorem 2.8 and Remark 2.7. For a ≤ b, we define F such
that

F(b) −F(a) =

∫ b

a

1

N (x)
dx = k−1

1

∫ log(1+k2e2b)

log(1+k2e2a)

ey

2y(ey − 1)
dy.

The right-hand side of this equality is obtained by the change of variable y =
log
(

1 + k2e
2x
)

. From the inequality

ey

(ey − 1)
≤ 1 + 1/y, y > 0,

we deduce

F(b) −F(a) ≤ 1

2k1
[log y − 1/y]

log(1+k2e
2b)

log(1+k2e2a) = H(b) −H(a).
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where we set

H(y) =
1

2k1

[

log log
(

1 + k2e
2y
)

− 1

log (1 + k2e2y)

]

, y ∈ R.

Now, we can compute explicitly the G-function associated to H:

G(x) = exp oHo log(x) =

[

log(1 + k2x
2) exp

(

− 1

log(1 + k2x2)

)]
1

2k1

, x > 0.

We easily conclude the proof of this proposition applying Theorem 2.8 and Re-
mark 2.7. This completes the proof.

Before expliciting this result to (µ∗
t )t>0 the Γ∗-semigroup on R, we recall the

definition and some facts about this semigroup and its infinitesimal generator.
From now on, we use the following definition of the Fourier transform

f̂(x) =

∫

R
n
f(y) e−2iπx.y dy.

This definition is convenient due to the fact that it is an isometry on L2(R
n
, dx)

(dx: Lebesgue measure). Let µt be the Γ-convolution semigroup on R given in
terms of its Fourier transform:

µ̂t(x) =

∫

R
e−2iπx.y dµt(y) = e−tψ0(x)

with

ψ0(x) =
1

2
ln(1 + 4π2x2) + i arctan(2πx).

The measure dµt has density µt with respect to the Lebesgue measure:

µt(y) = χ
R

+(y)
1

Γ(t)
yt−1e−y.

We construct the Γ∗-semigroup (µ∗
t )t>0 by symmetrisation of (µt)t>0: µ∗

t =
µt ∗ µ̌t where µ̌t(u) = µt(ǔ) and ǔ(x) = u(−x). Then we have

µ̂∗
t(x) = e−tψ(x) = e−t ln(1+4π2x2).

Thus, ψ(x) = ln(1 + 4π2x2) is the symbol of the Γ∗-semigroup and the corre-
sponding quadratic form is

(Lf, f) = lim
t→0+

(f − µ∗
t ⋆ f, f)L2 =

∫

R
log(1 + 4π2x2)|f̂(x)|2 dx.

The generator is formally denoted by L = log(1+∆) because the Fourier symbol
of L is ln(1 + 4π2x2) and the symbol of ∆ is 4π2x2. (See [B-F]).

Now, we list some important properties of the density µ∗
t on R. We have

explicitely the density

µ∗
t (x) = µt ∗ µ̌t(x) =

1

22t−1Γ(t)2

∫ ∞

x

(s2 − x2)t−1e−s ds.

This implies:
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1. µ∗
t (x) ∼ 1

2tΓ(t) |x|t−1e−|x|, as xր ∞.

2.

µ∗
t (x) ∼







c(t)|x|2t−1, 0 < t < 1/2

c̃ ln 1
|x| , t = 1/2.

, as xց 0.

3. µ∗
t (x) ∈ C0(R), t > 1/2.

Hence by the formula ||µ∗
t ||1 7→∞ = sup

x∈R
µ∗
t (x) = µ∗

t (0)

||µ∗
t ||1 7→∞ = ∞, 0 < t ≤ 1/2,

and

||µ∗
t ||1 7→∞ =

Γ(2t− 1)

22t−1Γ(t)2
, t > 1/2,

where Γ(t) =
∫∞

0
xt−1e−x dx. We deduce the large time behavior of the operator

norm

||µ∗
t ||1 7→∞ ∼ t−3/2

π
, as tր ∞

Note that this semi-group is not ultracontractive in the sense that (Tt) is
bounded from L1 to L∞ for any t > 0. It is only bounded in the interval
( 1
2 ,+∞). So, the usual theory of ultracontractivity doesn’t apply. To quantify

the regularisation property of this operator, we use Nash-type inequality.

In [BM2], it is proved that the generator L satisfies the following Nash-type
inequality on R : for all ε > 0 and for all f ∈ D, ||f ||1 ≤ 1,

k1||f ||22 log
(

1 + k2||f ||42
)

≤ (Lf, f).

with k1 = ε
ε+2 and k2 = 4π2

(2+ε)2 (see below).

Corollary 4.20. Let (Tt) be the Γ∗-semigroup on the real line. Let 2 ≤ p <∞.
For all f such that ||f ||p/2 ≤ 1 and for all t > 0 with 1 ≤ ||Ttf ||pp, we have

log(1 + k2||Ttf ||2pp ) exp

( −1

log(1 + k2||Ttf ||2pp )

)

≤ e−2pk1t log(1 + k2||f ||2pp ) exp

( −1

log(1 + k2||f ||2pp )

)

. (4.64)

with k1 = ε
ε+2 and k2 = 4π2

(2+ε)2 for any ε > 0.

Proof. The inequality (4.63) is satisfied (see [BM2]). Then we apply Proposi-
tion 4.19.

We now discuss some aspects relating (4.63) and Gross’ inequality in the
higher dimensional case for the generator L of the Γ∗-semigroup.
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Let n be an integer such that n ≥ 1. Let a > 0. We consider the operator
La = log(I + a2∆) with ∆ the usual non-negative Laplacian on R

n
(I the

identity operator on L2) defined by Fourier analysis

(Laf, f) =

∫

R
n

log(1 + 4π2a2|y|2) |f̂(y)|2 dy

with dy the n-dimensional Lebesgue measure. The Γ∗-semigroup generated by
La is denoted by Tt = e−tLa = (I + a2∆)−t, t > 0. The generator La satisfies:
for any ε > 0,

(1 − Ωnε
n) ||f ||22 log

(

1 + 4π2ε2||f ||4/n2

)

≤ (Lf, f). (4.65)

with Ωn the Lebesgue measure of the unit ball of R
n

(see [BM2]).

By the method of truncation ([B-C-L-S]), we obtain in [BM2] an inequality
closed to Gross’ inequality: for any ε > 0, ρ > 1 and f ∈ D(L):

c1

∫

R
n
f2(x) log

(

1 + c2

(

f2(x)

||f ||22

)2/n
)

dx ≤ (Lf, f).

with c1 = (1−Ωnε
n) (ρ−1)2

ρ4 and c2 = 4π2ε2(ρ− 1)4/nρ−12/n. By changing f by

an/2f(ax), we obtain:

c1

∫

R
n
f2(x) log

(

1 + c2a
2

(

f2(x)

||f ||22

)2/n
)

dx ≤
∫

R
n

log(1+4π2a2|y|2) |f̂(y)|2 dy.

Note that such inequality is not completely surprising due to the Fourier sym-
bol log(1 + 4π2a2|y|2) of the generator La. Note also that the dimension n also
appears in our inequalities through the constants c1, c2 and the exponent in the
integral.

Let an define by

an = inf { 1

2πε

(

ρ3

ρ− 1

)2/n

; 1 < ρ, 0 < ε < (1/Ωn)
1/n} =

Ω
1/n
n

2π

(

27

4

)2/n

Assume a > an > 0 then there exist 0 < ε < (1/Ωn)
1/n

and ρ > 0 such
that c2a

2 > 1 and c1 > 0. In that case, we obtain a stronger form of Gross’s
inequality for La:

c1 log(c2a
2)||f ||22 +

2c1
n

∫

R
n
f2(x) log

(

f2(x)

||f ||22

)

dx ≤ (Laf, f) (4.66)

because the term c1 log(c2a
2)||f ||22 is non-negative.
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It is known that there is no spectral gap for La = log(I + a2∆) and, of
course, we cannot deduce Poincaré inequality for La. It is due to the fact that

µ is an infinite measure: first the entropy
∫

R
n f2(x) log

(

f2(x)
||f ||22

)

dx is not nec-

essarily non-negative since dx is not a probability measure ! Take for instance:

f(x) =
√

pt(x) = 1
(4πt)n/4 e

− |x|2

8t with t > 1
4π . Also, the usual proof use to

deduce Poincaré inequality form Log-Sobolev inequality is the fact that µ is a
probability measure. This is an important difference with Gross’ inequality for
probability measure.

Despite this aspect, when c2a
2 > 1, we deduce the following Log-Sobolev

inequality for La:

2c1
n

∫

R
n
f2(x) log

(

f2(x)

||f ||22

)

dx ≤ (Laf, f). (4.67)

Indeed, the utmost left term in (4.66) is non-negative. Note that our inequality
(4.66) can be read as an improved Log-Sobolev inequality when c2a

2 > 1:

2c1
n

∫

R
n
f2(x) log

(

f2(x)

||f ||22

)

dx ≤ ((Laf, f) − c1 log(c2a
2)||f ||22, (4.68)

or analogously the operator La−c1 log(c2a
2)I satisfies a Log-Sobolev inequality

(I is the identity operator).

Other operators like L = [log(a+ b∆α)]
β
, 0 < α, β < 1 can certainly be

treated in a similar way. See [BM2] where a larger class of operators is treated
on R

n
and on some other groups.

5. Fractional powers and functional decay

In [BM1], it is proved that a (2, 1)-Nash type inequality for the operator
L with Nash function N is equivalent to a (2, 1)-Nash-type inequality for the
operator Lβ , β with Nash function N β (up to multiplicative constants). More
explicitely with the notation introduced above,

Theorem 5.1. ([BM1] Th. 1.4) Let (X,µ) be a measure space with σ-finite
measure µ. Let L be a non-negative self-adjoint operator with domain D(L) ⊂
L2(X,µ). Suppose that the semigroup Tt = e−tL acts as a contraction on
L1(X,µ) and satisfies the following Nash type inequality

|| f ||22 N
(

log || f ||22
)

≤ (Lf, f), ∀f ∈ D(L), || f ||1= 1, (5.1)

where N : R → [0,+∞) is a non-decreasing function which tends to infinity at
infinity. Then, for any β > 0, the following Nash-type inequality holds for some
constants c1, c2 > 0,

c1 || f ||22 N β
(

log(c2 || f ||22)
)

≤ (Lβf, f), ∀f ∈ D(Lβ), || f ||1= 1. (5.2)
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If (Lf, f) is a Dirichlet form then (Lβf, f) is also a Dirichlet form when 0 ≤
β ≤ 1 or equivalently, the subordinated semigroup Tt = e−tL

β

is a submarkovian
semigroup (see [M-R] [Fu],[V-S-C]). Thus, we shall restrict our attention to
0 < β ≤ 1. We have the following corollary of Th.3.3,

Corollary 5.2. Suppose that the semigroup Tt = e−tL is a submarkovian semi-
group which satisfies the following Nash type inequality

|| f ||22 N
(

log || f ||22
)

≤ (Lf, f), ∀f ∈ D(L), || f ||1= 1, (5.3)

where N : R → (0,+∞) is a non-decreasing function which tends to infinity at
infinity. For any β > 0, let G2,1,β = exp oF o log with F ′ = 1/Nβ and Nβ(y) =

c1 N β(log c2 + y), y ∈ R. Let 2 ≤ p <∞, we set Gp,p/2,β = [G2,1,β ]
p2

4(p−1) . Then,
for all f ∈ D, ||f ||p/2 ≤ 1 and for all t > 0, we have

Gp,p/2,β( ||T (β)
t f ||pp ) ≤ e−pt Gp,p/2,β( ||f ||pp ). (5.4)

Note that (T
(β
t ) is related to the semigroups (Tt) by a subordination for-

mula, but it is not clear how to deduce (5.4) from the same inequality valid
with β = 1. Thus, the equivalence between G-decay and Nash-type inequality

allow us to find G-decay for (T
(β)
t ).

As an example, we first mention the fractional powers of the Laplacean
L = ∆ in the Euclidean space R

n
. The following (2, 1)-Nash-type inequality is

satisfied (ν = n),

c0||f ||2+4β/n
2 ≤ (∆βf, f), ||f ||1 ≤ 1. (5.5)

is equivalent to the G-decay with

Gp,p/2,β(x) = exp

( −n p2

8 c0 β(p− 1)
x−2β/n

)

obtained by the formula in (5.4) of Corollary 5.2.

Indeed, we can also use the sharp function G♯p of Th. 3.1 since Nash-type
inequality is equivalent to the ultracontractive bound

||T (β)
t f ||2 ≤ c1t

−n/2β ||f ||1, t > 0.

Thus M(t) = log(c1t
−n/2β) and the computation of G♯p,q in Th. 3.1 is left as

an exercice. Results of the same form can be written in the setting of some Lie
groups (see [V-S-C]).

6. Revisiting functional decays

In this section, we revisit different functional decays. The first one is the
(SGP) problem mentioned in the introduction. The second one is the ultracon-
tractivity property of semigroups. In this last case, our result is a reformulation
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of a result of [Co]. We also relate the G-function with the ultracontractive bound
and deduce a similar relation that must satisfies the heat kernel of the semigroup
and the function G.

6.1. Spectral decay in Lp

In the first part of this section, we show how a G-decay implies a spectral
bound on Lp of the following form:

||Ttf ||pp ≤ ψ(t)||f ||pp

under some additional assumption on the measure µ ( see [W0]-[W5] and equiv-
alence between Lp-decays when ψ(t) = e−λt see [C-G 2] ).

Proposition 6.1. Assume that the semigroup (Tt) satisfies (2.4) i.e. for some
1 ≤ q < p < ∞, there exists G a bijection from [0,∞) into [0,∞) and λ ≥ 0
such that, for all t > 0 and for all ||f ||q ≤ 1,

G( ||Ttf ||pp) ≤ e−λt G( ||f ||pp). (6.1)

If the measure µ is finite, we have the following decay on Lp :

||Ttf ||pp ≤ ψ(t) ||f ||pp (6.2)

with ψ(t) = µ(X)γ G−1
(

e−λt G(µ(X)−γ)
)

and γ = p
q − 1.

Proof. Assume that µ(X) < +∞. Let f such that ||f ||pp = µ(X)−γ with
γ = p

q − 1. Let α, β ≥ 1 be such that 1/α + 1/β = 1 with β = p/q. By Hölder

inequality, ||f ||qq ≤ µ(X)1/α||f ||p/βp = 1. Hence,

||Ttf ||pp ≤ G−1
(

e−λt G(µ(X)−γ )
)

.

because G−1 is increasing. We conclude by homogeneity on f .

6.2. G-decay and (p, q)-Ultracontractivity

Under the condition that G is bounded, we prove that the semigroup is ul-
tracontractive.

Let 1 ≤ q < p ≤ ∞. We say that a semigroup (Tt) is (p, q)-ultracontractive
if it is bounded from Lq into Lp for each t, i.e

||Ttf ||pp ≤ eM(t)||f ||pq

where M(t) is non-increasing and finite for all t > 0. Our cases of interest is M
a non-increasing function with M(0+) = +∞. From Theorem 2.5, we have the
following corollary (see also [Co] Prop.II.1).
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Theorem 6.2. Let G : (α,+∞), α ≥ 0 be a continuous increasing function
satisfying G(α+) = 0+. Assume that Tt = e−tL is a submarkovian semigroup
satisfying the functional decay (2.4): for all f ∈ D, ||f ||q ≤ 1, ||Ttf ||pp > α,

G( ||Ttf ||pp) ≤ e−λt G( ||f ||pp). (6.3)

for some λ > 0 and assume that G is a bounded function. Let F = log oG o exp.
Let c = supF then c− F is invertible and (Tt) satisfies the following ultracon-
tractivity property: for all t > 0 and for all f ∈ D such that ||f ||q ≤ 1 and
||Ttf ||pp > α||f ||pq ,

||Ttf ||pp ≤ e(c−F)−1(λt)||f ||pq (6.4)

In particular, this result applies for α = 0 without lower bound condition on
||Ttf ||pp.

For p = 2, q = 1, this corollary is essentially a reformulation of Prop. II.1 of
[Co]p.512 for the class of symmetric submarkovian semigroups. But Corollary
6.2 certainly holds true under the assumption that (Tt) is a semigroup acting on
Lp and equicontinuous on L1 and L∞ as in [Co]. The assumption G bounded
is exactly the integrability of 1/N at infinity i.e

∫∞ 1
N (x) dx < ∞ or, in the

formulation of [Co],
∫∞ 1

Θ(x) dx <∞ where Θ satisfies

Θ(||f ||22) ≤ (Lf, f)

with the relation Θ(x) = xN (log x).

Proof. Let F defined as in the corollary then c−F : (logα,+∞) is a decreasing
bijection with c = supF then c− F ≥ 0. From functional decay inequality, we
deduce the following inequality: for f ∈ D with ||f ||q ≤ 1, ||Ttf ||pp > α,

F(log ||Ttf ||pp) ≤ −λt+ c

or equivalently
λt ≤ (c−F)(log ||Ttf ||pp)

But (c−F) is invertible and decreasing. Hence,

||Ttf ||pp ≤ e(c−F)−1(λt)

The proof is completed by homogeneity.

Corollary 6.3. Let 1 ≤ q < p < ∞ and L the generator of a submarkovian
symmetric semigroup satisfying the (p, q)-Nash-type inequality (2.1) with Nash-
function N . Let F such that F ′ = 1

N . If F is bounded i.e
∫∞ 1

N (x) dx is finite.

Then, the (p, q)-ultracontractivity property (6.4) holds true.
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We shall show G-decay in L2 relatively to L1 also gives us informations on
the heat kernel evaluated on the diagonal ht(x, x). In particular, when the
semigroup considered is a Markov symmetric semigroup, see (6.6) below. In
the stronger case that the semigroup is ultracontractive, we shall see that the
function G and the ultracontractive bound are related by a similar inequality,
see (6.5) below. From now on, we assume that Tt is given by a kernel ht i.e.

Ttf(x) =

∫

X

ht(x, y)f(y) dµ(y)

with 0 ≤ ht(x, y) = ht(y, x) finite for all x, y ∈ X, t > 0. We assume that
∫

X
ht(x, y) dµ(y) ≤ 1, t > 0.
This representation holds true at least for ultracontractive semigroups on

open sets of R
n

(See for instance [A] p. 45,58, 155), for Orntein-Ulhenbeck
semigroup.... Here , we derive on-diagonal informations on the heat kernel ht
and on the best bound of the L2−L1 ultracontractivity property from G-decay .

Theorem 6.4. 1. Let (Tt) be a symmetric sub-markovian semigroup satisfy-
ing a G-decay in L2 relatively to L1 with G continuous and non-decreasing.
Assume that the semigroup is ultracontractive i.e. eM(t) = sup{||Ttf ||2 :
||f ||1 ≤ 1} <∞. Then

G
(

e2M(t+s)
)

≤ e−2s G
(

e2M(t)
)

. (6.5)

2. Let (Tt) be a symmetric Markov semigroup. Assume that (Tt) has a density
ht and satisfies a G-decay in L2 relatively to L1. Then, for any x ∈ X, t >
0, s ≥ 0:

G (hs+t(x, x)) ≤ e−s G (ht(x, x)) . (6.6)

Note that, in the second statement, the semigroup need not be ultracontrac-
tive (that is supx ht(x, x) < ∞) and the function G is any function satisfying
the G-decay. Of course, the inequalities (6.5) and (6.6) can be rewritten with
the function F defining G = exp oF o log. This is left to the reader.

Proof. 1. From the G-decay assumption, we have for any t >, s ≥ 0, ||f ||1 ≤
1, then ||Ttf ||1 ≤ 1 and

G
(

||Tt+sf ||22
)

≤ e−2sG
(

||Ttf ||22
)

.

Since G is non-decreasing,

G
(

||Ttf ||22
)

≤ G
(

e2M(t)
)

.

In the L-H-S of the inequality, we take a maximizing sequence (fn) to
approximate the L1−L2-norm of Tt and use the continuity of G to conclude
the first statement.
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2. Let x ∈ X, t > 0 be fixed and set f(y) = ht/2(x, y). Then ||f ||1 ≤ 1,
||f ||22 = ht(x, x) and ||Ts/2f ||22 = hs+t(x, x) for any s ≥ 0. The inequality,
for any s ≥ 0:

G
(

||Ts/2f ||22
)

≤ e−sG
(

||f ||22
)

.

reads
G (hs+t(x, x)) ≤ e−sG (ht(x, x)) .

The proof is completed.

It is not difficult to show that G(x) := exp(−1
4π x

−2/n), x > 0 is a func-
tion which satisfies inequality (6.6) for the heat kernel ht(x, y) = 1

(4πt)n/2

on R
n
. In fact, inequality (6.6) is an equality for all x ∈ R

n
because

G(hu(y, y)) = e−u, u > 0, y ∈ R
n

(Compare with (4.13)).

Now, we explicite the best constant for the G-decay on R
n

for the heat
semigroup in the following sense. Let a > 0 such that, for all f ∈ G with
||f ||1 ≤ 1 and for all t > 0,

(Da) : Ga(||Ttf ||22) ≤ e−2tGa(||f ||22),

with Ga(x) = exp(−ax−2/n), x > 0. By subsection 4.1, there exists α > 0
such that (Dα) is valid. Note that if b > a > 0 and (Da) holds true then
(Db) also holds true. This obvious if we write (Da) in the equivalent form

G1(||Ttf ||22) ≤ e−2t/aG1(||f ||22).

In the next proposition, we explicite the best constant of (Da).

Proposition 6.5. Let Tt = e−t∆ be the heat semigroup on R
n

with gener-
ator L = ∆. The lower bound α = inf{a > 0, (Da) holds true} is attained
and α = nNn

2 > 0 with Nn (see [C-L]) the best constant of Nash inequality:

||f ||2+4/n
2 ≤ Nn(∆f, f), ||f ||1 ≤ 1. (6.7)

Then, we have for any f ∈ L1 ∩ L2, ||f ||1 ≤ 1 and any t > 0,

G1(||Ttf ||22) ≤ e−4t/nNnG1(||f ||22).

As a consequence, Nash inequality (6.8) is equivalent to the following op-
timal inequality, for any f ∈ L1 ∩ L2, ||f ||1 ≤ 1 and any t > 0,

4t

nNn
+ ||f ||−4/n

2 ≤ ||Ttf ||−4/n
2 , (6.8)

The inequality (6.8) seems to be new in the literature as far as the author
knows. Remark that this inequality is expressed with the semigroup and
not the generator. Note that it improves the contraction property of the
semigroup (Tt) in L2 and is possible because of function f is in Lp for any
1 ≤ p ≤ 2 and the semigroup regularizes from Lp to L2.
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Proof. Let α = inf{a > 0, (Da) holds true} . We have seen in the
introduction of this paper that (Da) is equivalent to the fact that Ia(t) =
e2t Ga(||Ttf ||22) is non-increasing i.e. I ′a(t) ≤ 0 for any t > 0. An explicit
computation gives us

I ′a(t) = 2e2t Ga(||Ttf ||22)−2e2t
(

2a

n

)

||Ttf ||−2−4/n
2 Ga(||Ttf ||22)(∆Ttf, Ttf).

So, I ′a(t) ≤ 0 if and only if

||Ttf ||2+4/n
2 ≤ 2a

n
(∆Ttf, Ttf). (6.9)

Then the infimum α in (Da) corresponds to the infimum of 2α
n in Nash

inequality i.e 2α
n = Nn and conversely. The proof is completed.

Note that (6.8) implies for any n ≥ 1, Nn ≥ 1
2πn . Indeed, we have the

optimal inequality ||Ttf ||22 ≤
(

1
8πt

)n/2 ||f ||21 and by (6.8), we get ||Ttf ||22 ≤
(

nNn

4πt

)n/2 ||f ||21. This gives the lower bound. But the asymptotic behavior of Nn
is well-known Nn ∼ 2

πen [Bec2], [Bec3] p.253.
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