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In this article we study the positive solutions of the parabolic semilinear system of competitive type

where Ω is a domain of R N , and p, q > 0, pq = 1. Despite of the lack of comparison principles, we prove local upper estimates in the superlinear case pq > 1 of the form u(x, t) ≦ Ct -(p+1)/(pq-1) , v(x, t) ≦ Ct -(q+1)/(pq-1)

in ω × (0, T 1 ) , for any domain ω ⊂⊂ Ω and T 1 ∈ (0, T ) , and C = C(N, p, q, T 1 , ω). For p, q > 1, we prove the existence of an initial trace at time 0, which is a Borel measure on Ω. Finally we prove that the punctual singularities at time 0 are removable when p, q ≧ 1 + 2/N.

Introduction

Let Ω be a domain of R N (N ≥ 1) and 0 < T ≦ ∞. In this work we are concerned with the positive solutions of the parabolic system with absorption terms u t -∆u + v p = 0, v t -∆v + u q = 0, (1.1) in Ω × (0, T ) , with p, q > 0, pq = 1, in particular in the superlinear case where pq > 1.

This system appears as a simple model of competition between two species, where the increase of the population of one of them reduces the growth rate of the other. Independently of the biological applications, it presents an evident interest, since it is the direct extension of the scalar equation

U t -∆U + U Q = 0, (1.2) 
with Q = 1. For Q > 1, any nonnegative subsolution of equation (1.2) in Ω × (0, T ) satisfies the following upper estimate: for any bounded

C 2 domain ω ⊂ Ω U (x, t) ≦ ((Q -1)t) -1/(Q-1) + Cd(x, ∂ω) -2/(Q-1) ∀(x, t) ∈ ω × (0, T ) , (1.3) 
where d(x, ∂ω) is the distance from x to the boundary of ω and C = C(N, Q), see [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF]. This estimate follows from the comparison principle, as shown at Proposition 3.4. Moreover it was proved in [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF] that any solution U of equation (1.2) in Ω × (0, T ) admits a trace at time 0 in the following sense:

There exist two disjoints sets R and S such that R ∪ S = Ω, and R is open, and a nonnegative Radon measure µ on R, such that • For any x 0 ∈ R, and any ψ ∈ C 0 c (R),

lim t→0 R U (., t)ψ = R ψdµ,
• For any open set U such that U ∩ S = ∅,

lim t→0 U u(., t) = ∞.
Moreover the trace (S, µ) is unique whenever Q < 1 + 2/N.

Up to now, system (1.1) has been barely touched on. Indeed an essential difficulty appears: the lack of results for comparison principles. As a consequence, most of the classical properties of equation (1.2), based on the use of standard supersolutions, are hardly extendable. Some existence results are given in [START_REF] Kalashnikov | On some nonliear systems describing the dynamics of competiting biological species[END_REF] for bounded initial data, and then in [START_REF] Bidaut-Véron | Yarur On a semilinear parabolic system of reaction-diffusion with absorption[END_REF] for more general multipower systems with non smooth data, see also [START_REF] Lei | Cauchy problem for a system of dynamics of biological groups[END_REF] for quasilinear operators. Otherwise the existence of traveling waves is treated in [START_REF] Esquinas | Travelling wave solutions to a semilinear diffusion system[END_REF]. For the associated elliptic system -∆u + v p = 0, -∆v + u q = 0, (1.4) the isolated singularities are completely described in [START_REF] Bidaut-Véron | Singularities in elliptic systems with absorption terms[END_REF] for the superlinear case pq > 1 and for the sublinear case pq < 1, see also [START_REF] Yarur | Nonexistence of positive solutions for a class of semilinear elliptic systems[END_REF], [START_REF] Yarur | A priori estimates for positive solutions for a class of semilinear elliptic systems[END_REF] for p, q ≧ 1. The study shows a great complexity of the possible singularities; in particular many nonradial singular solutions are constructed by bifurcation methods. The question of large solutions of system (1.4) is studied in the radial case in [START_REF] García-Melián | The solvability of an elliptic system under a singular boundary condition[END_REF], showing unexpected multiplicity results, and the behavior of the solutions near the boundary is open in dimension N > 1; the existence is an open problem in the general case. For such competitive problems, some more adapted subsupersolutions and super-subsolutions have been introduced, see [START_REF] Matano | Pattern formation in competition diffusion systems in nonconvex domains[END_REF], [START_REF] Pao | Nonlinear parabolic and elliptic equations[END_REF], [START_REF] Bidaut-Véron | Yarur On a semilinear parabolic system of reaction-diffusion with absorption[END_REF], [START_REF] García-Melian | Boundary blow-up solutions to ellptic system of competitive type[END_REF], but the problem remains to construct them. The uniqueness is also a difficult problem, as it was first observed in [START_REF] Arnold | Some unsolved problems in the theory of differential equations and mathematical physics[END_REF].

Our first result consists in local backward upper estimates for the solutions of the system: defining the two exponents

a = p + 1 pq -1 , b = q + 1 pq -1 , (1.5) 
we obtain the following:

Theorem 1.1 Assume that pq > 1. Let (u, v) be a positive solution of system (1.1) in Ω × (0, T ) . Then for any domain ω ⊂⊂ Ω (ω = R N if Ω = R N ), u(x, t) ≦ Ct -a , v(x, t) ≦ Ct -b , ∀(x, t) ∈ ω × (0, T ) , (1.6) 
for some C = C(N, p, q, T, ω).

Our second result is the existence of a trace in the following sense:

Theorem 1.2 Assume that p, q > 1. Let (u, v) be a positive solution of the system in Ω × (0, T ) . Then there exist two disjoints sets R and S such that R ∪ S = Ω, and R is open, and nonnegative Radon measures µ 1 , µ 2 on R, such that the following holds:

• For any x 0 ∈ R, and any

ψ ∈ C 0 c (R), lim t→0 R u(., t)ψ = R ψdµ 1 , lim t→0 R v(., t)ψ = R ψdµ 2 .
(1.7)

• For any open set U such that U ∩ S = ∅, lim t→0 U (u(., t) + v(., t)) = ∞. (1.8)
As a consequence we can define a notion of trace of (u, v) at time 0:

Definition 1.3 The couple B = (B 1 , B 2 ) of Borel measures B 1 ,B 2 on Ω associated to the triplet (S, µ 1 , µ 2 ) defined for i = 1,2 by B i (E) = µ i (E) if E ⊂ R, ∞ if E ∩ S = ∅,
is called the initial trace of (u, v).

Finally we give a result of removability of the initial singularities inspired by [6, Theorem 2]: Theorem 1.4 Assume that p, q ≧ 1+2/N. If there exists a positive solution (u, v) of system (1.1) in Ω × (0, T ) such that

lim t→0 Ω (u(., t) + v(t))ϕ = 0, ∀ϕ ∈ C ∞ c (Ω\ {0}) , (1.9 
)

then u, v ∈ C 2,1 (Ω × [0, T )) and u(x, 0) = v(x, 0) = 0, ∀x ∈ Ω.
In each section we point out some questions which remain open.

Some existence results

Next we recall some results that we obtained in [START_REF] Bidaut-Véron | Yarur On a semilinear parabolic system of reaction-diffusion with absorption[END_REF] where we studied the existence and the eventual uniqueness of signed solutions of the Cauchy problem with initial data (u 0 , v 0 )

u t -∆u + |v| p |u| -1 u = 0, v t -∆v + |u| q |v| -1 v = 0, (2.1) 
where p, q > 0, and

|u| -1 u =    1 if u > 0, 0 if u = 0, -1 if u < 0.
In particular we showed in [START_REF] Bidaut-Véron | Yarur On a semilinear parabolic system of reaction-diffusion with absorption[END_REF] the following results:

Theorem 2.1 Assume that Ω is bounded. Suppose that u 0 ∈ L θ (Ω) and v 0 ∈ L λ (Ω) with 1 ≦ θ, λ ≦ ∞, with max( p λ , q θ ) < 1 + 2/N,
or that u 0 ,v 0 are two bounded Radon measures in Ω, and

max(p, q) < 1 + 2/N. (2.2)
Then there exists a weak solution (u, v) of the system with Dirichlet or Neuman conditions on the lateral boundary, such that for any

ψ ∈ C 0 c (Ω), lim t→0 R u(., t)ψ = R ψdu 0 , lim t→0 R v(., t)ψ = R ψdv 0 . (2.3)
Also, there exist two solutions (u 1 , v 1 ) and (u 2 , v 2 ) such that any solution (u, v) satisfies

u 1 ≦ u ≦ u 2 and v 2 ≦ v ≦ v 1 .
Moreover, if p, q ≥ 1 and u 0 ∈ L θ (Ω) and v 0 ∈ L λ (Ω) with

max( p λ - 1 θ , q θ - 1 λ ) < 2 N , (2.4 
)

then (u, v) is unique; in particular this holds for any u 0 , v 0 ∈ L 1 (Ω), if (2.2) is satisfied, or if u 0 , v 0 ∈ L θ (Ω) with θ ≥ N (max(p, q) -1)/2.

Local a priori estimates

When looking for local upper estimates of the nonnegative solutions of system (2.1) near t = 0, we notice that the system admits the solution (0, v) with v a solution of the heat equation in Ω × (0, T ), for which we have no estimate, since the set of solutions is a vector space. That is why we suppose that u and v are positive in Ω×(0, T ) . The question of upper estimates for one of the functions is very closely linked to the question of lower estimates for the other one.

We define a solution of problem

(1.1) in Ω × (0, T ) as a couple (u, v) of positive functions such that u ∈ L q loc (Ω × (0, T )), v ∈ L p loc (Ω × (0, T )) and Ω×(0,T ) (-uϕ t -u∆ϕ + v p ϕ) = 0, (3.1) 
Ω×(0,T )

(-vϕ t -v∆ϕ + u q ϕ) = 0, (3.2) 
for any ϕ ∈ D(Ω × (0, T )). From the standard regularity theory for the heat equation it follows that u, v ∈ C 2,1 loc (Ω × (0, T )), and then u, v ∈ C ∞ (Ω × (0, T )) since u, v are positive. As in the case of the scalar equation (1.2), the system (1.1) admits a particular solution (u * , v * ) for pq > 1, defined by

u * (t) = A * t -a , v * (t) = B * t -b ,
where

(A * ) pq-1 = (p + 1)(q + 1) p (pq -1) -(p+1) , (B * ) pq-1 = (q + 1)(p + 1) q (pq -1) -(q+1) .
In [START_REF] Bidaut-Véron | Singularities in elliptic systems with absorption terms[END_REF], the authors studied the singularities near 0 of the positive solutions of the associated elliptic system (1.4) in B(0, 1)\ {0}. System (1.4) admits particular solutions when min(2a, 2b) > N -2, given by

u * (x) = A * |x| -2a , v * (x) = B * |x| -2b , with A pq-1 * = 2a(2a + 2 -N )((2b(2b + 2 -N )) p , B pq-1 * = 2b(2b + 2 -N )((2a(2a + 2 -N )) p .
When pq > 1 the following upper estimates hold near near 0 :

u(x) ≦ C |x| -2a , v(x) ≦ C |x| -2b ,
for some C = C(p, q, N ). The proofs were based on estimates of the mean value of u and v on the sphere {|x| = r}, on the mean value inequality for subharmonic functions, and a bootstrap technique for comparisons between different spheres.

For system (1.1) the estimates (1.6) are based on local integral estimates of the solutions, following some ideas of [START_REF] Bidaut-Véron | Nonexistence results and estimates for some nonlinear elliptic problems[END_REF] for elliptic systems with source terms. Then we use two arguments: the mean value inequality in suitable cylinders for subsolutions of the heat equation, and an adaptation of the bootstrap technique of [START_REF] Bidaut-Véron | Singularities in elliptic systems with absorption terms[END_REF].

Notation 3.1 For any cylinder Q = ω × (s, t) ⊂ Ω × (0, T ) and any w ∈ L 1 ( Q) we set - Qw = 1 Q t s ω w.
For any ρ > 0, we define the open ball B ρ = B(0, ρ) and the cylinder

Qρ = B ρ × -ρ 2 , 0 .
We denote by ξ 1 the first eigenfunction of the Laplacian in B 1 , such that B 1 ξ 1 = 1, with eigenvalue λ 1 , and by ξ the first eigenfunction in B ρ with eigenvalue λ 1,ρ = λ 1 /ρ 2 , defined by

ξ(x) = ξ 1 ( x ρ ), ∀x ∈ B ρ . (3.3)
First we need a precise version of the mean value inequality.

Lemma 3.2

Let Ω be any domain in R N , and let w be a subsolution of the heat equation in Ω × (0, T ), with w ∈ C 2,1 (Ω × (0, T )). Then for any r > 0, there exists a constant C = C(N, r), such that for any (x 0 , t 0 ) and ρ > 0 such that (x 0 , t 0 ) + Qρ ⊂ Ω × (0, T ), and for any ε ∈ (0, 1/2), sup

(x 0 ,t 0 )+ Qρ(1-ε) w ≦ Cε -N+2 r 2 - (x 0 ,t 0 )+ Qρ w r 1 r . (3.4)
Proof. This Lemma is given in case ε = 1 in [START_REF] Benedetto | Partial Differential equations[END_REF] for solutions of the heat equation, and we adapt its proof with the parameter ε. We can assume that (x 0 , t 0 ) = 0 and r ∈ (0, 1) .From [START_REF] Benedetto | Partial Differential equations[END_REF] there exists C N = C(N ) > 0 such that for any σ ∈ (0, 1) ,

sup Qρσ w ≦ C N (1 -σ) -(N +2) - Qρ w. (3.5) For any n ∈ N, let ρ n = ρ(1 -ε)(1 + ε/2 + ... + (ε/2) n ), and M n = sup Qρn |w| . From (3.5) we obtain M n ≦ C N (1 - ρ n ρ n+1 ) -(N +2) - Qρ n+1 w; thus with a new constant C N M n ≦ C N ε -(n+1)(N +2) - Qρ n+1
w.

From Young inequality, for any δ ∈ (0, 1), we obtain

M n ≦ C N ε -(n+1)(N +2) M 1-r n+1 - Qρ n+1 w r ≦ δM n+1 + rδ 1-1/r (C N ε -(n+1)(N +2) ) 1 r - Qρ n+1 w r 1 r Defining D = rδ 1-1/r C N 1 r and b = ε -(N +2)/r
, we find

M n ≦ δM n+1 + b n+1 D - Qρ n+1 w r 1 r
.

Taking δ = 1/2b and iterating, we obtain

M 0 = sup Qρ(1-ε) |w| ≦ δ n+1 M n+1 + bD n i=0 (δb) i - Qρ n+1 w r 1 r ≦ δ n+1 M n+1 + 2bD - Qρ n+1 w r 1 r
.

Since Qρ n+1 ⊂ Qρ(1+ε) , we deduce (3.4) by going to the limit as n → ∞.

Next we recall a bootstrap result given from [4, Lemma 2.2]:

Lemma 3.3 Let d, h, ℓ ∈ R with d ∈ (0, 1
) and y, Φ be two continuous positive functions on some interval (0, R] . Assume that there exist some C,M > 0 and ε 0 ∈ (0, 1/2] such that, for any ε ∈ (0, ε 0 ],

y(r) ≦ C ε -h Φ(r) y d [r(1 -ε)] and max τ ∈[r/2,r] Φ(τ ) ≦ M Φ(r), or else y(r) ≦ C ε -h Φ(r) y d [r(1 + ε)] and max τ ∈[r,3r/2] Φ(τ ) ≦ M Φ(r),
for any r ∈ (0, R/2] . Then there exists another C > 0 such that

y(r) ≦ C Φ(r) 1/(1-d) on (0, R/2] .
Next we prove the estimates (1.6).

Proof of Theorem 1.1. We consider any point (x 0 , t 0 ) ∈ Ω × (0, T ) , and any ρ > 0 such that B(x 0 , ρ) = x 0 + B ρ ⊂ Ω. By translation we can reduce to the case x 0 = 0. For given s ∈ (0, 1), we consider a smooth function η 0 (t) on [-2s, 0] with values in [0, 1] such that η 0 = 1 in [-s, 0] and η 0 (-2s) = 0 and 0 ≦ (η 0 ) t (t) ≦ Cs -1 . Choosing s such that 0 < t 0 -2s < t 0 , we set η(t) = η 0 (tt 0 ). We multiply the first equation in (1.1) by

ϕ = ξ λ (x)η λ (t),
where ξ is defined at (3.3), and λ > 1, which will be chosen large enough. We obtain

d dt Bρ uξ λ η λ (t) + Bρ v p ξ λ η λ = λ Bρ uξ λ η λ-1 η t (t) + Bρ u(∆ξ λ )η λ . (3.6)
By computation, we find

ρ 2 ∆ξ λ (x) = ∆ξ λ 1 ( x ρ ) = -λλ 1 ξ λ 1 ( x ρ ) + λ(λ -1)ξ λ-2 1 |∇ξ 1 | 2 ( x ρ ). For given ℓ > 1, if λ > 2ℓ ′ , the function g ℓ (y) = ξ λ/ℓ ′ -2 1 |∇ξ 1 | 2 is bounded, thus Bρ u(., t)(∆ξ λ )η λ (t) ≦ λ(λ -1) ρ 2 Bρ u(x, t)(ξ λ-2 1 |∇ξ 1 | 2 )( x ρ )η λ (t)dx = λ(λ -1) ρ 2 Bρ u(x, t)ξ λ/ℓ g ℓ ( x ρ )η λ (t)dx ≦ λ(λ -1) ρ 2 Bρ u(., t) ℓ ξ λ η λ (t) 1/ℓ Bρ g ℓ ′ ℓ ( x ρ )η λ (t)dx 1/ℓ ′ ≦ Cρ N/ℓ ′ -2 Bρ u(., t) ℓ ξ λ η λ (t) 1/ℓ
and even with different constants

C = C(N, ℓ) Bρ u(., t) ∆ξ λ η λ (t) ≦ λλ 1 ρ -2 Bρ u(., t)ξ λ η λ (t) + Cρ N/ℓ ′ -2 Bρ u(., t) ℓ ξ λ η λ (t) 1/ℓ ≦ Cρ N/ℓ ′ -2 Bρ u(., t) ℓ ξ λ η λ (t) 1/ℓ . (3.7) Moreover Bρ u(., t)ξ λ η λ-1 η t (t) ≦ Cs -1 Bρ u(., t) ℓ ξ λ η λ (t) 1/ℓ Bρ ξ λ η λ-ℓ ′ (t) 1/ℓ ′ ≦ Cρ N/ℓ ′ s -1 Bρ u(., t) ℓ ξ λ η λ (t) 1/ℓ .
Integrating (3.6) on (t 0 -2s, t 0 ) , and using Hölder inequality,

Bρ u(., t 0 )ξ λ + t 0 t 0 -2s Bρ v p ξ λ η λ ≦ Cρ N/ℓ ′ (ρ -2 + s -1 ) t 0 t 0 -2s Bρ u ℓ ξ λ η λ 1/ℓ ≦ Cρ N/ℓ ′ (ρ -2 + s -1 )s 1/ℓ ′ t 0 t 0 -2s Bρ u ℓ ξ λ η λ 1/ℓ . (3.8)
In the same way, for any

κ > 1, if λ > 2k ′ , Bρ v(., t 0 )ξ λ + t 0 t 0 -2s Bρ u q ξ λ η λ ≦ Cρ N/κ ′ (ρ -2 + s -1 )s 1/κ ′ ( t 0 t 0 -2s Bρ v κ ξ λ η λ ) 1/κ . (3.9)
Next we discuss according to the values of p and q.

First case: p, q > 1. We take ℓ = q, κ = p, and 2s = ρ 2 and consider any t 0 such that 0

< t 0 -ρ 2 < t 0 < T. Let us denote Q ρ = (0, t 0 ) + Qρ . Then Qρ v p ξ λ η λ ≦ Cρ (N +2)/q ′ -2 Qρ u q ξ λ η λ 1/q , Qρ u q ξ λ η λ ≦ Cρ (N +2)/p ′ -2 Qρ v p ξ λ η λ 1/p , that means - Qρ v p ξ λ η λ ≦ Cρ -2 - Qρ u q ξ λ η λ 1/q, (3.10) 
- Qρ u q ξ λ η λ ≦ Cρ -2 - Qρ v p ξ λ η λ 1/p . Hence - Qρ u q ξ λ η λ ≦ Cρ -2(p+1)/p - Qρ u q ξ λ η λ 1/pq .
Then we get an estimate of the form ( -

Q ρ/2 u q ) 1/q ≦ C ρ 2(p+1)/(pq-1) (3.11)
and similarly ( -

Q ρ/2 v p ) 1/p ≦ C ρ 2(q+1)/(pq-1) (3.12)
But u is a subsolution of the heat equation, hence there exists a C = C(N, q) such that u(x, t) ≦ C( -

Q ρ/2
u q ) 1/q , from Lemma 3.2 with r = q and ε = 1. Taking ρ 2 = t 0 /2M , with M > 1, we deduce the estimates u(x, t) ≦ C t (p+1)/(pq-1) , v(x, t) ≦ C t (q+1)/(pq-1) , for any t ∈ (0, T ) and any x ∈ Ω such that B(x, t/2M ) ⊂ Ω, with C = C(N, p, q, M ).Then (1.6) follows.

General case: pq > 1. We can assume p ≦ 1 < q. Taking again 0 < t 0ρ 2 < t 0 < T and 2s = ρ 2 , and using (3.8) with ℓ = q > 1, we find again (3.10). Using (3.9), we find for any κ > 1,

Qρ u q ξ λ η λ ≦ Cρ (N +2)/κ ′ -2 Qρ v κ ξ λ η λ 1/κ ≦ Cρ (N +2)/κ ′ -2 sup Qρ v 1-p/κ Qρ v p 1/κ .
(3.13) More precisely, for any ε ∈ (0, 1/2), from Lemma 3.2, we find taking r = p and κ = q,

sup Qρ v ≦ Cε -(N +2)/p 2 ρ -(N +2)/p Q ρ(1+ε) v p 1/p , then sup Qρ v 1-p/q Qρ v p 1/q ≦ Cε -(N +2) (q-p) p 2 q ρ -(N +2) (q-p) pq Q ρ(1+ε) v p (q-p) pq + 1 q = Cε -(N +2) (q-p) p 2 q ρ -(N +2) (q-p) pq Q ρ(1+ε) v p 1/p . Using (3.13) we deduce Q ρ(1-ε) u q ≦ Cε -(2λ+(N +2) (q-p) p 2 q ) ρ (N +2)/q ′ -2-(N +2) (q-p) pq Q ρ(1+ε) v p 1/p = Cε -(2λ+(N +2) (q-p) p 2 q ) ρ (N +2)/(1-1/p)-2 Q ρ(1+ε) v p 1/p ; setting h = 2λ + (N + 2)(q -p)/p 2 q, that means - Q ρ(1-ε) u q ≦ Cε -h ρ -2 - Q ρ(1+ε) v p 1/p . (3.14)
Next from (3.10) we have

- Q ρ(1-ε) v p ≦ Cρ -2 - Q ρ(1+ε) u q 1/q , ( 3.15) 
Then for any ε > 0, the function (

x, t) → G ε (x, t) = K 1/p + f (t -ε) + g(x)
is a supersolution of equation (3.17) in Ω × (ε, T ) . Going to the limit as ε -→ 0, it follows that

F (x, t) ≦ K 1/p + f (t) + g(x)
in Ω × (0, T ) ; then there exists a constants

C ′ = C ′ (N, p) such that F (x, t) ≦ K 1/p + f (t) + C ′ d(x, ∂Ω) -2/(p-1) , ∀(x, t) ∈ Ω × (0, T ) ,
and the conclusion follows.

Open problem: The estimate (3.16) does not appear to be optimal, except in the case p = q where u = v is a solution of the scalar equation (1.2). Can we obtain for p, q > 1, and even for pq > 1, an upper estimate in Ω × (0, T ) of the form

u(x, t) ≦ C(t + d 2 (x, ∂Ω)) -a , v(x, t) ≦ C(t + d 2 (x, ∂Ω)) -b , with C = C(N, p, q)?

Initial trace

First we show some properties available for any p, q > 0.

Lemma 4.1 Assume p, q > 0. Let (u, v) be any positive solution of system (1.1), and let B(x 0 , ρ) ⊂ Ω. If T 0 B(x 0 ,ρ) v p < ∞, then B(x 0 ,ρ) u(., t) is bounded as t → 0 for any ρ < ρ, and there exists a Radon measure m 1,ρ on B(x 0 , ρ) such that for any ψ ∈ C ∞ c (B(x 0 , ρ)),

lim t→0 B(x 0 ,ρ) u(., t)ψ = m 1,ρ (ψ).
Proof. We reduce to the case x 0 = 0. We set

X(t) = Bρ u(., t)ξ λ , Y (t) = Bρ v(., t)ξ λ , Z(t) = Bρ u q (., t)ξ λ , W (t) = Bρ v p (., t)ξ λ .
(4.1) where ξ is defined at (3.3) and λ ≧ 2. We obtain

X t + W = d dt Bρ uξ λ + Bρ v p ξ λ = Bρ u(∆ξ λ ) = -λλ 1,ρ Bρ uξ λ + λ(λ -1) Bρ uξ λ-2 |∇ξ| 2 ≧ -λλ 1,ρ Bρ uξ λ = -λλ 1,ρ X, hence d dt (e λλ 1,ρ t X(t)) + e λλ 1,ρ t W (t) ≧ 0.
By integration we obtain for any t < θ e λλ 1,ρ θ X(θ)e λλ 1,ρ t X(t) + θ t e λλ 1,ρ s W (s)ds ≧ 0; and from our assumption W ∈ L 1 ((0, T )). Then e λλ 1,ρ t X(t) is bounded, and in turn

X(t) is bounded. Then Bρ u(., t)ξ λ is bounded, hence B(x 0 ,ρ) u(., t) is bounded. Let ψ ∈ C ∞ c (B(x 0 , ρ)). Then d dt Bρ u(., t)ψ + Bρ v p ψ = Bρ u(∆ψ).
Since ∆ψ is bounded with compact support, we have |ψ| + |∆ψ| ≦ Cξ λ for some positive constant C, and thus Bρ u(∆ψ) is bounded, implying Bρ u(., t)ψ has a limit m 1,ρ (ψ), which defines a Radon measure m 1,ρ on B ρ .

Lemma 4.2 Assume p, q > 0. Let (u, v) be any positive solution of system (1.1), and let

B(x 0 , ρ 0 ) ⊂ Ω. If B(x 0 ,ρ 0 ) u(., t) is bounded as t → 0, then (i) for any ρ < ρ 0 , θ t Bρ v p is bounded; (ii) for any ρ < ρ 0 , any 1 ≦ σ < 1 + 2/N, and any 0 < t < θ < T θ t Bρ u σ dx ≦ C, (4.2) 
where C = C(N, p, q, ρ, ρ 0 , σ).

Proof. We still reduce to the case x 0 = 0. (i) Let 0 < t < θ < T with fixed θ, and C = sup (0,θ] Bρ 0 u(., t). Let ψ ∈ C ∞ c (B ρ 0 ) with values in [0, 1] such that ψ = 1 on B ρ . Taking ψ as a test function in the equation in u and integrating between t and θ, we find

d dt Bρ 0 uψ + Bρ 0 v p ψ = Bρ 0 u(∆ψ) ≦ C ∆ψ L ∞ (Ω) , thus Bρ 0 u(., θ)ψ + θ t Bρ 0 v p ψ ≦ C( ∆ψ L ∞ (Ω) + 1), hence θ t Bρ v p is bounded. (ii)
Here we use the ideas of [2, Propositions 2.1,2.2.] relative to quasilinear equations in order to estimate the gradient. Since σ < 1 + 2/N , we can fix α = α(σ) such that -1 < α < 0 and σ ≦ α + 1 + 2/N. (

Let ρ be fixed such that ρ < ρ < ρ 0 . We multiply the equation in u by (1 + u) α ξ λ , where ξ is defined at (3.3), with λ ≧ 2/ |α| . Then we find for fixed θ < T, and any 0 < t ≦ θ

1 α + 1 Bρ (1 + u(., t)) α+1 ξ λ + |α| θ t Bρ (1 + u) α-1 |∇u| 2 ξ λ = 1 α + 1 Bρ (1 + u(., θ)) α+1 ξ λ + θ t Bρ v p (1 + u) α ξ λ + λ θ t Bρ (1 + u) α ξ λ-1 ∇u.∇ξ.
Applying twice the Hölder inequality, we find

1 α + 1 Bρ (1 + u(., t)) α+1 ξ λ + 1 2 |α| θ t Bρ (1 + u) α-1 |∇u| 2 ξ λ ≦ C + θ t Bρ v p (1 + u) α ξ λ + C θ t Bρ (1 + u) α+1 ξ λ-2 |∇ξ| 2 ≦ C + θ t Bρ v p + C θ t Bρ (1 + u)ξ λ 1+α θ t Bρ ξ λ-2/|α| |∇ξ| 2/|α| |α| , (4.4) 
where C depends on θ and σ. Since Bρ u(., t)ξ λ is bounded, and θ t Bρ v p is bounded, we obtain an estimate of the gradient:

θ t Bρ (1 + u) α-1 |∇u| 2 ξ λ ≦ C.
Next recall the Gagliardo-Nirenberg estimate:

let m ≥ 1, γ ∈ [1, +∞) and ν ∈ [0, 1] such that 1 γ = ν( 1 2 - 1 N ) + 1 -ν m ; (4.5)
then there exists C = C(N, m, ν, ρ) > 0 such that for any w

∈ W 1,2 (B ρ) ∩ L m (B ρ), w -w L γ (Bρ) ≤ C |∇w| ν L 2 (Bρ) w -w 1-ν L m (U ) . (4.6) 
We apply it to w(x, t) = (1 + u(x, t)) β , and

β = 1 + α 2 , γ = 2 + 2 N β , ν = 2 γ , m = 1 β , (4.7) 
which satisfy (4.5). Therefore, for any t ∈ (0, θ) ,

Bρ (1 + u(., t)) β -w(t) γ ≤ C Bρ (1 + u(., t)) α-1 |∇u(., t)| 2 × Bρ (1 + u(., t)) β -w(t) 1/β (1-ν)γβ
. Now w(.) L ∞ ((0,θ)) ≤ C because β ∈ (0, 1) and Bρ u(., t) is bounded; in turn we get

Bρ (1 + u(x, t)) β -w(t) 1/β dx ≤ C, Therefore, Bρ (1 + u(x, t)) βγ dx ≤ C Bρ (1 + u(., t)) α-1 |∇u(., t)| 2 dx + C.
Integrating on (0, θ) we obtain

θ 0 Bρ (1 + u(t)) βγ dx < C.
Observing that βγ = α + 1 + 2/N , and α is defined by (4.3) we conclude to (4.2).

In order of proving Theorem 1.2 we show the following dichotomy property:

Proposition 4.3 Assume p, q > 1. Let (u, v) be a positive solution of the system in Ω × (0, T ) . Let x 0 ∈ Ω. Then the following alternative holds: (i) Either there exists a ball B(x 0 , ρ) ⊂ Ω such that T 0 B(x 0 ,ρ) (u q + v p ) < ∞ and two Radon measures m 1,ρ and m 2,ρ on B(x 0 ,ρ), such that for any ψ ∈ C 0 c (B(x 0 , ρ)),

lim t→0 B(x 0 ,ρ) u(., t)ψ = B(x 0 ,ρ) ψdm 1,ρ , lim t→0 B(x 0 ,ρ) v(., t)ψ = B(x 0 ,ρ) ψdm 2,ρ , (4.8) 
(ii) Or for any ball B(x 0 , ρ) ⊂ Ω there holds T 0 B(x 0 ,ρ) (u q + v p ) = ∞ and then lim t→0 B(x 0 ,ρ) (u(., t) + v(., t)) = ∞. (4.9)

Proof. (i) Assume that there exists a ball B(x 0 , ρ) ⊂ Ω such that T 0 B(x 0 ,ρ) (u q + v p ) < ∞. Then (4.8) follows from Lemma 4.1.

(ii) Suppose that for any ball T 0 B(x 0 ,ρ) (u q + v p ) = ∞. Consider a fixed ρ > 0 such that B(x 0 , ρ). We can assume x 0 = 0. We choose the test function ξ λ , where ξ is defined at (3.3) and λ > 2 max(p ′ , q ′ ). Then

d dt Bρ uξ λ + Bρ v p ξ λ = Bρ u(∆ξ λ ).
As above from (3.7), since λ is large enough,

Bρ u ∆ξ λ ≦ C( Bρ u q ξ λ ) 1/q ,
where C depends on ρ. Let 0 < t < θ < T. Consider X, Y, Z, W defined by (4.1). Then we find with new constants C > 0 Next we give more information when p, q are subcritical.

X t (t) + W (t) ≦ CZ 1/q (t) ≦ Z(t) 2 + C, Y t (t) + Z(t) ≦ CW
Proposition 4.4 Assume 0 < p, q < 1 + 2/N. Let (u, v) be a positive solution of the system in Ω × (0, T ) . Let x 0 ∈ Ω. Then then the eventuality (ii) of Theorem 4.3 is equivalent to:

(iii) for any ball B(x 0 ,ρ) ⊂ Ω there holds

T 0 B(x 0 ,ρ) u q = ∞ and T 0 B(x 0 ,ρ) v p = ∞. (4.11) 
Proof. It is clear that (iii) implies (ii). Suppose that (iii) does not hold, and reduce to x 0 = 0. Then there exists a ball B ρ such that for example

T 0 Bρ v p < ∞.
Then for any ρ < ρ Bρ u(., t) is bounded as t → 0, from Lemma (4.1). Since q < 1 + 2/N, we obtain

θ t B ρ ′ u q dx ≦ C,
for any ρ ′ < ρ, from Lemma 4.2. Then (ii) does not hold.

It follows that u, v ∈ C 2,1 (ω × [0, T )) and u(x, 0) = v(x, 0) = 0, ∀x ∈ ω.

Since p < q, we have u p ≦ u q + 1 from the Young inequality, thus the function

g = 2 (1-p)/p (u + v)
satisfies g ∈ L p (ω × (0, T 1 )), g(x; 0) = 0 on ω\ {0} and

g t -∆g + g p ≦ 1
in ω × (0, T ). Following [6, Theorem 2], step 4, we deduce the key point estimate: there exists C = C(N, p) and ρ > 0 such that B(0, 2ρ) ⊂ Ω, and

T 1 < T such that g(x, t) ≦ C (t + |x| 2 ) 1/(p-1) + C, ∀(x, t) ∈ B(0, ρ) × (0, T 1 ) . (5.2) 
Since p ≥ 1 + 2/N , it implies that g ∈ L 1 (B(0, ρ) × (0, T 1 )). From [6, Theorem 2], step 5, it follows that g ∈ L p (B(0, ρ) × (0, T 1 )), thus also u and v. We claim that a better estimate holds, adapted to the system: Hence (5.3) follows from (5.4), (5.5) and the Fatou Lemma. As a consequence of (5.3), ũ ∈ L q loc (Ω × (-T, T )) and ṽ ∈ L p loc (Ω × (-T, T )) . Following [6, Theorem 2], step 6, we have (5.6)

T 1 0 B(0,ρ) v p < ∞ and
Since the right hand side of (5.6) tends to 0 from (5.3), we can pass to the limit as k → ∞ in (??), and obtain Therefore ũ, ṽ ∈ C 2,1 (Ω × (-T, T )), and u(x, 0) = v(x, 0) = 0 on Ω.

Open problem: In the elliptic problem (1.4) in B(0, 1)\ {0}, it was shown in [4, Corollary 1.2] that the singularities at 0 are removable as soon as max(2a, 2b) ≦ N -2.

In the case of system (1.1), an open question is to know if the initial punctual singularities at 0 are removable whenever max(a, b) ≦ N 2 , a condition which is obviously satisfied when p, q ≧ 1 + 2/N .

  a function ζ ∈ D (Ω × (-T, T )) with values in [0, 1], such that ζ = 1 on B(0, ρ)×(0, T 1 ), and a function χ ∈ C ∞ (R), nondecreasing, with χ(t) = 0 for t ≦ 1, χ(t) = 1 for t ≧ 2; let χ k (t) = χ(kt) for any k > 1. SettingD k = (x, t) : 1/k < |x| 2 + t < 2/k ,and using the test functionϕ k (x, t) = χ k (|x| 2 + t)ζ(x, t), v) ≦ D k C (t + |x| 2 ) 1/(p-1)+ C ≦ C k (5.5)

  v) (|(χ k ) t ζ| + |(∆χ k )ζ| + |∇χ k | |∇ζ|) ≦ Ck

  -∆ũ + ṽp = 0, ṽt -∆ṽ + ũq = 0, in D ′ (Ω × (-T, T )) .
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Hence from (3.14), we deduce

u q 1/pq . From Lemma 3.3, we conclude that -Qρ u q (pq-1)/q ≦ Cρ -2(p+1) .

Hence (3.11) follows as above, and then (3.12) from (3.15), and the conclusion follows again.

Next we give a first extension of the scalar estimate (1.3) to system (1.1), using some ideas of [4, p. 243]. Proposition 3.4 Let q ≧ p > 1. Let (u, v) be any positive solution of system (1.1) in Ω × (0, T ) , where Ω is a bounded C 2 domain Then there exists a constant C = C(N, p, q) such that

Proof. Let F = (k + u) d + v, with d = (q + 1)/(p + 1) > 1 and k > 0. Then

But (k + u) q ≦ 2 q-1 (k q + u q ), thus 1) , F is a subsolution of equation

in Ω × (0, T ) , where K = k q = K(p, q). Let f (t) = ((p -1)t)) -1/(Q-1) and let g be the maximal solution of the stationary problem -∆U + U p = 0 in Ω such that g = ∞ on ∂Ω.

Remark 4.5 Under the assumption (ii) or (iii) of Proposition 4.4, for any ball B ρ = B(x 0 , ρ) ⊂ Ω, Bρ u(., t) and Bρ v(., t) are unbounded near 0, from Lemma 4.2. But we cannot prove that lim t→0 B(x 0 ,ρ) u(., t) = ∞ or lim t→0 B(x 0 ,ρ) v(., t) = ∞, even in the case p, q > 1 where (4.9) holds.

We give a last result concerning the case where the two equations are sublinear.

Proposition 4.6 Assume 0 < p, q ≦ 1. Let (u, v) be a positive solution of the system in Ω × (0, T ) . Then there exist two nonnegative Radon measures µ 1 , µ 2 on Ω, such that for any

Proof. Consider any ball B(x 0 , ρ) ⊂ Ω, and assume x 0 = 0. Consider again X, Y, Z, W defined by (4.1). Here we find andd dt (e λλ 1,ρ t X(t)) + e λλ 1,ρ t W (t) ≧ 0, d dt (e λλ 1,ρ t Y (t)) + e λλ 1,ρ t Z(t) ≧ 0, then the function Φ = e λλ 1,ρ t (X(t) + Y (t)) satisfies Φ ′ (t) + Φ(t) + Ce λλ 1,ρ t ≧ 0, that is (e t (Φ(t) + C(1 + λλ 1,ρ ) -1 e λλ 1,ρ t ) ′ ≧ 0. Then Φ(t) has a limit as t -→ 0.

Open problems:

1) Can we extend Theorem 1.2 to the case pq > 1?

2) Can we extend Proposition 4.6 to the case pq < 1?

Removability results

Here we prove the removability of punctual singularities when p and q are supercritical.

Proof of Theorem 1.4. We can assume that q ≥ p ≥ 1 + 2/N. Let ω be a regular domain such that ω ⊂⊂ Ω\ {0} and let T 1 < T. Then from (1.9) u, v ∈ L ∞ (0, T 1 ; L 1 (ω)); then from Lemma 4.2, u ∈ L q (ω × (0, T 1 )) and v ∈ L p (ω × (0, T 1 )). As in [6, Theorem 2], step 3, the functions defined on ω × (-T, T ) by (ũ, ṽ)(x, t) = (u, v)(x, t) if t > 0, 0 if t < 0, satisfy ũ ∈ L q loc (ω × (0, T )), ṽ ∈ L p loc (ω × (0, T )), and ũt -∆ũ + ṽp = 0, ṽt -∆ṽ + ũq = 0, in D ′ (ω × (-T, T )) .

(5.1)