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Abstract—An approach for speed tuning in railway manage-
ment is presented for optimizing both travel duration and energy
saving. This approach is based on a state-of-the-art evolutionary
algorithm with Pareto approach. This algorithm provides a set
of diversified non-dominated solutions to the decision-maker. A
case study on Gonesse connection (France) is also reported and
analyzed.

Index Terms—Multi-objective, Evolutionary algorithm, Energy
saving, Railway management, Optimization

I. INTRODUCTION

For recent years, the concern due to pollution and global

warming led to develop more eco-aware transportation sys-

tems. Energy spent in the railway management is used to

move the trains and if speed tuning is well suited the energy

consumption will be lower than in other cases. Indeed, since

the acceleration phases consume a huge quantity of energy,

it is necessary to tune the speeds according to the distances

and the allowed durations in order to avoid to brake a lot

and accelerate just after. Moreover, given that the trains have

a big inertia, it is judicious to use this physical property by

stopping the engine and letting the train advance just thanks

to the initial force [1], [2].

The railway management involves multiple objectives which

are often antagonist such as the travel duration and the

energy consumption. Although the travel duration had often

preference of the decision makers, for recent years the criterion

of energy consumption is considered from an equivalent point

of view. Indeed, global energy saving is becoming the new

challenge of the transportation systems including railway.

Works have been led for analytically computing ST solu-

tions according to several levels of delay tolerance [3], [4], [5].

But to our knowledge, there is few multi-objective approach

yet. These are based on Differential Evolution [6] for mass

transit system [7] or evolutionary algorithms hybridized or not

[8]. Nevertheless, to our knowledge few approaches propose

to optimize the energy consumption which becomes the new

challenge of the decade. Thus, in this paper we deal with a

bi-objective optimization of the speed tuning (ST) with energy

saving. These concurrently optimized criteria are on the one

hand the minimization of the travel duration and on the other

hand the minimization of the energy consumption. The main

goal consists in designing ST solutions diversified enough to

help decision makers to choose the solution the most adapted

to their needs. In order to solve the problem, we propose a

new approach based on a Pareto evolutionary algorithm.

After defining the problem we propose to solve in Section

II, we present our model of speed tuning in Section III. The

evolutionary computation principles are presented in Section

IV by exposing also the Indicator-Based Evolutionary Algo-

rithm we use to compute ST solutions. Experimental results

based on Gonesse connection (France) are then provided and

discussed in Section V. Finally Section VI concludes the paper.

II. PROBLEM OVERVIEW

The main goal consists in designing the most suited speed

profile over space. The space corresponds to a sequence of in-

tervals I (block sections) in which the speeds can be changed.

Figure 1 represents the decomposition of a one-section journey

in four steps. A maximum speed vmax limits the train speed.

According to this limit and the train parameters the speed can

be defined in each step. The first step (A) corresponds to the

train acceleration when the speed grows from 0 to vmax (if

the train can reach vmax). Before dealing with the cruising

and coasting phases it is necessary to compute the braking

phase (B) to be sure that the needed braking distance will not

exceed the remaining distance before the end. The cruising

phase (Cr) corresponds to the speed maintaining, that is, a

null acceleration when the traction effort equals the resistance

to the train advance. The coasting phase (Co), depicted by

the dashed lines on Figure 1, is engaged when the engine is

stopped and the train moves thanks to its inertia. During this

phase, no energy is consumed and hence in order to reduce

the energy consumption it is interesting to vary the instant (or

position) from which the engine is stopped and the coasting

phase is started (see points 1, 2, 3 in Fig. 1). The sooner the

coasting phase starts the greater the economy but the later the

train will arrive. Thus the goal of the problem solving is to

determine a good tradeoff between energy consumption and

delay occured.
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Fig. 1. Speed tuning over space in four steps: acceleration (A), cruising (Cr),
coasting (Co) and Braking (B)

III. SPEED TUNING MODEL

Naturally, the four-steps model explained above cannot be

applied everywhere and the look of speed profile depends

on the entrance speed v0 (position 0) and the exit speed

vX (position X). Between these two positions 0 and E it

is necessary to determine the speeds according to a chosen

policy. In this way, we introduce two intermediate speeds v1

and v2 which help us to build the speed profile.

A train path is composed of n sections. Therefore, for a

section S, we have a set of four speeds: vS
0 , vS

1 , vS
2 , vS

X . When

the train starts its journey, speed v1
0 is null for section 1 (v1

0 =
0), while in the arrival section speed vn

X = 0. When the train

leaves a section S and enters in the following (S + 1), the

exit speed of section S equals the entrance speed of section

S + 1: vS
X = vS+1

0 in such a way that: vS
X ≤ vS

max if vS
max <

vS+1
max and vS

X ≤ vS+1
max if vS

max ≥ vS+1
max. Speeds v1, v2 to be

determined are limited by the maximum speed of the section

S: vS
1 ≤ vS

max and vS
2 ≤ vS

max.

Taking these elements into account, we generalize that three

speeds have to be determined per section: v1, v2 and vX . These

values will be searched by the evolutionary algorithm we

propose in Section IV. Speed profile is determined according

to a three steps model:

1) the entrance phase tunes speed for accelerat-

ing/decelerating from v0 to v1;

2) the exit phase is assessed before the intermediate phase

for varying speed from v2 to vX ;

3) the intermediate phase tunes the speed from v1 to v2

according to our policy depending on v1 > v2 or not.

Now, we introduce a set of basic definitions useful for the

remainder of the paper:

• T a travel duration which corresponds to the set of

intermediate durations (unit [s]);

• E the energy consumed by the train to move over time

(unit [J]);

• P (t) the power delivered at instant t (unit [W]);

• FT (t) the traction effort at instant t (unit [N]);

• FR(t) the resistance to the advance at instant t (unit [N]);

• v(t) the train speed at instant t (unit [m/s]);

• v0 the entrance speed of a train (unit [m/s]);

• vX the exit speed of a train (unit [m/s]);

• ab(t) the braking at instant t (unit [m/s2]);

• a(t) the acceleration at instant t (unit [m/s2]);

• m the train mass (unit [kg]).

A. Objectives

The problem can be represented as a set Φ of two objective

functions to be minimized. The first function ϕ1 represents

the minimization of the travel duration whereas the energy

consumption reduction is illustrated by function ϕ2. The

amount of durations corresponds to the sum of all durations

needed to travel within the sections.

Φ = (ϕ1, ϕ2) (1)

ϕ1 = minT (2)

ϕ2 = minE (3)

E =

∫
P (t) v(t) dt (4)

P (t) = F (t) v(t) (5)

B. Elements of railway dynamics

The fundamental equation of dynamics states that the rela-

tion between the forces, mass and acceleration:

FT (t) − FR(t) = ρ m a(t) sinβ

Note that β is a gradient and ρ is a mass correction factor

usually set to ρ = 1.04 [2], [5]. The train data also depict the

traction effort profile which indicates effort FT (t) according to

a speed v(t). Resistance FR(t) is defined according the speed

v(t): FR(v) = A + Bv + Cv2 where A, B, C are defined

constants specific to the train. The braking at instant t is

calculated as follows: ab = D + E × F v(t) where D,E, F
are also defined constants related to the train.

Now, with these elements we can determine the acceleration,

cruising, coasting and braking phases. We note that only

acceleration and cruising phases need energy.

1) Acceleration: This can be defined as follows:

a(t) > 0 ⇔ FT (t) > FR(t) (6)

a(t) =
FT (t) − FR(t)

ρm
(7)

FT (t) and FR(t) are calculated according to speed v(t) as

explained before. The acceleration phase from speed vA to

vB (vA < vB) is iterated each second (instant i) and updates

the acceleration, the speed and the position.

Algorithm 1: Calculation of an acceleration phase

v(i) = vA;

while v(i) < vB do
Update position x(i + 1) = 0.5a(i) + v(i);
Update acceleration a(i + 1) according to v(i);
Update speed: v(i + 1) = v(i) + a(i);
Update energy: E = E + E(i) with E(i) = F (i)v(i);
Update duration: T = T + 1

end



2) Cruising: The cruising phase maintains the train speed

v along a distance d without accelerating:

a(t) = 0 ⇔ FT (t) = FR(t)

The cruising phase can be computed as follows:

Algorithm 2: Calculation of a cruising phase

Calculate FR(v), set FT (v) = FR(v) ;

Calculate duration: T = d
v ;

Calculate energy: E = T × FT (v) × v

3) Coasting: During a coasting phase the engine is stopped:

FT (t) = 0 and the speed decreases because a(t) < 0. The

calculation of this phase is very close to an acceleration except

for the energy consumption which stays null. The coasting

between speed vA and vB (vA > vB) is iterated each second.

Algorithm 3: Calculation of a coasting phase

v(i) = vA;

while v(i) > vB do
Update position x(i + 1) = 0.5a(i) + v(i);

Update acceleration a(i + 1) = −FR(i)
ρ×m ;

Update speed: v(i + 1) = v(i) + a(i);
Update duration: T = T + 1

end

4) Braking: The braking phase combines two resistance

forces: the resistance to the train advance and the service

braking force. So the calculation is identical as in a coasting

phase except for determining the acceleration: a(i + 1) =
−FR(i)
ρ×m − ab(i) with ab(i) = D + E × F v(i).

C. Entrance and exit phases

Before evaluating the intermediate phase it is necessary to

determine on the one hand the entrance phase and on the

other hand the exit phase. For each one, duration, distance

and energy are calculated according to v0 compared with v1

and v2 compared with vX . Figure 2 depicts the possible cases

described below.
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Fig. 2. Scheme of (a) entrance and (b) exit phases

1) Entrance: The entrance phase is determined according

to v0 and v1. Two cases may arise (Fig. 2(a)):

1) if v0 < v1 then an acceleration occurs, increasing speed

from v0 to v1;

2) if v0 > v1 then a braking is done, decreasing speed from

v0 to v1 (illustrated by v′0 and v1).

In all these cases, a distance d0 is needed to vary the speed

during T0. The consumed energy E0 is null if it is a braking

phase, otherwise E0 > 0.

2) Exit: The exit phase is done in the same way by using

v2 and vX and two cases may also arise (Fig. 2(b)):

1) if v2 < vX then an acceleration occurs, increasing speed

from v2 to vX ;

2) if v2 > vX then a braking is done, decreasing speed

from v2 to vX (illustrated by v′2 and vX ).

A distance dX and a duration TX are needed for this phase.

The consumed energy EX is positive (EX > 0) if the phase

is an acceleration.

D. Intermediate phase

Once the exit phase is computed, the feasibility of the

solution must be checked. Indeed the travelled section has an

available distance dS and we must be sure that d0 +dX < dS

in so far as an available distance remains to allow varying the

speed from v1 to v2 during the intermediate phase.

Let dI = dS − d0 − dX be the available distance to vary

the speed from v1 to v2. Two cases may arise:

1) if v1 > v2 then we try to insert a coasting phase

to decrease the speed and to save energy. If it is

possible, we insert a cruising phase before the coasting

for completing all the distance available (Fig. 3(a), the

plain line). The only consumed energy (EI > 0) is due

to the cruising phase. When the distance is not enough

to do a complete coasting then a braking phase from v1

to v2 must be calculated and we search for intersection

of coasting and braking phases (Fig. 3(a), the dashed

line) and in this case EI = 0;

2) if v1 < v2 then an acceleration from v1 to v2 will be

necessary and we insert it halfway through (travelled

distance dA). Cruising phases are added before and after

the acceleration, the first at speed v1 and the second at

speed v2 (Fig. 3(b)). The cruising phases are done on

the same distance ((dI − dA)/2). The consumed energy

corresponds to the amount of energy required for each

phase.

Naturally, it is necessary to check whether each phase can

be inserted according to the remaining distance or not. If the

distances do not allow to insert the chosen phases, the solution

is marked as not feasible and penalized during the evaluation

in the evolutionary algorithm.

IV. EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION

An evolutionary algorithm (EA) is an iterative process of

exploratory search. Our choice is led by a will to obtain a set

of sufficiently diversified solutions in a signle run. Indeed, the
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evolutionary algorithms with Pareto approach are capable to

produce well-spread incomparable solutions along the Pareto

front. That could be an advantage to help the decision makers

in the case of real-life problems [9].

An EA is a nature-inspired metaheuristic gathering a set

of solutions (individuals or chromosomes): a population. The

latter evolves while recombining pairwise individuals in such

a way that new original and improved solutions are produced.

A mutation operator allows to diversify the population while

randomly modifying solutions. These new solutions are added

to a temporary population which will partially or totally

constitute the population at the next iteration, depending on

the algorithm policy of the population renewal. Algorithm 4

presents the main steps of a general purpose EA.

Algorithm 4: Canonical evolutionary algorithm

Population initialization;

while Stopping criterion not reached do
Evaluate each solution in population Pi;

Select individuals in population Pi for crossover;

Cross individuals according to a crossover rate;

Mutate individuals according to a mutation rate;

Population Pi+1 generation (selection for

replacement);
end

A. Multi-objective Optimization

A general Multi-objective Optimization Problem (MOP) can

be defined by a set of n objective functions (f1, f2, . . . , fn),
a set X of feasible solutions in the decision space, and a

set Z of feasible points in the objective space. Without loss of

generality, we here assume that each objective function is to

be minimized. To each solution x ∈ X is assigned an objective

vector z ∈ Z on the basis of the vector function f : X → Z
with z = f(x) = (f1(x), f2(x), . . . , fn(x)) as illustrated by

Figure 4. An objective vector z ∈ Z is said to dominate1

another objective vector z′ ∈ Z iff ∀i ∈ {1, 2, . . . , n}, zi ≤ z′i
and ∃j ∈ {1, 2, . . . , n} such as zj < z′j . An objective vector

z ∈ Z is said to be non-dominated iff there does not exist

another objective vector z′ ∈ Z such that z′ dominates z. A

solution x ∈ X is said to be efficient if its mapping in the

objective space results in a non-dominated point. The set of

all efficient solutions is the efficient set, denoted by XE . The

set of all non-dominated vectors is the Pareto front, denoted

by ZN . A possible approach in MOP solving is to find the

minimal set of efficient solutions, i.e. one solution x ∈ XE

for each non-dominated vector z ∈ ZN such as f(x) = z.

However, generating the entire efficient set is usually infeasible

due to the complexity of the underlying problem. Therefore,

the overall goal is often to identify a good approximation of

it. EAs are commonly used to this end as they are able to find

multiple and well-spread non-dominated solutions in a single

simulation run [10].

x
1

x
2 2

y

1
y

y
3

Decision space Objective space

Fig. 4. Representation of a solution (x1, x2) in the decision space and the
corresponding values in the objective space: (y1, y2, y3) = f(x1, x2).

B. Indicator Based Evolutionary Multi-objective Algorithm

Although there exists several state-of-the-art multi-objective

EAs (NSGA-II [11], SPEA2 [12]), we use Indicator Based

Evolutionary Algorithm [13]. Indeed IBEA is a method more

modern than the most widely used EA: NSGA-II. This is a

good illustration of the new trend dealing with indicator-based

search, and started to become popular for recent years. The

main idea behind IBEA is to introduce a total order between

solutions by means of a binary quality indicator. Its fitness

assignment scheme is based on a pairwise comparison of so-

lutions from the current population with regards to an arbitrary

indicator I . To each individual x is assigned a fitness value

F (x) measuring the ’loss in quality’ if x was removed from the

current population P , i.e. F (x) =
∑

x′∈P\{x}(−e−I(x′,x)/κ),
where κ > 0 is a user-defined scaling factor. Different

indicators can be used for such a purpose, and we here

choose to use the binary additive ǫ-indicator (Iǫ+) as defined

1We will also say that a decision vector x ∈ X dominates a decision vector
x′
∈ X if f(x) dominates f(x′).



in [13]. Iǫ+(x, x′) gives the minimum value by which a

solution x ∈ X has to or can be translated in the objective

space to weakly dominate another solution x′ ∈ X . Selection

for reproduction consists of a binary tournament between ran-

domly chosen individuals. Selection for replacement consists

of iteratively removing the worst solution from the current

population until the required population size is reached; fitness

information of the remaining individuals is updated each time

there is a deletion.

C. Solution encoding and initialization

A solution is defined by a vector of real values. Each

value corresponds to one speed. Given that three speeds are

necessary to represent a section, we can state the vector length

l equals three times the number of sections (n): l = 3n.

Section 0 Section n
v0
0 v0

1
0v2 ... vn

0 vn
1 vn

2

Fig. 5. Pattern of a solution: a vector of real values for the speeds

Even if the speeds are bounded by maximum entrance,

exit and section speeds, three ranges of speeds are defined:

slow, middle and high speeds in such a way that one third

of the solutions are either slow, middle or high speed tuned.

For example, let S1, S2 be two sections with respective

maximum speeds: 90 km/h and 120 km/h. Three ranges of

values are possible: ([0, 30], [0, 40]), ([30, 60], [40, 80]) and

([60, 90], [80, 120]). Such a mechanism is useful to bring a

good diversity in the initial population by designing more or

less fast solution, i.e. more or less energy expensive. Then,

initialization is done by randomly assigning speeds.

D. Operators

1) Evaluation: As we mentioned before, our MOP is

composed of two objective functions (Φ = (ϕ1, ϕ2)). Ob-

jective function ϕ1 corresponds to the minimization of the

amount of the durations Ti needed for each section i:
ϕ1 = minT with T =

∑n
i=1 Ti. Objective function ϕ2

is in charge of the reduction of the energy consumption:

ϕ2 = minE with E =
∑n

i=1 Ei. This global consumption

equals the amount of energy required for each section i. Each

section is evaluated according to the model presented before

in such a way that we know pair (Ti, Ei) of each section i.
2) Recombination: The recombination step is done by

means of two operators: crossover and mutation. Since we

deal with a continuous problem, we use operators specifically

designed for this kind of problem: the Simulated Binary

crossover (SBX) [14] and similarly, the mutation is based on a

polynomial mutation adapted to search over continuous space.

V. EXPERIMENTAL RESULTS

In order to develop our approach, we use framework Par-

adisEO in which a lot of metaheuristics are implemented [15].

This tool is a white box in which the different steps of the

algorithms have to be defined. In the case of IBEA the user

has to implement crossover, mutation and evalutation steps and

also the problem-related components.

A. Parameter Setting

The population of 50 individuals evolves over 1, 000 gener-

ations. Crossover (xr) and mutation (mr) rates are respectively

set to xr = 0.9 and mr = 0.5. In addition, scaling factor κ
exists for IBEA and κ is set to 0.05 according to [13].

B. Case study: Gonesse connection

Here is proposed a real-life case study: the Gonesse con-

nection (France) crossed by a passenger train (m = 180, 000).

Eight sections are used for our example whose results are

depicted in Figure 6. The plain line indicates the maximum

speeds of thesections. The path has 14,285m of length and

eight sections are crossed. Each section is limited by a

maximum speed. This case study is interesting because of

two little shunting sections (2 and 5) which are very short

(resp. 150m and 90m) compared with the others. Furthermore

the shuntings are slow speed sections (60 km/h) whereas the

other speeds can be very higher (until 200 km/h). So, these

sections bring about braking phases to be managed at best.

C. Performance assessment and discussion

Here we propose to discuss three solutions obtained by our

approach. Let S∗ be a solution to the mono-objective problem

consisting in just minimizing the travel duration. Let S1 and

S2 be two solutions to the bi-objective problem and compared

with S∗. The results are provided in Table I and the deviation

compared with S∗ is also reported.

Sol. E [kJ] Deviation T [s] Deviation

S∗ 744,339 557.88
S1 550,810 -26% 604.17 +8.30%
S2 470,566 -36.78% 614.16 +10.08%

TABLE I
ENERGY CONSUMPTION AND DURATION OF SOLUTIONS S∗, S1, S2

Figure 6 illustrates the speed profile of each solution. It

is interesting to note that solutions S1, S2 have big cruising

phases, that is why these are less energy expensive than

S∗. Besides, we can see that S∗ has very long acceleration

phases which are very energy expensive. The differences of

consumption can also be observed in Figures 7(a,b,c) which

depict the produced effort and highlight that Solution S∗

consumes more energy than the others. If we focus on the

energy saving compared with the delay, we can note that with

around 8% of time in more, we can save around 26% of energy.

Moreover, if we extend the delay to around 10% of time in

more, we can save till around 36% of energy. That proves the

interest to take some seconds in more to travel for saving a

lot of energy.

Furthermore, the algorithm as well as the underlying method

have proved their capability to provide a set of diversified and

incomparable solutions.

VI. CONCLUSION AND PERSPECTIVES

In this paper we dealt with a problem of speed tuning in

railway management. The solving goal is to optimize both
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Fig. 6. Example of speed tuning on several sections near Gonesse connection

concurrent objectives: on the one hand by minimizing the

travel duration and on the other hand by reducing the energy

consumption. To this end we presented an evolutionary multi-

objective approach for tuning speeds in order to minimize

the durations while saving energy. This algorithm is based on

IBEA and uses specific operators well-known in the litterature

for searching solutions in continuous space. The speed tuning

is achieved by our method of speed profile building which

introduces two intermediate speeds between the entrance and

exit speeds of a section. This method paired with IBEA for

searching in a continuous space brings its efficiency to the

light.

In our opinion, research for optimization in energy saving

will intensify and multi-criteria approaches such as evolution-

ary algorithms are a good way to solve these problems. In the

future, we will focus more on train dispatching approaches

combining energy saving, conflict resolution and taking un-

certainty [16] into account.
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