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As many antipodes as vertices on some convex
polyhedra

Joël Rouyer∗ Tewfik Sari†

September 24, 2009

Abstract

An earlier result states that a point of the surface of a convex polyhe-
dron with n vertices, endowed with its intrinsic metric, cannot have more
than n antipodes (farthest points). In this paper we produce examples of
polyhedra with n vertices, on which some suitable point admits exactly n
antipodes.

MSC (2000): 52B10, 53C45.

1 Introduction
Geographers define the antipode of some point p belonging to a sphere, or to
a slightly flattened ellipsoid of revolution–namely the Earth–as the point di-
ametrically opposite to p. It is also the farthest point from p. Mathematicians
will prefer this latter definition which advantageously remains valid in any com-
pact metric spaces, although antipodes are no longer unique.
Note that the equivalence between the above two definitions is far from

obvious in the case of a flattened ellipsoid [12], and false for many surfaces, as
a stretched ellipsoid of revolution [13], or the surface of a centrally symmetric
polyhedron [10]. Indeed, the equivalence occurs so rarely that H. Steinhaus
formed the conjecture that the sphere is the only convex surface on which the
antipodal map is a single-valued involution [6]. The conjecture was not disproved
before C. Vîlcu’s discovery of some family of counter-examples, including the
case of a flattened ellipsoid of revolution [12].
We recall that a convex surface S is the boundary of some convex body (i.e.

compact convex subset with nonempty interior) of R3 endowed with its so-called
intrinsic metric: the distance between two points is the length of the shortest
curve of S which joins them.
∗Université de Haute Alsace, Mulhouse, France (Joel.Rouyer@ymail.com)
†Université de Haute Alsace, Mulhouse, France (Tewfik.Sari@uha.fr)
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We said previously that a point may have more than one antipode. It is
rather obvious if you consider a long cigar shaped surface. Points near an
extremity surely have antipodes near the other one, and by the middle, some
points must have at least one antipode near each extremity. However the set
of points admitting more than one antipode is small [16]. This fact has been
investigated beyond the frame of convex surfaces, though the notion of smallness
depends on the studied case [7, 8].
A point may also have infinitely many antipodes. As an example, if you

identify on a round sphere the points which have the same latitude, and longi-
tudes equal modulo π, on the resulting surface (which is actually isometric to
some convex one, by virtue of Alexandrov’s gluing theorem [3, p. 315—20]) a
point of the equator admits a whole meridian as set of antipodes.
Nevertheless the set of antipodes of some point p of a convex surface cannot

be too big. Tudor Zamfirescu proved that its Hausdorff dimension is at most
1, and the quotient of its length (1-dimensional Hausdorff measure) and the
distance between p and one of its antipode is never more than π. Further the
set of antipodes of a point is always homeomorphic to some compact subset of
the interval [0, 1]. No more could be said–topologically speaking–about it, for
each compact subset of [0, 1] can be realized as the set of antipodes of some
suitable point of some suitable convex surface [14, 15].
Special attention was paid to the case of polyhedral surfaces. It is proved

in [10]–among other facts–that no point on any polyhedron with n vertices
cannot have more than n antipodes (Theorem 7). The aim of this article is to
exhibit, some families Fn of polyhedra with n vertices on which there exits a
point which admits n antipodes, thereby proving that the upper bound given
in [10] is the best one. Apart from an invocation of Theorem 0, due to A. D.
Alexandrov, the construction will involve only very elementary mathematics.
In order to construct one of these polyhedra, we follow the modeler’s way

and begin to sketch its development on a proper cardboard (Section 2), and
then, to cut it out, to fold it, and to glue it (Section 3). Section 4 is devoted
to prove that the obtained solid enjoys the desired property. Section 5 briefly
discusses a way we can extend the described family. Section 6 illustrates and
supplements the results of T. Zamfirescu. We prove that the family

[
n

Fn admits

in its boundary some convex surface with quite a long set of antipodes, as well
as surfaces on which some point admits a fractal set of antipodes. We also prove
that the Hausdorff dimension of a set of antipodes on convex surfaces can take
any real value between 0 and 1.
As a matter of notation, the angle with vertex B and sides through A and C

is denoted by\ABC, as well as its measure. The parenthesis (AB) stands for the
line through A and B, the bracket [AB] for the line segment between A and B.
The (Euclidean) distance between A and B will be denoted by AB or kA−Bk.
We reserve the notation d (A,B) for the (Euclidean) distance between sets, i.e.
the d (A,B) = infA∈A,B∈B AB. The intrinsic distance between two points a, b
on a convex surface is denoted by ρ (a, b). At last, the length of a rectifiable
curve γ is denoted by L (γ).
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2 Development
Consider some unit circle C in the plane R2. Let O be its center. Let A, P ,
CN ,CN−1, ...,C0, be N + 3 points (N ≥ 1) lying in this order on one open half
of C, see Figure 1. The development of our polyhedron will be entirely defined
by the positions of these points, that is, by the N + 2 positives numbers

α = [AOP

β = \POCN

γi = \CiOCi−1 (i = 1, · · · , N)

such that δ
def
= π − (α+ β + γ1 + ...+ γN ) > 0. Let γ be the sum of γi. The

reflection with respect to (OC0) maps Ci on C0i (1 ≤ i ≤ N) and P on P 0.
The reflection with respect to (OA) maps P on P 00. Let C 00N be the second (i.e.
distinct from CN ) point of the intersection between (CNP

00) and the circle of
radius ACN centered at A. Let B be the intersection point of the mediators of
[P 0P 00] and [C0NC

00
N ]. We have the following result

Proposition 1 The polygon

P1 = APCNCN−1 . . . C1C0C
0
1 . . . C

0
NBC

00
N

together with the following set of rules R1

• glue (C0, C1) on (C0, C 01)

• glue (Ci, Ci+1) on
¡
C 0i, C

0
i+1

¢
, 1 ≤ i ≤ N − 1

• glue (A,CN ) on (A,C 00N )

• glue (B,C0N) on (B,C00N )

is the development of a non degenerated polyhedron.

The proof of this result is postponed to Section 3, where the notion of devel-
opment will be defined precisely. The polygon P1 is shown in Figure 1. Before
folding it into a polyhedron, we prove for further use the following three lemmas.

Lemma 1 Triangles AP 00C 00N and APCN are congruent.

Proof. Obviously, we have

AP = AP 00, ACN = AC 00N .

Since the triangle ACNC
00
N is isosceles, we have

\AC00NP 00 = \ACNP 00 =
α

2
= \ACNP.
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Moreover

\APCN = π −
\AOCN

2
= π − α+ β

2
,

and
\AP 00C00N = π − \AP 00CN = π − α+ β

2
= \APCN .

Hence the triangles are congruent.

Lemma 2 The point B lies inside the circle.

Proof. We will prove this by use of the complex numbers. In order to limit
the amount of symbols, we identify the plane with C and use the same letter to
designate both a point and its affix. We assume–without loss of generality–
that C is the unit circle and that A = 1. It follows that

P
00
=
1

P
, C 00N = 1 +

1− CN

P
, C 0N =

C20
CN

, P 0 =
C20
P
.

The point B lies on the mediator of the segment [P 0P 00], whose equation is

P

µ
1− 1

C20

¶
z +

1

P

¡
1− C20

¢
z̄ = 0.

It also lies on the mediator of [C 0NC
00
N ], an equation of which is :µ

CN

C20
− 1− P

CN − 1
CN

¶
z +

µ
C20
CN
− 1− 1− CN

P

¶
z̄

= 1−
µ
1 +

1− CN

P

¶µ
1 + P

CN − 1
CN

¶
.

Solving this linear system we get

B =
C20 (CN − 1)
P (CN − C20)

. (1)

It follows that B lies inside C if and only if |CN −A| <
¯̄
CN − C20

¯̄
, which is

obvious since the mediator of
£
C20A

¤
is actually (OC0).

Lemma 3 The point O lie inside the triangle AC0B.

Proof. We proved the Lemma by showing that O can lie on none of the line
(AB), (AC0) or (BC0). So, the point O has to be either always inside or always
outside the triangle. It is easy to see, for some simple particular values (e.g.
α = β = γ = π

2 ), that O actually lies inside. Since α + β + γ < π, obviously
O /∈ (AC0). Assume that O ∈ (AB). Since B belongs to the mediator of [P 0P 00]
which cut (OA) at O, necessary B = 0, in contradiction with (1). Assume now
that O ∈ (BC0), i.e.

B

C0
=

C0 (CN − 1)
P (CN − C20)

∈ R.
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Figure 1: The development of the polyhedron.

A simple calculus shows that

B

C0
−
µ
B

C0

¶
=

C0 (CN − 1)
¡
1− P 2

¢
P (CN − C20 )

6= 0,

and another contradiction is found.

3 From development to polyhedron
The fact that the above development will fold into a convex polyhedron follows
from the (polyhedral version) of Alexandrov’s gluing theorem [2]. In order to
state it, we need to precise some points of vocabulary. A Development (P,R)
will be the data of one or several (planar) disjoint polygons, the union of which
is denoted by P, together with a set R of gluing rules. A gluing rule says which
edge should be glued on which other, in which direction. Hence a gluing rule
is given by a pair of ordered pair of vertices of the polygons. Of course, gluing
rules cannot be chosen freely and have to satisfy some axioms, namely

• Each ordered pair involved in a gluing rule is the pair of endpoints of some
edge of P.

• Two edges glued together must have the same length.
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• Each edge is glued to exactly one other edge.

It is clear that the polygon P1 of the preceding section together with the set
R1 of gluing rules satisfies these axioms, so it is a development.
To any development, we can associate a metric space in the following way.

The set of rules R induces a relation of equivalence, also denoted by R, in
a natural way: R is the smallest relation of equivalence such that, for any
gluing rule of the form “glue (X,Y ) on (X 0, Y 0)” and any λ ∈ [0, 1] the points
λX + (1− λ)Y and λX 0 + (1− λ)Y 0 are equivalent.
Denote by π the canonical surjection from P to P/R. It is clear that a point

which is not a vertex is equivalent to exactly one other point if it lies on an edge
of the development, and to no other point if it belongs to the interior of P. A
vertex is equivalent to an arbitrary number of points, which are clearly vertices
too. A vertex of P/R is by definition the equivalence class of some vertex of
P. The curvature ωx of some vertex x = {X1, . . . ,Xk} ∈ P/R is defined as 2π
minus the sum of the angles of P, measured toward P, at points Xi. If all but
a finite number of points of some curve in the topological quotient P/R lie in
the image under π of the interior of P, then its (possibly infinite) length is well
defined in a natural way. The distance between two points x, y ∈ P/R will be
by definition the infimum of the set of the lengths of those curves joining x to
y.
A development (P0,R0) is said to be obtained from a development (P,R)

by cutting and gluing, if one can ‘cut’ P into finitely many polygons and move
(apply an affine isometry of the plane) the obtained tiles in order to rebuild P0,
such that any two coinciding edges of two moved tiles were glued by some rule
in R. Of course R0 is derived from R and the partitions of P and P0 in a natural
way, namely the rules of R0 are the rules of R, save those which correspond to
some coinciding edges of moved tiles, together with the new rules that identify
edges of the tiles which have been separated by cutting and moving.

Remark 4 If (P0,R0) is obtained from (P,R) by cutting and gluing, then the
quotients P0/R0 and P/R are isometric [2, p. 51].

Consider the disjoint union of two isometric convex polygons X0X2 . . .Xk

and Y0Y2 . . . Yk, labeled in such a way that the isometry maps Xi on Yi, and the
k + 1 gluing rules “glue (Xi,Xi+1) on (Yi, Yi+1)” (the index i is taken modulo
k+1). The resulting metric space is called the double of X0X2 . . .Xk. It is not
isometric to any convex surface. However it is easy to see that it is the limit of
a sequence of prisms with fixed base X0X2 . . .Xk and heights tending to zero.
Such a metric space is called a degenerated convex polyhedron. Now we are in
position a to state the polyhedral version of Alexandrov’s gluing theorem [2].

Theorem 0 Let (P,R) be a development such that

1. P/R is homeomorphic to the 2-dimensional sphere.

2. Each vertex of P/R has non negative curvature.
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Then, P/R is isometric to the surface of a (possibly degenerated) convex
polyhedron. Moreover the polyhedron is unique up to isometry.

Note that, with the above meaning of vertices, some vertices P/R (precisely
those having a zero curvature) are not vertices of the resulting polyhedron.

Now, let us return to the proof of Propostion 1. We denote with a lower-
case letter the vertex of P1/R1 corresponding to the vertices of P1 which are
denoted by the same uppercase letter(s). So cN = {CN , C

0
N , C

00
N}, b = {B},

ci = {Ci, C
0
i}, 1 ≤ i < N , etc. It is quite clear that P1/R1 is homeomorphic to

the sphere: one can easily compute the Euler characteristic in order to obtain
a numerical argument.
It is also clear that the curvatures at points a, b and c0 are positive, since

these equivalence classes are singletons. Let us compute

ωcN = 2π − \ACNCN−1 − \BC0NC
0
N−1 − \AC00NB

= 2π − \ACNCN−1 − \BC0NC
0
N−1 − \AC00NP 00 − \P 00C 00NB

= 2π − \ACNCN−1 − \BC0NC
0
N−1 − \ACNP − \BC 0NP 0

= 2π − \PCNCN−1 − \P 0C 0NC
0
N−1

= β + γN > 0

and, for i = 1, . . . , N − 1,

ωci = 2π − 2 \Ci−1CiCi+1 = \Ci+1OCi−1 = γi+1 + γi > 0.

Hence Theorem 0 applies, and P1/R1 is isometric to the surface of some
possibly degenerated convex polyhedron P. Moreover, the curvatures of a, b,
c0, . . . , cn are positive, whence P has exactly N + 3 vertices.
Assume now that P is degenerated. So is it of the tetrahedron abc0cN , which

is obviously included (in sense of the inclusion of subsets of the 3-dimensional
Euclidean space) in P. In particular, the solid angle at vertex c0 should vanish,
that is, one of the following statements holds:

\CNC0A+ \BC0C 0N = \AC0B (2)

\BC0C 0N + \AC0B = \CNC0A (3)

\CNC0A+ \AC0B = \BC0C 0N . (4)

Let H be the other point of the intersection of (C0B) and C, and H0 the
midpoint of the circle-arc P 00P 0. Since O lies inside the triangle ABC0 (Lemma
3), H lies on the circle arc H0A, whence

ζ
def
= \AOH < α+ δ.

Note that

\CNC0A =
α+ β

2
, \BC0C 0N =

2π − 2γ − α− β − ζ

2
, \AC0B =

ζ

2
.
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It follows that

\CNC0A+ \BC0C 0N −\AC0B = π − γ − ζ > β > 0,

whence (2) never holds. If (3) held, then (AC0) would be the bisector of
\CNC0C 0n, i.e. (AC0) = (OC0), which is obviously impossible. In the same

way, (4) would infer O ∈ (BC0), which is impossible by virtue of Lemma 3.
It follows that the polyhedron P is not degenerated. This ends the proof of
Propostion 1.

4 As many antipodes as vertices
The main result is now almost at hand. It remains to prove that a, p, c0, . . . , cN
are actually antipodes of o. We need for this purpose the following

Lemma 5 Let σ be a shortest path between two points x, y of some convex
polyhedron, and let z be a point of γ, distinct from its endpoints. Then the
part of σ delimitated by {x, z} is a shortest path between y and z, and no other
shortest path exists.

Proof. If a shorter path σ1 between x and z existed, the union of σ1 and the
part of σ between z and y would be shorter that σ.
Suppose now that a second shortest path σ2 between x and z exists, then

the union of σ2 and the part of σ between z and y would also be a shortest path
from x to y. Therefore, two distinct shortest path from x to y with a common
part would exist. In other words a geodesic would admit some branch point.
This is in contradiction with the fact that geodesics become line segments when
a part of a polyhedron is unfolded onto a plane.

Remark 6 The fact that a geodesic never branches can be stated in a quite more
general frame. It is indeed a basic property of Alexandrov spaces with curvature
bounded below (see for instance [11]). The above proof has been included for the
reader convenience.

Theorem 1 The point o ∈ P has exactly N + 3 antipodes, namely a, c0,...,cN ,
and p.

Proof. Our first claim is that the distance between o and any point of P is
never greater than 1. Consider the polygon

P2 = C0C1 . . . CNPAP
00BP 0C0NC

0
N−1 . . . C

0
2C

0
1

and the following set R2 of gluing rules

• Glue (C0, C1) on (C0, C 01)

• Glue (Ci, Ci+1) on
¡
C 0i, C

0
i+1

¢
, 1 ≤ i < N
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• Glue (A,P ) on (A,P 00)

• Glue (B,P 00) on (B,P 0)

• Glue (P 0, C0N ) on (P,CN ).

Since the triangles APCN and AP 00C00N , and the triangles BP 00C 00N and
BP 0C 0N are congruent, (P2,R2) is obtained from (P1,R1) by cutting (along
[P 00A] ∪ [P 00B] ∪ [P 00C 00]) and gluing ((C 00N , A) on (CN , A) and (C 00N , B) on
(C 0N , B)), whence they are developments of the same polyhedron P (see Re-
mark 4). Since P2 is included in the unit disc, the distance from o cannot
exceed 1.
Our second claim is that any shortest path σ between o and any other point

of P corresponds to a line segment of P2. In other words, such a path cannot
cross

Γ
def
= [ap] ∪ [bp] ∪ [cnp] ∪

N−1[
i=0

[cici+1] .

Assume on the contrary that σ is crossing Γ and denote by y ∈ P = P2/R2 the
first (counted from o) crossing point. As a minimizing geodesic, σ cannot pass
through any vertex (see for instance [5, (12.4)]), so y should lie in the relative
interior of one of the segments [ap], [bp], [cnp], [cici+1]. Hence y is a pair {Y, Y 0}
of points of P2, and the part of σ between o and y is unfolded into some line
segment [OY ] or [OY 0], say [OY ]. Note that Y 0 is the point symmetric to Y
with respect to (OA) (if y ∈ [ap]), to (OH0) (if y ∈ [bp]) or to (OC0) (in the
other cases), whence OY = OY 0. The path of P corresponding to [OY 0] is also
a shortest path between o and y, in contradiction with Lemma 5. This prove
our second claim.
It follows that, for any x ∈ P = P2/R2 and any X ∈ x, ρ (o, x) equals OX,

whence ρ (o, p) = ρ (o, ci) = ρ (o, a) = 1.

Remark 7 If the reader is familiar with the well-known notion of cut-loci, he
surely noticed that the second claim of the above proof could be stated in a shorter
form, namely Γ is the cut-locus of o, and the boundary of P2 is (up to a natural
identification between the plane of P2 and the tangent plane to P at point o) its
tangent cut-locus.

In order to conclude the section, we will examine what happens when one
or several parameters α, β, γ1, ..., γN , δ vanish.
First, there is almost nothing to say when one or several (but not all) γi

vanish: this case reduce to a lower N case. If all γi vanish, then B ∈ C and the
resulting P is nothing but the double of the acute triangle ABC0. The point
o has 4 antipodes (a, b, c0, and p), while P has only three vertices. However,
since P is degenerated, this in not in contradiction with the main result of [10].
If β = 0, then p = cN . The (N + 3)-vertices polyhedron does not degenerate,
but o has only N + 2 antipodes. If α = 0 (i.e. A = P = P 00) then O belongs to
(C0B) and P is the double of the (N + 3)-gon ABC0 . . . CN . At last if δ = 0,
then B = P 0 = P 00, O lies on (OC0) and P is the double of AC0 . . . CNP .
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5 A largest family of tetrahedron
In the above examples, all but one antipodes of o are vertices. Moreover, the only
non vertex antipode of o is joined to o by three distinct shortest paths. Whether
these properties are enjoyed by all polyhedra with n vertices admitting a point
with n antipodes is a natural question. Some earlier works give a partial answer.
The fact that a non-vertex antipode of any point on any polyhedron is always
joined by at least three minimizing geodesics is indeed one of the most basic
result on this subject [9]. It is also proved in [10] that for such a polyhedron, at
least two of the antipodes of the distinguished point should be very acute (i.e.
with curvature more than π) vertices. The section is devoted to showing that,
in the case of the tetrahedron, the two other points can be non-vertex points.
In this section, we assume N = 1. The main idea is to give a deformation

P (ε) of the preceding example P = P (0) in such a way that c1 is no more an
antipode (i.e. C1 lies inside the circle). As explained before, the point q which
will become an antipode of o instead of c1 must be joined to o by (at least)
three shortest paths. As, on P (0), there were only two shortest paths between
o and c1, one of them has to split. Consider a point q ∈ P (ε) somewhere
beyond c1 from o point of view. If q is near enough to c1 then, a shortest path σ
between o and q should lie in a neighborhood of the only shortest path between
o and c1. By moving q on a right-left (still from o point of view) degree of
liberty, we can ensure that σ lies either on the right side, or on the left side of
c1. Since a shortest path never passes through a vertex [5, (12.4)], there is a
right-left position such that two shortest paths, one on each side, exist. Now,
if the tetrahedron is not too deformed, by moving q backward, we will obtain
a third shortest path, close to the second one between o and c1 on P (0). It
is not clear, that the deformation could be done in a way that satisfies the
equation ρ (o, q) = 1. However the space of tetrahedra, up to affine isometries
is 6-dimensional, and the fact that A, C0, P , P 0 and P 00 all lie on a unit circle
is described by three equations. Hence it’s natural to conjecture that P can be
deformed without breaking the fact that a, p, c0 are antipodes of o with three
degrees of liberty. If we ask moreover that the deformation satisfy ρ (o, q) = 1,
it remains two degrees of liberty. One of them correspond to the variation of
γ; it remains one parameter ε. This heuristic description is far beyond a proof,
hence we will present a more formal construction.
Choose, three positive numbers α, β, γ such that α + β + γ < π. And, for

ε > 0 small enough, consider the points

A = (1, 0)

C0 = (cos (α+ β + γ) , sin (α+ β + γ))

P = (cosα, sinα)

Q+ = (cos (α+ β + ε) , sin (α+ β + ε))

Q− = (cos (α+ β − ε) , sin (α+ β − ε)) ,

all lying on the unit circle C. Let Q be point symmetric to Q+ with respect
to (OC0). Let P 0 be the point of C such that QP 0 = Q−P and C0, Q, P 0 lie

10
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Figure 2: The development of the tetrahedron. Triangles filled with the same
gray or pattern are isometric.

on C in the direct order. Let R1 be the rotation which maps the ordered pair
(Q−, P ) on (Q,P 0). Let R2 be the rotation of center C0 which maps Q+ on Q.
The images under R1 and R2 of the mediator of [Q+Q−] intersect at C01; put
C1 = R−12 (C01). Let P

00 be the point symmetric to P with respect to (OA).
The rotation of center A which maps P on P 00 maps C1 on C001 . The mediators
of [P 0P 00] and [C01C

00
1 ] intersect at B.

The Figure 2 illustrates the above construction. We let the reader check
that the polygon

P1 = AC 001BC
0
1C0C1

together with the following set of rules R1

• glue (C0, C1) on (C0, C01)

• glue (A,C1) on (A,C 001 )

• glue (B,C01) on (B,C 001 )

is (at least for small ε) the development of a tetrahedron. For ε = 0, we get
the tetrahedron described in the preceding sections.
Consider the polygon

P2 = AC 001Q
00BQC 01C0C1

together with the following set of rules R2

• glue (C0, C1) on (C0, C01)

11



• glue (A,C1) on (A,C 001 )

• glue (Q,C01) on (Q00, C001 )

• glue (B,Q) on (B,Q00).

Since the triangles BQC01 and BQ
00C 001 are congruent, it is clear that (P2,R2)

is obtained from (P1,R1) by cutting and gluing and so, is development of the
same tetrahedron (see Remark 4).
Consider now the polygon

P3 = AP 00BP 0QC0Q
+C1Q

−P

together with the following set of rules R3

• glue (C0, Q) on (C0, Q+)

• glue (C1, Q+) on (C1, Q−)

• glue (Q,P 0) on (Q−, P )

• glue (A,P ) on (A,P 00)

• glue (B,P 0) on (B,P 00).

Since the triangles BQP 0 and BQ00P 00, the triangles C0C 01Q and C0C1Q
+,

the triangles C1PQ− and C 001P
00Q00 and the triangles C1AP and C001AP

00 are
congruent, it is clear that (P3,R3) is obtained from (P2,R2) by cutting and
gluing, and so, is a development of the same tetrahedron (see Remark 4). Since
P3 is included in the unit disc, the distance from o cannot exceed 1. Thus, the
antipodes of o are a, c0, p and q. The non vertex antipodes of o are both joined
to o by three shortest paths.
Figure 3 represents P (0) and P (0.03) for α = β = γ = π

6 . The white thick
line is the set of those points which are joined to o by at least two shortest
paths, and the black lines are the shortest paths from o to p and from o to q.

6 Fractal sets of antipodes
The section is devoted to the study of limit cases, when N goes to infinity. The
goal of the section is to prove the following

Theorem 2 Let H be an open half-circle. Let K be a compact subset of H
and U a point which does not belong to K. Then there exists a convex surface
S and a point o ∈ S such that the set of antipodes of o in S, endowed with
the intrinsic distance of S is locally isometric to K ∪ {U}, endowed with the
Euclidean distance of R2.
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Figure 3: The tetrahedra P (0) and P (0.03).

The main idea is easy: given a compact subset K of a half circle, we can
choose a sequence of finite sets approaching it. For each finite set F , the pre-
ceding section provides a polyhedron PF admitting F as a set of antipodes, and
S will be the limit of these polyhedra. However, comparatively to the preceding
sections, this proof is somewhat long and technical, and requires not less than
ten lemmas.
First, we recall the elementary tools we will have to use. The Hausdorff

distance between two compact subsets K1,K2 ⊂ Rd is the smallest number r
such that each point ofK1 is included in a closed ball of radius r centered at some
point ofK2, and conversely. The Hausdorff distance is actually a distance on the
set of non empty compact subset of Rd. We denote it by h (·, ·). From now on,
convergence of a sequence of compacts is intended with respect to the Hausdorff
distance. We will use some well-known facts about this distance, namely each
bounded sequence of compacts in Rd admits a converging subsequence, the
finite subsets are dense in the set of all non empty compact subsets, and the
set of convex compact subsets is closed in all nonempty compact subsets. The
latter fact admits as a corollary that the limit of a converging sequence of
convex surfaces (embedded in R3) is either a convex surface, or a convex body
of dimension less than 3. The following Lemma [5, p. 81] states that, if the
limit is a convex surface, than the intrinsic distances also converge.

Lemma 8 Let Sn be a sequence of convex surfaces converging to a convex sur-
face S. Denote by ρn (respectively ρ) the intrinsic distance on Sn (respectively
S). Let xn, yn be two points of Sn such that the sequences (xn)n and (yn)n are
converging respectively to x and y in R3. Then x, y ∈ S and ρn (xn, yn) tends

13



Figure 4: Definition of U , V , U 0 and V 0 in Lemma 9.

to ρ (x, y).

Concerning the notions of Hausdorff measure and Hausdorff dimension, we
refer (for instance) to [4]. We recall that the d-dimensional Hausdorff’s measure
is preserved by isometries, and that the 1-dimensional measure of a simple
curve coincide with its length. We also recall that the Hausdorff’s dimension
is preserved by any bi-Lipshitz map. Since the intrinsic distance of a convex
surface and the restriction of the Euclidean distance of R3 are equivalent (see [5,
p. 78]), the Hausdorff dimension of a subset of convex surface does not depend
on the considered distance.

Denote by Cvu the circle arc {(cos t, sin t) |u < l < v}. We fix two positive
numbers α, δ such that α+ δ < π. To any finite subset F of Cπ−δα , we associate
the development (PF ,RF ), corresponding to the development (P2,R2) of Sec-
tion 4, where N = card (F ), A = (1, 0), P = (cosα, sinα), C0 = (− cos δ, sin δ)
and C1, . . . , CN are the points of F , numbered from left to right. We put

β
def
= \POCN and γ

def
= \CNOC0. The development (PF ,RF ) folds into some

polyhedron PF , uniquely defined up to isometry. If you assume moreover that
o = (0, 0, 0), a = (1, 0, 0), b = (xb, yb, 0) with yb > 0 and that the third coor-
dinate of cN is positive, then PF is uniquely defined as a subset of R3. This
allows us to define the folding map ΦF : PF → R3. For further use we prove
the

Lemma 9 Let X,Y be two points of PF . The distance on PF between ΦF (X)
and ΦF (Y ) is not greater than XY .

Proof. If the segment [XY ] lies in PF , then ΦF ([XY ]) is a path between
ΦF (X) and ΦF (Y ), and the result holds. Assume now that [XY ] is crossing the
segments [BP 0] and [BP 00]. Denote by U ,V , U 0 and V 0 the points of intersection
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and their images under the reflection with respect to (OB), labeled as on Figure
4. We claim that ΦF ([XU ]) ∪ ΦF ([UV 0]) ∪ ΦF ([V Y ]) is a path shorter than
[XY ]. Indeed, it is sufficient to prove that UV > UV 0. By virtue of the cosine
law

UV 2 − UV 02 = V V 0
³
V V 0 − 2UV 0 cos\UV 0V

´
= V V 0 UU 0 > 0.

Lemma 10 Let γ : [a, b]→ R2 be a simple parametrization of a polygonal line
inscribed is a half circle. Let c ∈ [a, b[. The function f : [c, b] → R defined by
f (t) = kγ (t)− γ (c)k is increasing.

Proof. We can assume without loss of generality that the half-circle is Cπ0 . Let
O = (0, 0) be the center of the half-circle and A = (1, 0) one of its endpoints.

Assume moreover that the parameter t of γ is the oriented angle between
−−−−→
Oγ (t)

and
−→
OA. Let {Mi = γ (τi)}0≤i≤n be the vertices of Im γ, labeled in such a way

that i 7→ τi is increasing. At last, assume that c ∈ [τ0, τ1[.
Our first claim is that, for i ≥ 1, f | [τi, τi+1] is monotone. Indeed, it is

sufficient to prove that the orthogonal projection of γ (c) on (MiMi+1) does not
belong to [MiMi+1], which is obvious since M0 and M1 lie on the same side of
the strip

[MiMi+1] +R
³−−→
OMi +

−−−−→
OMi+1

´
.

Our second claim is that the restriction of f to the set {τ1, . . . , τn} is in-
creasing. Denote by r the distance between O and γ (c), if t ∈ {τ1, . . . , τn},
then

f2 (t) = (r cos c− cos t)2 + (r sin c− sin t)2 = 1 + r2 − 2r cos (t− c)
def
= g (t) .

In order to complete the proof of the claim and the Lemma, it is sufficient to
check that the derivative

g0 (t) = 2r sin (t− c)

is positive for any t ∈ ]c, b].

Lemma 11 Let L = [PCN ] ∪
N[
k=1

[Ck−1Ck] ⊂ PF . There exists a positive

number r depending only on α, δ such that, for all X ∈ L, the restriction of ΦF
to the intersection of L with a ball of radius r centered at X is an isometry with
respect to the intrinsic distance of PF .

Proof. We denote by S the symmetry with respect to (OC0). Let H1 be the
convex hull of {O} ∪ C0−α−δ, H2 the one of Cπ−δα and H3 the one of C2π−2δ−απ−δ .
Let r = d (H1,H2 ∪H3); r is clearly not greater than the distance between a
point of [AP 00] ∪ [P 00B] and a point of L ∪ S (L).
Assume that XY < r and that the abscissa of X is less than the one of Y

(otherwise exchange them). Put X 0 = S (X), Y 0 = S (Y ), x = ΦF (X) and
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y = ΦF (Y ). Let σ be a minimizing geodesic of PF between x and y. If σ does

not crossM def
= ΦF (L) ∪ [bp] ∪ [ap], then there exist two points X∗ ∈ {X,X 0}

and Y ∗ ∈ {Y, Y 0} such that σ = ΦF ([X∗Y ∗]). Since ΦF ([XY ]) is a path from
x to y of length XY = X 0Y 0 < XY 0 = X 0Y we have either (X∗, Y ∗) = (X,Y )
or (X∗, Y ∗) = (X 0, Y 0), and so ρ (x, y) = XY .
Assume now that σ intersects M and let u be the first (from x) point of

intersection of σ with M. Let σu be the part of σ delimitated by x and u.
Obviously, σu is the image under ΦF of some segment [X∗U∗], with X∗ ∈
{X,X 0} and ΦF (U∗) = u. We discuss three cases.
Case 1: u ∈ ΦF (L). In this case U∗ ∈ L ∪ S (L) and ΦF (S ([X∗U∗])) is an

other shortest path from x to u, in contradiction with Lemma 5.
Case 2: u ∈ [ap]. Let U ∈ [AP ] and U 00 ∈ [AP 00] be such that Φ−1F (u) =

{U,U 00}. Assume first that X∗ = X. By Lemma 10 we have XY < XU and
since

ρ (x, y) ≤ L (ΦF ([XY ])) = XY < XU

= min (XU,XU 00) = L (σu) < ρ (x, y) ,

we get a contradiction. Hence X∗ = X 0, and, since XU < X 0U , U∗ = U 00. Now

ρ (x, y) ≤ XY < r < X 0U 00 = L (σu) < ρ (x, y) ,

and we get another contradiction.
Case 3: u ∈ [bp]. Let U 0 ∈ [BP 0] and U 00 ∈ [BP 00] be such that Φ−1F (u) =

{U 0, U 00}. Assuming that U∗ = U would infer

ρ (x, y) ≤ XY < r ≤ XU∗ = L (σu) < ρ (x, y) ,

whence U∗ = U 0. Let v be the next (along σ, from x to y) point of σ ∩M
and denote by σv the part of σ delimitated by u and v. Let V 00 be the point
such that σv = ΦF ([U 00V 00]). Since U 00V 00 = L (σV ) < ρ (x, y) ≤ XY < r,
V 00 ∈ [AP 00]. Let V ∈ [AP ] be the point symmetric to V 00 with respect to (OA).
The next (along σ, from x to y) point w of σ ∩M obviously belongs to ΦF (L).
Let σw be the part of σ delimitated by v and w, we have σw = ΦF ([VW ]) for
some point W ∈ L ∪ S (L). Moreover, since S (L) in included in the half plane
bounded by (OC0) not containing V , W must lie on L. We claim that W = Y .
Assume on the contrary that σ is crossing ΦF (L) at point w and denote by z
the next point ofM∩σ. Since σ cannot visit twice the face apcN of PF ([1]), z
belongs to ΦF (L). Hence the part σz of σ delimitated by w and z is the image
under ΦF of some segment [S (W )Z], for some point Z ∈ L∪S (L). In this case
ΦF ([WS (Z)]) is also a shortest path from w to z, in contradiction with Lemma
5. This proves the claim. Let R1 be the rotation of center B which maps P 00

on P 0, R2 the one of center A which maps P on P 00, and put R = R1 ◦ R2.
Clearly L (σ) = X 0R (Y ). Since R (P ) = P 0, we have R (Y )P 0 = PY = P 0Y 0,
whence P 0 belongs to the mediator of [Y 0R (Y )]. Similarly, R maps CN on
C 0N , whence the mediator of [R (Y )Y

0] is actually (P 0C0N). It follows that
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ρ (x, y) ≤ XY = X 0Y 0 ≤ X 0R (Y ) = L (σ) = ρ (x, y). This completes the third
case and the Theorem.
Denote by P̃ the compact plane domain (depending on α, δ) delimitated by

the line segments [PA], [AP 00], [P 00H0], [H0P
0], and the circle arc C2π−α−2δα .

It is clear that P̃ contains PF . The complement of PF in P̃ has 2N + 3
connected components. One of them, denoted by QF is delimitated by the
quadrilateral BP 00H0P

0. All others components are delimitated by a circle arc
and the corresponding chord. We denote the union of these components by
TF . We define πF : P̃ → PF as follows: if X ∈ PF , then πF (X) = X.
If X ∈ TF then πF (X) is the orthogonal projection of X onto the maximal
segment included in the boundary of the connected component of TF containing
X. Finally, if X belongs to QF , then πF (X) is the point of [P 0B]∪ [BP 00] such
that the line (XπF (X)) is parallel to (OH0).

Lemma 12 The map πF is 1
sin δ -Lipschitz continuous.

Proof. Given a compact convex set K ⊂ Rd, the metrical projection onto K is
the map from Rd to K which associates to each point X its closest point in K.
Of course this definition needs the unicity of the closest point ([5, (1.7)]). It is
well-known that the metrical projection is 1-Lipschitz (follows from [5, (11.2)]).
The restriction of πF to PF ∪ TF coincides with the metrical projection onto
the convex hull of PF and so is 1-Lipschitz.
Elementary calculus shows that the restriction of πF to QF is 1

sin δ -Lipschitz.
Now assume that X ∈ QF and Y ∈ P̃\QF . Let Z be the intersection of

[XY ] with [P 0B] ∪ [BP 00]. We have

kπF (X)− πF (Y )k ≤ kπF (X)− πF (Z)k+ kπF (Z)− πF (Y )k

≤ 1

sin δ
XZ + ZY ≤ 1

sin δ
(XZ + ZY ) =

1

sin δ
XY .

Assume now that a sequence (Fk)k≥0 of finite subsets of Cπ−δα is tending to

some compact set K ⊂ Cπ−δα and put fk = ΦFk ◦ πFk .

Lemma 13 The restriction to K of πFk converges uniformly to the identity of
K.

Proof. Just note that, for any point X ∈ K, we have

kπFk (X)−Xk ≤ d (X,Fk) ≤ h (Fk,K)→ 0.

Lemma 14 For all k, fk is 1
sin δ -Lipschitz, therefore the sequence (fk)k is

equicontinuous.
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Proof. Let X,Y be points of P̃ and put xk = fk (X), yk = fk (Y ). The R3
norm kxk − ykk is less than or equal to the PFk -distance between these points,
which is by virtue of lemma 9 less than the R2 norm kπFk (X)− πFk (Y )k. The
conclusion follows from the fact that πFk is

1
sin δ -Lipschitz.

The above Lemma, together with the well known Ascoli’s Theorem allows us
to extract from (fn) a subsequence converging uniformly to some 1

sin δ -Lipschitz

function f : P̃ → R3. It follows that S def
= f (P) is the limit (with respect to

the Hausdorff distance) of (PFk), and therefore is a convex surface.

Lemma 15 The image by f of a point of Cπ−δα is an antipode of o if and only
if it belongs to K ∪ {C0, P}.

Proof. Let X ∈ K ∪ {C0, P}. Since Fk is tending to K, we can chose Xk ∈
Fk ∪ {C0, P} such that the sequence (Xk) tends to X. By definition of Fk,
the distance in Pk between o and fk (Xk) equals 1. Lemma 8 implies that the
distance between o and f (X) is also 1. On the other hand, still by virtue of
Lemma 8, the distance on S from o cannot exceed 1, hence f (X) is an antipode
of o.
Assume that X ∈ Cπ−δα does not belongs to K, It follows that there exists

a positive number ε, such that, for k large enough, no point of Fk lies on Cξ+εξ−ε .

Hence XXk ≥ 1− cos ε. Moreover \XXkO is obtuse, whence

1 = OX2 ≥ OX2
k +XX2

k ≥ OX2
k + 1 + cos

2 ε− 2 cos ε.

Thus OXk ≤
p
cos ε (2− cos ε) < 1. Since OXk is also the distance between o

and fk (X) on Pk, by lemma 8, the distance on S between o and f (X) is also
less than or equal to

p
cos ε (2− cos ε), and f (X) cannot be an antipode of o.

Lemma 16 The set of antipodes of o ∈ S is {c0, a, p} ∪ f (K).

Proof. Let x = f (X) be a point of S. As seen in the proof of Lemma 15, x
is an antipode of o if and only if ρ (o, x) = 1. We discuss three (overlapping)
cases:
Case 1: There are infinitely many k ∈ N such that X ∈ PFk . By extraction

of a suitable subsequence, we can assume that X belongs to PFk for all k. By
virtue of Lemmas 8 and 9,

ρ (f (X) , o) = lim ρ (fk (X) , o) = lim ρ (ΦFk (X) , o) ≤ kXk .

Hence, if x is an antipode of o, then X ∈ C2π−2δ−αα ∪ {A,P 00}. By Lemma 8,
a = f (A) and p = f (P ) = f (P 0) = f (P 00) are antipodes of o. If X belongs to

Cπ−δα , then the conclusion follows from Lemma 15. If X belongs to C2π−2δ−απ−δ ,
then X and its image X 0 by the symmetry of axis (OC0) have the same image
under f . Hence we can apply Lemma 8 to X 0 to obtain the conclusion.
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Case 2: There are infinitely many k ∈ N such that X ∈ QFk . By extraction
of a suitable subsequence, we can assume that X belongs to QFk for all k. By
virtue of Lemmas 8 and 9,

ρ (f (X) , o) = lim ρ (fk (X) , o) ≤ lim sup kπFk (X)k ≤ kXk .

Since lim inf β (β actually depends on k) cannot vanish, by (1), kBk (depends
on k too) is less than 1, and soQFk does not intersect the unique circle. It follows
that f (X) cannot be an antipode of o in this case.
Case 3: There are infinitely many k ∈ N such that X ∈ TFk . By extraction

of a suitable subsequence, we can assume that X belongs to TFk for all k. The
ray emanating from πFk (X) through X intersect C2π−2δ−αα at point Xk. By
extraction of a suitable subsequence, we can assume that (Xk) converges to

some point X 0 ∈ C2π−2δ−αα . Since

f (X) = lim fk (X) = lim fk (Xk) = f (X 0) ,

the conclusion follows from Lemma 15.

Lemma 17 The restriction to K of the map f : P̃ → S is a local isometry,
with respect of the norm of R2 and the intrinsic distance of S.

Proof. Let r be the number defined in the Lemma 11 and choose ε ∈
¤
0, r2

£
.

By virtue of Lemma 13, for k large enough, we have

∀X ∈ K kπFk (X)−Xk < ε

2
. (5)

Hence, for k large enough, if X,Y ∈ K are such that XY ≤ r
2 < r− ε, then, by

virtue of Lemma 11,

ρ (fk (X) , fk (Y )) = ρ (ΦFk (πFk (X)) ,ΦFk (πFk (Y )))

= kπFk (X)− πFk (Y )k .

On the other hand, by (5), it is clear that

XY − ε ≤ kπFk (X)− πFk (Y )k ≤ XY + ε,

whence, for XY < r
2 and k large enough,

|ρ (fk (X) , fk (Y ))−XY | ≤ ε.

Passing to the limit we find that the |ρ (f (X) , f (Y ))−XY | is less than any
small positive number ε, and so is zero.
Now we are in a position to prove the Theorem 2.

Proof of Theorem 2. We can assume without loss of generality that H = Cπ0 .
Let C0 ∈ H be the point of K with the lowest abscissa, and P the one with the
greatest abscissa. Let (Fk)k≥0 a sequence of finite subsets of K\ {C0, P}, such
that (Fk ∪ {C0, P}) converges to K with respect to the Hausdorff metric. Let
fk, f and S be defined as usual. By virtue of Lemma 16, the set of antipodes of
o is {a} ∪ f (K). By virtue of Lemma 17, f (K) is locally isometric to K, thus
K ∪ {U} is locally isometric to {a} ∪ f (K).
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Corollary 18 For any ε > 0, there exists a convex surface S and a point o ∈ S
such that the length (1-dimensional Hausdorff measure) of the set of antipodes
of o, divided by the distance between o and one of its antipodes is greater than
π − ε.

Proof. Apply Theorem 2 with K = Cπ−ε/4ε/4 .

Remark 19 Tudor Zamfirescu exhibited two other examples of surfaces with
such large sets of antipodes [14].

Corollary 20 Any number d ∈ [0, 1] can be realized as the Hausdorff dimension
of the set of antipodes of some point of some convex surface.

Proof. It is a well-known fact that the Hausdorff dimension of a Cantor set
which is the disjoint union of two λ-scaled copies of itself has dimension − log 2

logλ .

Consequently, if we apply Theorem 2 with a Cantor set K formed of two 2−1/d

scaled copies of itself, we obtain a set of antipodes of dimension d.
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