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Abstract: In a recent paper authors gave an analysis of the exact controllability problem via the
moment problem approach. Namely, the steering conditions of controllable states are formulated
as a vectorial moment problem using some Riesz basis. One of the main difficulties was the choice
of the basis as, in general, a basis of eigenvectors does not exist. In this contribution we use a change
of control by a feedback law and modify the structure of the system in such a way that there exists a
basis of eigenvectors which allows a simpler expression of the moment problem. Hence, one obtains
the result on exact controllability and on the time of exact controllability.
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1. INTRODUCTION

There exist many approaches to study controllability prob-
lems for delay systems (see e.g. Morse (1976); Manitius and
Triggiani (1978); O’Connor and Tarn (1983) and references
therein). One of the most powerful approaches is to consider
a delay system as a system in some functional space:

ẋ =A x +Bu,

where x ∈ H , H being a Hilbert space, A is the generator of a
C0-semigroup.

In contrast to finite-dimensional systems, Kalman controlla-
bility concept (RT = H , RT is the reachability set from 0 at
time T ), generally, does not hold for infinite-dimensional sys-
tems, in particular for somes classes of systems with delays.
However, for neutral type systems it is possible to pose the
problem of reaching the set D(A ), what leads to the notion
of the exact controllability in this sense.

Consider a neutral type system given by

ż(t ) = A−1 ż(t −1)+Lzt +Bu, t ≥ 0, (1)

where A−1, B are constant matrices of dimensions n ×n and
n × r , respectively; zt : [−1,0] →Cn is the history of z defined
by zt (s) = z(t + s); the delay operator L is given by

L f =
0∫

−1

A2(θ)
d

dθ
f (θ) dθ+

0∫
−1

A3(θ) f (θ) dθ,

where A2, A3 are n ×n-matrices whose elements belong to
L2([−1,0],C). For this system, the following criterium of con-
1 P. Yu. Barkhayev was supported by École Centrale de Nantes during a
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trollability had been recently obtained by coauthors of the
present paper (Rabah and Sklyar (2007a)).

Theorem 1. The system (1) is exactly null-controllable if and
only if the following conditions are verified.

(i) There is no λ ∈C and y ∈Cn , y 6= 0, such that∆∗
A

(λ)y = 0
and B∗y = 0, where

∆A (λ) = λI −λe−λ A−1

−λ
∫ 0

−1
eλs A2(s)ds −

∫ 0

−1
eλs A3(s)ds,

(2)

or equivalently rank(∆A (λ) B) = n for all λ ∈C.
(ii) There is no µ ∈ σ(A−1) and y ∈ Cn , y 6= 0, such that

A∗
−1 y = µ̄y and B∗y = 0, or equivalently

rank(B A−1B · · · An−1
−1 B) = n.

If conditions (i) and (ii) hold, then the system is controllable
at the time T > n1 and not controllable at the time T ≤ n1,
where n1 is the controllability index of the pair (A−1,B).

An important contributions of this result consist in giving the
precise time of controllability. This may be very important
in the problem of time minimal problem and other related
problems of optimal control. In this case the semigroup is not
explicitly known in contrast to the situation of several discrete
delays (see O’Connor and Tarn (1983); Jacobs and Langen-
hop (1976); Banks et al. (1975); Rivera Rodas and Langenhop
(1978)). To study controllability we use the moment problem
approach. Namely, the steering conditions of controllable
states are interpreted as a vectorial moment problem with
respect to a special Riesz basis. We analyze the solvability
of the obtained non-Fourier trigonometric moment problem
using methods developed by Avdonin and Ivanov (1995).



When there exists a basis of the state space consisting of
eigenvectors, the expression of the moment problem is sim-
plified (see Rabah and Sklyar (2007b)). For the system (1), the
existence of a basis of generalized eigenvectors is determined
by the form of the matrix A−1. It is now well known that, in
general, such a basis does not exist (see Rabah et al. (2003,
2005)). Due to the last, the procedure of the choice of a Riesz
basis is quite sophisticated in a general case. Besides, the
complicated form of the obtained basis makes technically
difficult further manipulations with it.

Later we observed that by means of a change of control it is
possible to pass over to an equivalent controllability problem
for a system with a matrix A−1 of a simple structure. For such
system there exists a Riesz basis of eigenvectors and the form
of the corresponding moment problem is much simpler. This
makes the proofs of the main results more illustrative what
motivated us for writing this paper. Here we give the proof of
the Theorem 1 for the system (1) with A−1 of a special form
and show that this fact implies the proof for a system with an
arbitrary matrix A−1.

More detailed surveys on the problem of exact controllability
of neutral type systems may be found in Rabah and Sklyar
(2007a) and references therein.

We consider the operator model of the neutral-type system
(1) introduced by Burns et al. (1983) in product space. The
state space is M2(−1,0;Cn) = Cn × L2(−1,0;Cn), shortly M2,
and (1) can be reformulated as

ẋ(t ) =A x(t )+Bu(t ), A =
(

0 L

0
d

dθ

)
, B =

(
B
0

)
, (3)

with D(A ) = {
(
y, z(·)) ∈ M2 : z ∈ H 1([−1,0];Cn), y = z(0) −

A−1z(−1)}.
If L = 0, i.e. if A2(θ) = A2(θ) ≡ 0, the operator A is noted by Ã .

The reachability set from 0 at time T is defined by

RT =
{

x : x =
∫ T

0
eA t Bu(t ) dt , u(·) ∈ L2(0,T ;U )

}
.

It can be shown that RT ⊂D(A ) for all T > 0 (see Ito and Tarn
(1985)). We say that the system (3) is exactly null-controllable
by controls from L2 at the time T if RT = D(A ). This means
that the set of solutions of the system (1), {z(t ), t ∈ [T −1,T ]},
coincides with H 1([T −1,T ];Cn). We denote by XA the space
D(A ) ⊂ M2 with the graph norm.

The paper is organized as follows. In Section 2 we simplify our
system using a change of control and in Section 3 we expand
the steering condition using a spectral Riesz basis. Section 4
is devoted to solvability of a moment problem. In Sections 5-
6 we give a short proof of our main result. Finally we give an
illustrative example and concluding remarks.

2. MODIFICATION OF THE SYSTEM

We begin with the following proposition.

Lemma 2. The system (1) is exactly null-controllable at time
T if and only if the perturbed system

ż(t ) = (A−1 +BP )ż(t −1)+Lzt +Bu (4)

is exactly null-controllable at time T for any P ∈Cn×r .

Proof. Obviously it is enough to prove one implication only.
Assume that the system (1) is controllable at the time T .
This means that for any function f (t ) ∈ H 1(T −1,T ;Cn) there
exists a control u(t ) ∈ L2(0,T ;Cn) such that the solution of the
equation

ż(t ) = A−1 ż(t −1)+Lzt +Bu(t ), (5)

with the initial condition z(t ) = 0, t ∈ [−1,0], verifies z(t ) =
f (t ), t ∈ [T −1,T ]. Let us rewrite (5) in the form

ż(t ) = (A−1 +BP )ż(t −1)+Lzt +B v(t ),

where v(t ) = u(t ) − P ż(t − 1), t ∈ [0,T ]. Since z(t − 1) ∈
H 1(0,T ;Cn), then v(t ) ∈ L2(0,T ;Cn). Thus, the control v(t )
transfers the state z(t ) = 0, t ∈ [−1,0] to the state z(t ) = f (t ),
t ∈ [T −1,T ] by virtue of (4). This means that (4) is also con-
trollable at the time T . 2

Let us observe that in the conditions of controllability (i)
and (ii) of Theorem 1 the matrix A−1 may be substituted
by the matrix A−1 + BP for any P . Indeed, let us denote
by Â the operator corresponding to the system (4). Then,
the relations ∆∗

A
(λ)y = 0 and B∗y = 0 are equivalent to

the relations ∆∗
Â

(λ) = [∆∗
A

(λ)−λe−λP∗B∗]y = 0 and B∗y =
0 with the same y and λ. The equivalency of the condi-
tions rank(B A−1B · · · An−1

−1 B) = n and rank(B (A−1 +
BP )B · · · (A−1 +BP )n−1B) = n is a well-know classical result
(see e.g. Wonham (1985)).

Thus, we conclude that if we prove Theorem 1 for a system (1)
with a matrix Â−1 of the form Â−1 = A−1 +BP , we also prove
this theorem for the system with the matrix A−1.

Let us fix n distinct real numbers:

{µ1, . . . ,µn} ⊂R, µi 6=µ j , i 6= j , µi 6∈ {0,1}. (6)

There exists a matrix P ∈ Cr×n such that σ(A−1 + BP ) =
{µm}n

m=1 (see e.g. Wonham (1985)).

Thus, without loss of generality, we may assume that A−1 is
such that

σ(A−1) = {µm}n
m=1. (7)

Due to the construction det A−1 6= 0. We denote by {cm}n
m=1

the basis of normed eigenvectors of A−1.

3. RIESZ BASIS OF EIGENVECTORS AND EXPANSION OF
THE STEERING CONDITION

3.1 The Riesz basis

Let us recall that we denote by Ã the operator A in the case
L = 0, i.e. when A2 = A3 = 0.

It easy to see that the eigenvalues of the operator Ã are of the
form

σ(Ã ) = {λ̃k
m = ln |µm |+2kπi, m = 1, . . . ,n, k ∈Z}∪ {0},

where {µ1, . . . ,µn} = σ(A−1). Due to the specific structure of
A−1, the operator Ã possesses simple eigenvalues only: no
root-vectors and to each λ̃k

m corresponds only one eigenvec-
tor ϕ̃m,k . We norm these eigenvectors such that

inf
k∈Z

‖ϕ̃m,k‖ = ρ̃ > 0, sup
k∈Z

‖ϕ̃m,k‖ = R̃ <∞.

The spectrum of A allows the following characterization

σ(A ) = {ln |µm |+2kπi+o(1/k), m = 1, . . . ,n,k ∈Z}.



There exists N ∈ N such that the total multiplicity of the
eigenvalues of A , contained in the circles Lk

m(r (k)), equals 1
for all m = 1, . . . ,n and k : |k| > N , where Lk

m(r (k)) = Lk
m are

circles centered at λ̃k
m and their radii r (k) satisfy the relation∑

k∈Z
(r (k))2 < ∞ (Rabah et al., 2008, Theorem 4). We denote

these eigenvalues of the operator A as λk
m and the corre-

sponding eigenvectors as ϕm,k , m = 1, . . . ,n, |k| > N . Now the

vectors ϕm,k are normed such that P (k)
m ϕ̃m,k = ϕm,k , where

P (k)
m = 1

2πi

∫
L(k)

m
R(λ,A )dλ. The families {ϕm,k } and {ϕ̃m,k } are

quadratically close:
∑

|k|>N

n∑
m=1

‖ϕm,k − ϕ̃m,k‖2 < ∞, what, in

particular, implies

inf
|k|>N

‖ϕm,k‖ = ρ > 0, sup
|k|>N

‖ϕm,k‖ = R <∞. (8)

Outside the circles L(k)
m , |k| > N , m = 1, . . . ,n, there is only a

finite number of eigenvalues of A noted λ̂s , s = 1, . . . , N , and
counted with multiplicities. We denote by ϕ̂s , s = 1, . . . , N , the
corresponding generalized eigenvectors of the operator A .
The family

{ϕ} = {ϕm,k }∪ {ϕ̂s } (9)

forms a Riesz basis of M2 (Rabah et al. (2005)).

Let us denote by

{ψ} = {ψm,k }∪ {ψ̂s } (10)

the family of eigenvectors of the adjoint operator A ∗ which

is biorthogonal to {ϕ}. Here A ∗ψm,k = λk
mψm,k , m = 1, . . . ,n,

|k| > N and s = 1, . . . , N . This family also forms a Riesz basis of
M2.

3.2 The steering condition

Let us expand the steering condition xT = (
yT , zT (·)) =∫ T

0 eA t Bu(t ) dt with respect to the basis {ϕ} and to the
biorthogonal basis {ψ}. A state x = (y, z(·)) ∈ M2 is reachable
at time T if and only if∑

ϕ∈{ϕ}

〈
x,ψ

〉
ϕ= ∑

ϕ∈{ϕ}

∫ T

0

〈
eA t Bu(t ),ψ

〉
dt ·ϕ.

Let {b1, . . . ,br } be an arbitrary basis of the image of the matrix
B , and bd = (bd , 0)T ∈ M2, d = 1, . . . ,r . Then the steering con-
dition can be substituted by the following system of equali-
ties: 〈

x,ψ
〉 =

∫ T

0

〈
eA t Bu(t ),ψ

〉
dt

=
r∑

d=1

∫ T

0

〈
eA t bd ,ψ

〉
ud (t ) dt ,

(11)

where ψ ∈ {ψ}, u(·) ∈ L2(0,T ;Cr ). Let us write the term〈
eA t bd ,ψ

〉
for ψ=ψm,k , m = 1, . . . ,n, |k| > N as follows:〈

eA t bd , ψm,k

〉
M2

= eλ
k
m t 〈

bd ,ψm,k
〉

M2

= eλ
k
m t 〈

bd , ym,k
〉
Cn ,

(12)

where ym,k ∈ Ker∆∗
A

(λk
m). We introduce the notation:

qd
m,k = k

〈
bd ,ψm,k

〉
M2

. (13)

Due to (12), the infinite part of the system (11), corresponding
to ψ ∈ {ψm,k , |k| > N ,m = 1, . . . ,n}, reads as

k

〈(
yT

zT (·)
)

,ψm,k

〉
=

r∑
d=1

∫ T

0
eλ

k
m t qd

m,k ud (t ) dt . (14)

Next we observe that if ψ= ψ̂s , s = 1, . . . , N , then〈
eA t bd ,ψ

〉
,=

〈
bd ,eA ∗t ψ

〉
= q̂d

s (t )eλ̂s t ,

where q̂d
s (t ) is some polynomial. Therefore, the finite part of

(11), corresponding to ψ ∈ {ψ̂s }, reads as〈(
yT

zT (·)
)

,ψ̂s

〉
=

r∑
d=1

∫ T

0
eλ̂s t q̂d

s (t )ud (t ) dt . (15)

Thus, we observe that the state
(
yT , zT (·)) ∈ M2 is reachable

from 0 at the time T > 0 if and only if the equalities (14) and
(15) hold for some controls ud (·) ∈ L2(0,T ), d = 1, . . . ,r . The
obtained moment problem is the main object of our further
analysis.

4. THE PROBLEM OF MOMENTS AND THE RIESZ BASIS
PROPERTY

Consider a collection of functions {gk (t ), t ∈ [0,∞[}k∈N as-
suming that for any k ∈N, T > 0: gk (·) ∈ L2(0,T ), and consider
the following problem of moments:

sk =
∫ T

0
gk (t )u(t ) dt , k ∈N. (16)

The following well-known fact is a consequence of Bari theo-
rem (see Gohberg and Krein (1969) and Young (1980)).

Proposition 3. The following statements are equivalent:

(i) For the scalars sk , k ∈N, the problem (16) has a solution
u(·) ∈ L2(0,T ) if and only if {sk } ∈ `2, i.e.,

∑
k∈N

s2
k <∞;

(ii) the family {gk (t )}k∈N, t ∈ [0,T ] forms a Riesz basis in the
closure of its linear span

ClLin{gk (t ), k ∈N}.

Let us put L (0,T )
def= ClLin{gk (t ), k ∈N} ⊂ L2(0,T ). The fol-

lowing propositions from (Rabah and Sklyar (2007a)) are used
later.

Proposition 4. Let us suppose that for some T1 > 0 the func-
tions {gk (t )}k∈N, t ∈ [0,T1], form a Riesz basis in L (0,T1) ⊂
L2(0,T1) and codimL (0,T1) < ∞. Then for any 0 < T < T1,
there exists an infinite-dimensional subspace `T ⊂ `2 such
that the problem of moments (16) is unsolvable for {sk } ∈ `T

if {sk } 6= {0}.

Proposition 5. Let us consider the moment problem

sk =
r∑

d=1

∫ T

0
g d

k (t )ud (t ) dt , k ∈N, (17)

where
∑

k∈N

∫ T
0 |g d

k (t )|2 dt < ∞, d = 1, . . . ,r . Then the set S0,T

of sequences {sk } for which problem (17) is solvable is a
nontrivial submanifold of `2, i.e., S0,T 6= `2.

Let δ1, . . . ,δn be different, modulus 2πi, complex numbers,
let N be natural integer and let the set {εm,k , |k| > N ,m =



1, . . . ,n} ⊂ Cn be such that
∑

m,k
|εm,k |2 < ∞. Let ẼN be the

family

ẼN =
{

e(δm+2πik+εm,k )t , |k| > N ,m = 1, . . . ,n
}

.

Next, let ε1, . . . ,εr be another collection of different complex
numbers such that ε j 6= δm + 2πik + εm,k , j = 1, . . . ,r , m =
1, . . . ,n, |k| > N , and let m′

1, . . . ,m′
r be positive integers. Let

us denote by E0 the collection

E0 =
{

eε j t , t eε j t , . . . , t m′
s−1 eε j t , j = 1, . . . ,r

}
.

The following theorem, which is based on results of Avdonin
and Ivanov (1995), is the main tool of our further analysis.

Theorem 6. (i) If
r∑

j=1
m′

j = (2N +1)n, then the family

E = ẼN ∪E0

constitutes a Riesz basis in L2(0,n).

(ii) If T > n, then independently of the number of elements in
E0, the family E forms a Riesz basis of the closure of its linear
span in the space L2(0,T ).

Now we apply Theorem 6 to the collection of functions ap-
pearing in (14). Let us fix d ∈ {1, . . . ,r } and choose an arbitrary
subset L ⊂ {1, . . . ,n}.

Theorem 7. For any choice of d , L, for any T ≥ n′ = |L| the
collection of functions

Φ1 =
{

eλ
k
m t qd

m,k , |k| > N ; m ∈ L
}

constitutes a Riesz basis of ClLinΦ1 in L2(0,T ).

If T = n′, the subspace ClLinΦ1 is of finite codimension (2N+
1)n′ in L2(0,n′).

Proof. Consider the linear operator T : LinΦ1 → LinΦ1 de-
fined on the elements ofΦ1 by the equalities

T (eλ
k
m t qd

m,k ) = eλ
k
m t

for |k| > N , m ∈ L. It can be proved that the family {qd
m,k } is

uniformly bounded, and then it follows from Theorem 6 that
the operator T is bounded in the sense of L2(0,T ) and its
extension to ClLinΦ1 is a bounded one-to-one operator from
L to L. Hence, since the images of the elements of Φ1 form a
Riesz basis of ClLinΦ1 (Theorem 6), then Φ1 is also a Riesz
basis of this subspace of L2(0,T ).

Finally, let us observe that in the case T = n′ the space
ClLinΦ1 is of codimension (2N + 1)n′ in L2(0,T ) (see Theo-
rem 6). ThenΦc

1 which is an orthonormal complement of the
basis ofΦ1 to a basis of L2(0,T ), consists of exactly (2N +1)n′
elements. 2

5. THE NECESSARY CONDITION OF CONTROLLABILITY

Let us study the solvability of the systems of equalities (14)
and (15). Consider the sequence of functions{∫ T

0
eλ

k
m t qd

m,k u(t ) dt , |k| > N

}
(18)

for any fixed d and u(·) ∈ L2(0,T ). It follows from Theorem 7

that all nonzero functions of the collection
{

eλ
k
m t qd

m,k

}
|k|>N

form a Riesz basis of their linear span in L2(0,T ′) if T ′ is

large enough. Therefore, by Proposition 3, the sequence (18)
belongs to the class `2. This gives the following proposition.

Proposition 8. If the state
(
yT , zT (·)) is reachable from 0 by

(3), then it satisfies the following equivalent conditions:

(C1)
∑

|k|>N

n∑
m=1

k2

∣∣∣∣〈(
yT

zT (·)
)

, ψm,k

〉∣∣∣∣2

<∞,

(C2)
∑

|k|>N

n∑
m=1

k2

∥∥∥∥P (k)
m

(
yT

zT (·)
)∥∥∥∥2

<∞,

(C3)

(
yT

zT (·)
)
∈D(A ).

From Proposition 8 it follows (see also Ito and Tarn (1985)),
that the set RT of the states reachable from 0 by virtue of
the system (3) and controls from L2(0,T ) is always a subset
of D(A ).

Theorem 9. Assume that the system (3) is null-controllable
by controls from L2(0,T ) for some T > 0. Then the following
two conditions hold:

(i) There is no λ ∈C and y ∈Cn , y 6= 0, such that∆∗
A

(λ)y = 0
and B∗y = 0, or equivalently rank(∆A (λ) B) = n for all
λ ∈C.

(ii) There is no µ ∈ σ(A−1) and y ∈ Cn , y 6= 0, such that
A∗
−1 y = µ̄y and B∗y = 0, or equivalently

rank(B A−1B · · · An−1
−1 B) = n.

Proof. The condition (i) may be reformulated as follows:
there is no eigenvector g of the adjoint operator A ∗ belong-
ing to KerB∗. Let (i) be false. Then there exists a vector g 6= 0
such that A ∗g = λg and g ∈ KerB∗. Consider an arbitrary
state

(
yT , zT (·)) ∈RT . This gives〈(

yT
zT (·)

)
, g

〉
=

∫ T

0

〈
u(t ),B∗ eA ∗t g

〉
dt = 0.

This means that RT is not dense in M2 and so cannot be
equal to D(A ) which is dense in M2 (A is an infinitesimal
generator). Hence null-controllability is impossible.

Now let us suppose that condition (ii) does not hold, i.e., there
exists y 6= 0 such that A∗

−1 y = µ̄m y and B∗y = 0. Due to the
special form of A−1 we have y = cm . Let us fix the index m
and consider the subset of equalities (14):

sk = k
〈( yT

zT (·)
)

,ψm,k

〉
=

r∑
d=1

T∫
0

eλ
k
m t qd

m,k ud (t ) dt , (19)

where |k| > N , qd
m,k = k

〈
bd ,ψm,k

〉
M2

. From Proposition 5
and some technical estimates from the steering condition, it
follows that the set of solvability of (19) is a linear submani-
fold `′ ⊂ `2, `′ 6= `2. We conclude that there exist sequences
{sk }|k|>N for which (19) is not solvable. This means that there
exist states

(
yT , zT (·) )

that satisfy (C1) but are not reachable
from 0 by the system (3). Thus RT 6=D(A ). 2

6. THE SUFFICIENT CONDITION OF CONTROLLABILITY

First we consider single control systems. We need the follow-
ing preliminarie result.

Lemma 10. For the system (3) let there exist a natural N and
T0 > 0 such that the moment problem (14) for T = T0 and
|k| > N is solvable for all sequences satisfying (C1). From
condition (i) of Theorem 9 it follows RT =D(A ) as T > T0.



Proof. The condition of the Lemma implies that RT0 is of
finite co-dimension and then in order to obtain RT = D(A )
we use a corollary of Hahn-Banach Theorem. 2

Theorem 11. Let the system (3) is of single control (r = 1) and
let conditions (i) and (ii) of Theorem 9 hold. Then

(1) the system (3) is null-controllable at the time T > n;
(2) the estimation of the time of controllability in (1) is

exact, i.e. the system is not controllable if T = n.

If the delay is equal to h the time controllability is T = nh.

Proof. Let us observe that all the eigenspaces of A ∗ and
Ã ∗ are one-dimensional. Indeed, otherwise there exists an
eigenvector g of A ∗ (or Ã ∗) such that 〈b, g 〉M2 = 0. Eigen-
vectors of the adjoint operator have the form g = (y, z(θ))T ,
where y is nonzero and satisfies ∆∗

A
(λ0)y = 0 (or ∆∗

Ã
(λ0)y =

0) for some λ0. Since 〈b, g 〉M2 = 0 gives 〈b, y〉Cn = 0 we arrive
at a contradiction with the conditions of Theorem 9.

Thus, equalities (14) and (15) take, in our case, the form

k

〈(
yT

zT (·)
)

,ψm,k

〉
=

∫ T

0
eλ

k
m t qm,k u(t ) dt , (20)

where |k| > N , m = 1, . . . ,n, and〈(
yT

zT (·)
)

,ψ̂s

〉
=

∫ T

0
eλ̂s t q̂s (t )u(t ) dt , (21)

where s = 1, . . . , N . From the condition (i) it follows that all
qm,k 6= 0 and all polynomials {q̂s (t )} are nontrivial. Let us
introduce the following notation

Φ1 =
{

eλ
k
m t qm,k , |k| > N , m = 1, . . . ,n

}
,

Φ̂ =
{

eλ̂s t q̂s (t ), s = 1, . . . , N
}

.

For a large enough N , the collectionΦ=Φ1
⋃
Φ̂ forms a Riesz

basis in ClLinΦ ⊂ L2(0,T ) (Theorem 7). Then by Proposi-
tion 3 the moment problem (20) is solvable if and only if (C1)
holds. Due to Lemma 10, this yields RT =D(A ) for T > n.

To prove the assertion (2) we first recall that the total number
of elements of the family Φ̂ equals to

∑`
m=1 p̂m,1 = (2N +2)n.

On the other hand, it follows from Theorem 7 that in L2(0,n)
we have

codimClLinΦ1 = (2N +1)n.
This means that the family Φ = Φ1 ∪ Φ̂ contains at least n
functions, which are presented as linear combinations of the
others. As a consequence, the set of reachability RT for T = n
cannot be equal to D(A ). More precisely, the codimension of
RT in D(A ) satisfies the estimation n ≤ codimRT <∞. 2

We note that the system (3) is also uncontrollable at time
T < n. Moreover, it follows from Proposition 4 that, in this
case, the set ClRT is of infinite codimension in XA .

Let us now consider the multivariable case: dimB = r > 1.
Let {b1, . . . ,br } be an arbitrary basis noted β. Denote Bi =
(bi+1, . . . ,br ), i = 0,1, . . . ,r −1, which gives in particular B0 = B
and Br−1 = (br ) and we put formally Br = 0. We introduce the
integers

mβ

i = rank(Bi−1 A−1Bi−1 · · · An−1
−1 Bi−1)

−rank(Bi A−1Bi · · · An−1
−1 Bi )

(22)

corresponding to the basis β. Let us denote

m1 = max
β

mβ
1 , m = min

β
max

i
mβ

i ,

for all choices of a basisβ. It is easy to show that for allβ, there

exists i such that mβ

i ≥ m1 and then m ≥ m1.

Now we can formulate the main result of this section.

Theorem 12. Let conditions (i) and (ii) of Theorem 9 hold.
Then

(1) the system (3) is null-controllable at the time T > m;
(2) the system (3) is not controllable at the time T < m1.

If the delay is h instead of 1, then in (1) and (2) m and m1
must be replaced by mh and m1h, respectively.

Proof. The proof consists on the analysis of several sin-
gle moment problems step by step as in Rabah and Sklyar
(2007a), where the basis is more complicated. 2

To complete our analysis, we obtain the precise time of con-
trollability. Recall that the first index n1 is the minimal integer
ν such that rank(B , A−1B , . . . , Aν−1

−1 B) = n, if the pair (A−1,B)
is controllable. One can easily show that m1 ≤ n1 ≤ m. It is
well known that in contrast to indices m1, m, the controllabil-
ity index n1 is invariant under feedback. This means that n1
is the same for all couples (A−1+BP,B). Then one can choose
a feedback matrix P and a basis inCn such that A−1+BP take
the form (see Wonham (1985))

F = diag{F1, . . . ,Fr }, Fi =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
ai

1 ai
2 ai

3 · · · ai
ni


and B becomes G = diag{g1, . . . , gr }, where gi = (0, 0, . . . ,1)T,
the dimension being ni ×1. It is easy to check that m(F,G) =
m1(F,G) = n1. Moreover, the spectrum of F may be chosen
arbitrarily by means of an appropriate choice of P .

The following result concludes our considerations.

Theorem 13. Let the neutral-type system (1) be in the general
form. Conditions (i) and (ii) of Theorem 9 are necessary and
sufficient for the exact controllability of the system. Under
these conditions, the precise time of controllability is T = n1.
This means that the system is not controllable for T ≤ n1 and
is controllable for T > n1. If the delay is h instead of 1, then
the exact time of controllability is n1h.

Proof. The necessity and sufficiency of the condition (i) and
(ii) are proved by Theorem 9 and Theorem 12. We need only
to precise the time of controllability.

If the conditions (i) and (ii) are verified for (1), then they are
also verified for any perturbed system. From (ii) we choose
a matrix P such that A−1 +BP is nonsingular and m(A−1 +
BP,B) = m1(A−1 + BP,B) = n1. Thus, the perturbed system
is exactly null-controllable at the time T > n1 and is not
controllable at T < n1. By Lemma 2 we infer that our system
(1) satisfies the same condition.

Moreover, it is easy to prove, arguing as in the proof of Theo-
rem 11, that the system (1) is also not controllable at the time
T = n1. More precisely, the codimension of Rn1 in XA is finite
and not less than n1. For T < n1, the codimension of RT is
infinite. 2



7. EXAMPLE

Consider a three-dimensional system given by the equa-
tion (1) with

A−1 =
 1 −1 0

0 −11 16
0 −9 13

 , B =
 1 0

0 1
0 1

 ,

and the matrices As (θ) = {as
i j (θ)}3

i , j=1, s = 2,3 are of lower-

triangular form (as
i j (θ) ≡ 0 for i < j ).

The spectrum σ(A−1) = {1} and the corresponding Jordan
block is three-dimensional. We simplify the system by means
of the feedback change u(t ) = v(t )+P ż(t −1) with

P =
( −2 1 0

0 9 −16

)
.

Thus, we obtain

Â−1 = A−1 +BP =
 −1 0 0

0 −2 0
0 0 −3

 . (23)

Let A be the operator corresponding to the modified system.
By construction, the characteristic matrix ∆A (λ) defined by
(2) is of lower-triangular form. Thus, the eigenvalues λk

m of A
are the roots of the following three equations:

λ+mλe−λ−
∫ 0

−1
eλs [

λa2
mm(s)+a3

mm(s)
]

ds = 0, (24)

where m = 1,2,3. Let us rewrite the steering condition (14)
and first we calculate the values of qd

m,k . The eigenvector of

A ∗ corresponding to the eigenvalue λk
m is of the formψm,k =

(ym,k , Cm,k (θ)ym,k )T , where ym,k ∈ Ker∆∗
A

(λk
m) (Rabah et al.

(2008)). To satisfy the estimation (8) and taking into account
that ∆∗

A
(λ) is of upper-triangular form, we chose ym,k ∈

Ker∆∗
A

(λk
m) as follows:

y1,k = 1

k
(1,0,0), y2,k = 1

k
(1,αk ,0), y3,k = 1

k
(1,βk ,γk ),

The sequences {αk }, {βk } and {γk } are bounded. Calculating
qd

m,k given by (13), we obtain

q1
1,k = 1, q1

2,k = 1, q1
3,k = 1,

q2
1,k = 0, q2

2,k =αk , q2
3,k =βk +γk .

Thus, the moment problem (14) takes the following form:

k
〈

xT , ψ1,k
〉= ∫ T

0
eλ

k
1 t u1(t ) dt ,

k
〈

xT , ψ2,k
〉= ∫ T

0
eλ

k
2 t [u1(t )+αk u2(t )] dt ,

k
〈

xT , ψ3,k
〉= ∫ T

0
eλ

k
3 t [

u1(t )+ (βk +γk )u2(t )
]

dt .

The pair (A−1, B) is controllable and its controllability index
n1 equals to 2. Moreover, B∗ym,k 6= 0 for all m = 1,2,3. Thus,
conditions (i) and (ii) are satisfied and, applying Theorem 13,
we obtain that the system is exactly controllable and the time
of controllability is T = 2.

8. CONCLUSION

We give a new approach to the problem of the exact con-
trollability by the moment problem method. The difficulty
of the choice of basis is contounred by a change of control

using state feedback. This change of control allowed us to
simplify the structure of the system, what makes the proof
of the criterium of exact controllability more illustrative. This
approach may be used for more general neutral term given by
the difference operator K f =∑r

i=1 Ahi f (hi ), hi ∈ [−1,0]. This
idea offers some new perspective for the analysis of controlla-
bility and also stabilizability of general neutral type systems.
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