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Abstract: 

This paper aims at defining the expression of the probability of error of classification methods 

using a Synthetic Aperture Radar (SAR) intensity ratio as a classification feature. The two 

SAR intensities involved in this ratio can be measurements from different dates, polarizations 

or possibly also frequency bands. Previous works provided a baseline expression of the 

probability of error addressing the two-class problem with equal a priori class probabilities 

and no calibration error. This study brings up a novel expression of the error, providing the 

possibility to assess the effect of class probabilities and calibration errors. An extended 

expression is described for the n-class problem. The effect of calibration errors such as 

channel gain imbalance, radiometric stability and cross-talk is assessed in the general case. 

Results indicate that, for the applications under study, channel gain imbalance is usually not a 

decisive parameter, but that radiometric stability is more critical in methods based on the 

temporal change. Cross-talk has a negligible effect in the case of co-polarizations. The 



impacts of other system parameters such as ambiguity ratio, time lapse between repeat-pass 

orbits, spatial resolution, and number of looks are illustrated through a set of assumptions on 

the backscattering values of the considered classes. The model is validated by comparing 

some of its outputs to experimental results calculated from the application of rice fields 

mapping methods on real data. This error model constitutes a tool for the design of future 

SAR missions and for the development of robust classification methods using existing SAR 

instruments. 

 

I. INTRODUCTION 

 

In the past few years, several satellites have been launched with a fully polarimetric SAR 

onboard. Polarimetric data contain coherent acquisitions of the four polarizations, and thus 

carry much more information than single-polarized or incoherently dual-polarized data. To 

exploit this information, polarimetric classification methods have been developed in the end 

of the 90’s [1-5], and have been applied to airborne polarimetric SAR data with excellent 

accuracies. Nonetheless, because of constraints related to the pulse repetition frequency, to the 

data rate and to the high spatial resolution required to enhance polarimetric features, the 

classification performance in these coherent systems is usually traded against a much smaller 

swath when compared to a similar incoherent acquisition (single- or dual-polarization). 

Effectively, the swath-widths of the polarimetric imagery data in TerraSAR-X, Radarsat-2 

and PALSAR are 15km, 25km and 30km respectively, while some single-polarization SARs 

provide data with a swath as wide as 500km, with a coarser spatial resolution though. Some 

remote sensing applications involve mapping of large areas or frequent observations, and 

therefore require a large spatial coverage (and consequently a high revisit frequency) rather 

than a high spatial resolution. For this reason, the future SAR planned for launch by ESA in 



2011, Sentinel-1, which aims at providing SAR data operationally with a high temporal 

resolution, will be incoherently dual-polarized. Besides, all the actual SARs including a fully-

polarimetric mode are also able to provide single-polarization or dual-polarization data at 

larger swaths than their fully-polarimetric data, and the 18-year satellite SAR archive data 

contain only incoherent imagery datasets. For all these reasons, classification methods 

specific to incoherent SAR data are still needed. 

 

A number of easy-to-implement classification methods using incoherent SAR data are based 

on the ratio of two intensity (backscattering coefficient) images, used as classification feature. 

For example, a widely used feature in single-channel SAR data (one frequency, one 

polarization) is the temporal change of the intensity between two dates. This classification 

feature is derived from the ratio of the backscattering coefficient images at two dates, rather 

than from the difference of the backscattering coefficients.  Indeed, the latter was shown to 

produce larger errors in high intensity regions than in low intensity regions [6]. The temporal 

intensity ratio method has been widely used since satellite SAR systems have been available 

in the early 90’s (ERS-1 and RADARSAT-1 at C-band, JERS at L-band), which provided 

data periodically. In recent years, multi-polarization systems such as ASAR onboard 

ENVISAT (dual-polarization, C-band), PALSAR onboard ALOS (dual- and quad-

polarization, L-band), RADARSAT-2 (dual- and quad-polarization, C-band), and TerraSAR-

X (dual- and quad-polarization, X-band) have become available, making it possible to use 

classifiers based on the polarization ratio at a single date -i.e. the ratio of two backscattering 

images at the same date at two different polarizations.  

 

Applications of the temporal change (hereafter mentioned as TC) of SAR intensity between 

two dates in classification methods include the detection of events such as floods with JERS 



[7] and ASAR [8], deforestation with ERS-1 and JERS [9] or harrowing in fields using ASAR 

[10], and the mapping of rice fields with ERS-1 [11] and Radarsat-1 [12]. Classification 

features based on a polarization ratio (hereafter mentioned as PR) have been extensively 

demonstrated in a wide range of applications: oil slick detection with Ka-band and C-band 

HH/VV [13], discrimination of vegetated fields from bare soil with C-band HV/HH and 

HV/VV [14], discrimination of broad-leaf crops from small-stem crops with C-band RR/RL 

[14], where R and L denote right and left circular polarization, crop classification with C-band 

or L-band HH/HV [15], rice or wheat fields mapping using C-band HH/VV [16, 17], 

discrimination of multi-year sea ice from first-year sea ice using C-band HV/HH [18]. 

The accuracy of such classification methods based on an intensity ratio has been assessed in 

[6] for the two-class problem, taking into account the target characteristics. However, the 

impacts of system parameters on the classification performance were not addressed. Those 

parameters include spatial resolution, ambiguity, orbit repeat cycle, channel gain imbalance, 

radiometric stability, and cross-talk. For the assessment of the classification robustness and 

for the design of future SAR missions, there is a need to extend the study in [6] by 

considering system parameters in the assessment of the classification performance. 

This is the objective of this paper to provide the general formulation of the error in 

classification methods based on a SAR intensity ratio in such a way that the impact of system 

parameters can be assessed. In Section II, we calculate the theoretical probability of error of 

such methods for a two-class problem, with an extension scheme to the n-class problem. In 

Section III, the impact of calibration parameters (radiometric accuracy, radiometric stability, 

channel gain imbalance, and cross-talk) on the probability of error is calculated for the general 

case. Section IV addresses the effect of other system and processing parameters, such as 

ambiguity ratio, time-lapse between repeat-pass orbits, number of looks, and spatial 

resolution, under a set of assumptions on the backscattering profiles of the classes. The model 



is validated experimentally in Section V by applying rice fields mapping methods to real SAR 

data.  

 

II. THEORETICAL EXPRESSION OF THE PROBABILITY OF ERROR 

 

A. Description of the classification algorithm 

We want to develop a classification method using a SAR intensity ratio r=I2/I1 as a 

classification feature. The backscatter intensity I can represent any of the backscattering 

coefficients: σ0, β0, or γ. For an homogeneous area in a SAR image with a number of looks 

equal to L, the backscattering intensity I can be modeled as a gamma distribution with the 

shape parameter equal to L and the scale parameter equal to <I>/L, where <.> denotes the 

average value over an homogeneous area [19]. Its probability density function (pdf) is thus 

equal to: 
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When I1 and I2 come from uncorrelated channels, the pdf of the intensity ratio r=I2/I1 of a 

homogeneous region is found to depend only on the ratio of average intensities r =< I2>/< I1>, 

and not specifically on the average intensities < I1> and < I2> [19]: 
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In the methods based on temporal change, the condition of uncorrelated channels is well met 

when dealing with agricultural areas at X or C-band, because changes occur between two 

repeat-pass data. For the polarization ratio method, the correlation between channels is low 

when the two polarizations involve different backscattering mechanisms. This is the case for 



HH and VV at X or C-band on crops with a vertical structure (rice, wheat), or for HH and HV 

on agricultural areas at X or C-band and on forests at L or P-band. In these common 

examples, the two channels forming the intensity ratio are not strongly correlated. We will 

first assume in our analysis that the two channels are uncorrelated. The correlated case will be 

investigated at the end of this section. 

 

We consider two classes A and B, characterized by mean intensity ratios rA = <I2,A>/<I1,A> 

and rB = <I2,B>/<I1,B>, supposing rB>rA. We adopt here a Bayesian approach to decide on 

whether to classify a pixel having a given intensity ratio r into class A or class B. Bayes’ 

theorem states: 
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where p(A|r) represents the probability for a pixel with an intensity ratio r to belong to class 

A, p(r|A) represents the probability for a pixel belonging to class A to have an intensity ratio 

equal to r, which is given in (2) with r =rA, p(A) represents the a priori probability of class A 

in the scene, and p(r) represents the probability for the intensity ratio to be equal to r in the 

image. The same relationship applies for class B.  

The classification algorithm consists in assigning a pixel with an intensity ratio r to class B 

whenever p(B|r)>p(A|r). This inequality is rewritten using (2) and (3): 
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The Bayesian approach therefore reduces to simply thresholding on the intensity ratio, using 



an optimal classification threshold ropt given in (4). This threshold depends on 4 parameters: 

rA, rB, p(B) or p(A), and L. In the case of prior equiprobability, i.e. when p(A)=p(B)=0.5, the 

optimal classification threshold takes a particular value, noted r0: 

BArrr =0  (5) 

It is also to be noted that when the number of looks L increases, the dependence of the 

optimal threshold on the a priori class probabilities strongly decreases due to the 1/2L power. 

With a high number of looks (for example L>32), we can therefore consider that ropt≈r0. 

 

B. Calculation of the Probability of Error 

Rignot and van Zyl [6] calculated the probability of error in a classification method using a 

threshold on the ratio of backscatter intensities at two dates 1,2, dpdpTC IIr = , where p is the 

polarization and d1 and d2 are the dates, in the case of equiprobable classes. The approach is 

valid for any other backscatter intensity ratio, including polarization ratios dpdpPR IIr ,1,2= , 

where p1 and p2 are the polarizations and d the date. This sub-section builds on this study to 

give an alternative formulation of the probability of error of the method, involving a 

supplementary parameter, and valid for any a priori class probabilities. 

 

We use a threshold rt to classify a pixel with intensity ratio r in to class A or class B. Ideally, rt 

is equal to the optimal threshold ropt when the latter is known or can be calculated, but we 

consider here the general case valid for any value of rt. 

 

The probability of error for class A, noted PEA, corresponding to the probability of classifying 

a pixel belonging to class A into class B, and the probability of error for class B, noted PEB,  

are then given by: 
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The total probability of error is thus: 
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Figure 1 illustrates the pdf of 2 classes with rA = 0dB and rB = 6dB for a number of looks 

equal to 10, together with their probability of error PEA and PEB when the classification 

threshold is equal to rt = 2.5dB. 

 

 

Figure 1. Probability density functions of the intensity ratio of class A (full line) and class B 

(dashed line) with class parameters rA=0dB and rB=6dB for L=10. Class parameters are 

represented by vertical lines (full and dashed) and the chosen classification threshold rt by a 

vertical dotted line. The coloured areas represent the probability of error for each class PEA 

(dark grey) and PEB (light grey). 

 



In order to simplify the calculations, the classification threshold rt is expressed relatively to 

the optimal threshold for equal a priori class probabilities r0 through the use of a new 

parameter noted d, so that rt = d.r0. We also introduce parameter Δr=rB/rA, which represents 

the distance between the mean intensity ratios of the two classes, and is therefore 

representative of the class separability. This parameter is more conveniently expressed in 

decibels: (Δr)dB=(rB)dB-(rA)dB. 

In the general case of unknown a priori probabilities, we find that the probability of error is 

(see Appendix I): 
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It is to be noted that when L is an integer, equals 0 for k greater than or equal to L and 

hL is thus easier to compute: 
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The probability of error of the classification method therefore depends on 4 parameters:  

- L, the number of looks of the intensity images,  

- Δr, a measurement of the distance between the mean ratios of the two classes,  

- p(B), the a priori probability of class B, 

- d, a measurement of the distance between the retained classification threshold rt and the 

threshold r0 (optimal threshold when the two classes are equiprobable). 



 

1) Equal a priori probabilities 

When p(A)=p(B), the retained classification threshold rt is optimal when equal to r0, therefore 

parameter d=rt/r0 equals 1, and the expression of the probability of error reduces to:  

( )rhPE L Δ=  (11) 

 

Figure 2 presents the probability of error PE as a function of Δr, for different values of L, 

when the classification threshold is r0. 

The figure can be used to assess the number of looks required to achieve a given accuracy in 

the classification when rA and rB are known.  

Figure 2 can also be used to assess the accuracy that can be expected when the system 

parameters (number of looks) and class characteristics (rA and rB) are known. Unsurprisingly, 

the error decreases when L and Δr increase.  

 

 

Figure 2. Probability of error (in %) of the ratio method as a function of the change in 

intensity ratio Δr (in decibels) between the two classes, for a number of looks L varying 

between 1 and 128. 

 



2) General case 

We can derive from (4) that the optimal threshold is found for a specific value of parameter d: 
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Thus, for the general case, the optimal classification threshold depends on r0, L, Δr and p(B). 

However, when the method is to be used in several different scenes, p(B) is not known in 

most cases. It is then suggested to use r0 as a threshold in the classification scheme. The 

additional classification error compared to the optimal case needs to be assessed, in order to 

make sure that such a practice is acceptable. 

Figure 3 shows the additional error due to the use of r0 rather than ropt, as a function of the 

optimal probability of error PEopt found for ropt, with a fixed number of looks L equal to 8 and 

p(B) varying from 0.5 to 0.9 (Fig. 3a), and with a fixed p(B) equal to 0.8 and a number of 

looks L varying from 1 to 128 (Fig. 3b). The variations of PEopt account for different values of 

Δr. The additional error for p(B)=pB is equal to that for p(B)=1-pB, as it can be derived by 

combining (12) and (9). So Fig. 3 can be read for the values of p(B) from 0.1 to 0.4 as well.  

 

 

 



 

Figure 3. Additional error due to the use of r0 rather than ropt as a function of the optimal PE 

for different values of p(B) from 0.5 to 0.9 with L=8 (left) and for different values of L from 1 

to 128 with p(B)=0.8 (right). 

 

Figure 3a indicates that, for a fixed number of looks (here L=8), the additional error increases 

when the two classes proportions differ from equiprobability, for any value of PEopt, i.e. for 

any value of Δr. However, among cases most likely to be encountered (0.2≤p(B)≤0.8), those 

leading to an acceptable accuracy (i.e. Δr values corresponding to PEopt lower than 15%) 

provide only slightly suboptimal results (7% of additional error in the worst case) when r0 is 

used instead of the true optimal threshold ropt. Figure 3b shows that this is true whatever the 

number of looks.  

In this case when the classification threshold is taken equal to r0 instead of ropt, the probability 

of error is the same as that of the equal a priori probabilities case, which is given by (11), and 

Fig. 2 can be used as well. 

Therefore, although it is a practical necessity, the use of r0 instead of ropt as a classification 

threshold has a limited negative impact on the classification accuracy in most cases 

(0.2≤p(B)≤0.8, PEopt<15%), and in addition leads to an expression of the error that is 

independent of the a priori probabilities of the two classes.  



In the rest of this article, it is assumed that the classification threshold is r0. 

 

C. Estimation of r0 

In order to implement this classification method based on a SAR intensity ratio, the value 

of BArrr =0 needs to be estimated, which requires to estimate the mean intensity ratios of the 

two classes, rA and rB. The estimation of these two class parameters can be done in different 

ways. For example, supervised methods using either the maximum likelihood criterion or the 

histograms of the intensity ratios such as described in [16] would be suitable. An 

unsupervised method has been presented in [20], and can be used when training data are not 

available. Alternatively, a prior-knowledge scheme can be adopted, when rA and rB are known 

from previous studies involving intensity images similar to those used in the classification 

(same sensor, or same image characteristics: frequency, polarizations and incidence angle), or 

from backscattering models. The impact of system parameters, such as calibration 

imperfections, on the probability of error in the prior-knowledge procedure will therefore be 

higher than in the supervised or unsupervised methods. 

 

D. Extension to multitemporal data 

 

Two kinds of classification features based on an intensity ratio have been defined in II.A., one 

based on temporal change involving two dates: 1,2, dpdpTC IIr = , and the other corresponding 

to a polarization ratio at a single date: dpdpPR IIr ,1,2= . When datasets containing more than 

two dates are available, multitemporal features should be defined for these two kinds of 

intensity ratios to improve the classification. 

 

 



1) Temporal change method 

Such classification methods are generally based on the assumption that the SAR intensity of 

one class remains relatively stable in time (r ≈ 0dB for any pair of date) while that of the other 

class would change.  

If the expected change for this class is an increase in backscattering intensity that spans over a 

period longer than the satellite repeat cycle (for example a plant growing season), the 

classification accuracy should be improved by considering a classification feature 
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Reversely, if the expected change is a decrease, then the classification feature should be 
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can also be adopted to account for increase and decrease, which would correspond to a three-

class problem. 

Otherwise, if the expected change occurs at a frequency higher than the repeat pass frequency 

(such as changes due to the effect of weather), a more relevant parameter would be the mean 

change between two dates of the temporal series, similarly to the mean annual variation 

introduced for the mapping of forested areas [21]:  
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where N is the number of images in the multitemporal dataset. 

 

2) Polarization ratio method 

In the case of a classification method based on a polarization ratio, the polarizations are 

generally chosen so that one of the classes exhibits large ratio values at least at some periods, 

while the other class remains relatively constant at lower values. 

Therefore, the classification feature 
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classification accuracy, by catching the optimal (highest) value of rB in the time series, and 

keeping rA to low values.  

 

E. The n-class problem 

 

As shown in (11), the two-class problem with equal a priori class probabilities and the use of 

r0 as a classification threshold leads to an expression of the error PE dependent on two 

parameters, one being related to the SAR data characteristics (the number of looks L) and the 

other being related to the class characteristics (the distance between the mean intensity ratio 

of the two classes ∆r): ( ) ( )LrPErhPE L ,Δ=Δ= . 

A more general expression must be brought up in order to deal with cases when more classes 

are taken into account in the classification. Let us assume that n classes are considered, with 

class i characterized by a mean ratio ri, and r1<r2<…<rn. The distance between two 

consecutive mean ratios is ∆ri= ri+1-ri (when expressed in dB), with i varying from i to n-1. It 

can be shown that, for equiprobable classes, the overall classification error is (see Appendix 

II): 
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For example, if all ∆ri are equal, this implies that the error of the n-class problem is increased 

by a factor nnkn )1(2 −= compared to the 2-class problem (kn=1.33 for n=3, 1.5 for n=4, and 

tends to 2 for high values of n). For that reason, the classification method should be limited to 

few classes, all the more so as dealing with more classes will make them less likely to have 

high values of ∆r. 

 

F. The case of correlated channels 

 

When the two channels are correlated, with a correlation coefficient ρ, their joint distribution 

can be modelled by Kibble’s bivariate gamma distribution [22], and the pdf of the ratio is 

[23]: 
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Figure 4 illustrates the pdf of two classes with rA = 0dB and rB = 6dB for a number of looks 

equal to 10 and for correlation coefficients ρ ranging from 0 to 0.9 (Fig 4a), with a close-up 

on the region where the curves meet and where PE is visualized (Fig 4b). 

 

Figure 4. Probability density functions of class A and class B with class parameters rA=0dB 

and rB=6dB for L=10 and for correlation coefficients ρ between channels ranging from 0 to 



0.9 (left). Class parameters are represented by vertical full lines and the classification 

threshold r0 by a vertical dashed line. A close-up on the area where the curves meet is shown 

(right). 

 

The optimal threshold is hard to express analytically using (6), but Fig. 4b shows that the 

crossing of the pdf of the two classes occurs at r = r0 for any value of ρ, leading to the same 

optimal threshold under equal a priori class probabilities as for the case of uncorrelated 

channels.  

Likewise, the probability of error is too complicated to be expressed in a satisfyingly explicit 

form, but it can be found from Fig. 4b that the area corresponding to PE decreases when ρ 

increases. The probability of error of classification methods based on a ratio of two correlated 

intensity channels is therefore lower than that corresponding to the case when the channels are 

uncorrelated, which is read on Fig.2. 

 

III. IMPACT OF SAR CALIBRATION PARAMETERS 

 

When applying classification algorithms to SAR images, one must bear in mind the various 

imperfections that may affect the image quality of SAR products and take them into account 

while evaluating the performance of such algorithms. We address here specifically the 

sensitivity of the classification methods to radiometric and polarimetric calibration 

imperfections. Calibration is characterized by a number of parameters, including radiometric 

accuracy and radiometric stability for the radiometric calibration, and cross-talk and channel 

gain imbalance for the polarimetric calibration. 

Let S represent the scattering matrix that characterizes the backscattering properties of the 

target. 
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When taking into account the effects of the transmitting and receiving systems, the observed 

scattering matrix Y that can be acquired by the radar system is [24]: 
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where A represents the overall absolute amplitude factor, Φ represents an overall absolute 

phase, δ1 (respectively δ2) represents the cross-talk when vertically-polarized (respectively 

horizontally-polarized) electric fields are transmitted or received, and g represents the one-

way co-polarized channel gain imbalance in amplitude. The absolute phase Φ is lost during 

SAR processing and is not taken into account here. In the case of an ideal system or a perfect 

calibration, A=1, δ1=δ2=0 and g=1. 

The elements in the matrices are complex numbers. The σ0 backscattering coefficients are 

derived from the measured elements of the scattering matrix, and are proportional to the 

ensemble average of the square of the modulus of these elements: 

20
ijij SK=σ  (18) 

where K is an overall radiometric calibration constant, which is related to A.  

The impacts of cross-talk, channel gain imbalance and radiometric calibration on the 

performance of the classification methods will be investigated separately. 

 

A. Radiometric accuracy and radiometric stability 

 

Internal calibration is performed in real-time in the system to assess A and therefore the 

overall calibration constant K, and external calibration campaigns are carried out regularly to 

provide finer estimates using reference targets. 



Radiometric accuracy refers to the accuracy with which the A constant can be determined 

after a calibration campaign. It accounts for a systematic offset in measured backscatter 

compared to real backscatter. Typical values are below 1dB. It can however be deduced from 

(18) that radiometric accuracy has no impact on intensity ratios, as any systematic backscatter 

offset will be cancelled out by the ratio. 

Radiometric stability is an indicator of the backscatter variability between repeat passes due to 

intrinsic variations of A in the system. A radiometric stability equal to s implies that A can 

vary between A/s and A.s between two consecutive data acquisitions. The backscattering 

coefficients can therefore be multiplied a factor between 1/|s|² and |s|². Typical values of |s|² 

range between 0.5 and 1dB. 

The polarization ratio method is not concerned by radiometric stability as it involves only 

ratios of same-date channels. For the temporal change method using 1,2, dpdpTC IIr = , a 

backscatter offset due to radiometric stability between d1 and d2 equal to |s|² implies that the 

measured ratios are equal to |s|² times the true ratios.  

If r0 is assessed with a supervised method, the radiometric stability has no impact on the 

classification error when only one couple of images is used, as the value of the retrieved 

threshold is affected by the same bias as the data and the distance between classes is 

preserved. The multitemporal case (more than 2 dates), using one of the classification features 

presented in II.D.1, can be impacted by radiometric stability, as Δr can be modified. The 

change cannot be modelled in the general case, but its impact on the error is lower than that of 

a change from Δr to Δr/|s|². 

On the contrary, if r0 is assessed from other sources than the data (i.e. based on prior 

knowledge), the performance of the classification is the same as it would be with no offset 

(perfect radiometric stability) and a threshold rt equal to r0/|s|². Therefore, PE can be assessed 

from (9) with d=rt/ r0=1/|s|², ie ddB=-2|s|dB. In the case of range-dependant radiometric errors, 



i.e. when the value of s varies along the range, PE can be calculated locally with the 

corresponding value of d.  

 

The present analysis concerns the temporal change method with a single pair of dates, and 

with an estimation of r0 based on prior knowledge. When p(B)=0.5, the probability of error 

with d=T is the same as with d=1/T, so the effect of a radiometric instability equal to s can be 

estimated by considering the values of |ddB|. Figure 5 shows the additional error due to d for 

several values of Δr and L chosen so that they provide an error PE equal to 10% when d=0dB 

and p(B)=0.5 (Fig. 5a), and the additional error due to d for several values of L, with Δr=4dB 

and p(B)=0.5 (Fig. 5b).  

Figure 5. Additional error due to d for several values of Δr and L when PE=10%, d=0dB and 

p(B)=0.5 (left), and probability of error as a function of d for several values of L, with Δr=10 

and p(B)=0.5 (right). 

 

Among configurations leading to PE=10%, two groups can be considered. For small numbers 

of looks (L≤16), corresponding to high class separability (Δr≥4dB), it can be read from Fig. 

5a that the additional error is lower than 1.2% when |ddB|<0.5dB (5% when |ddB|<1dB). 

Reversely, for high numbers of looks (i.e. low class separability), the sensitivity of the 

additional error to d is very important, and PE can become unacceptably high. Therefore, it is 



recommended to consider such classification methods based on an intensity ratio only when 

the class separability is high (for instance Δr≥4dB), even though the theoretical error may be 

acceptable at higher numbers of looks for the other cases.  When Δr=4dB, Fig 5b indicates 

that the additional error remains below 2% when |ddB|<0.5dB (6% when |ddB|<1dB), and 

decreases when L increases for very high values (L>32). 

In both cases (low and high number of looks), if Δr≥4dB, the radiometric stability should not 

be a decisive parameter when its value is not too high. However, it could contribute to a non-

negligible additional error (around 6%) under some unfavourable conditions (|ddB|=1dB, 

L≈30). Nevertheless, when one tries to discriminate two close classes (Δr<4dB) through the 

use of a high number of looks, the degradation of performance can be noticeable. This can 

affect e.g. accurate classification with high resolution SARs for which the requirement on 

radiometric stability may have to be more stringent. 

 

B. Channel gain imbalance 

 

Channel gain imbalance is a measure of the accuracy of the intensity in one channel 

(polarization) relatively to another. It expresses radiometric errors between polarization 

channels. The effect of channel gain imbalance on the scattering matrix is derived from (17) 

when δ1=δ2=0: 
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Obviously, the temporal change method is not affected by channel gain imbalance as it 

involves only one polarization. 

It can be derived from (18) and (19) that a polarization ratio between the two co-polarized 

channels (HH and VV) is affected by an offset equal to |g|4 or 1/|g|4, and equal to |g|2 or 1/|g|2 



for the polarization ratio of one co-polarized channel and one cross-polarized channel (HV or 

VH). The typical value of |g|4 is below 0.5 dB for most systems. 

When using the single-date classification feature dpdpPR IIr ,1,2=  with an estimation of r0 

based on prior knowledge, PE can be assessed from (9) with d=±4|g|dB for the ratio of co-

polarizations, or d=±2|g|dB if one cross-polarization is involved. In this case, it can be deduced 

from Figure 5 that the channel gain imbalance should not be a decisive parameter provided its 

value remains within the usual range (|ddB|<0.5dB or |ddB|<0.25dB). However, similarly to the 

temporal change, the case of close classes discriminated through the use of a high number of 

looks is very sensitive to channel gain imbalance, and leads to more stringent requirements, 

especially when considering the ratio of two co-polarizations. 

 

If r0 is assessed with a supervised method, the channel gain imbalance has no impact on the 

classification error in the single-date case as the value of the retrieved threshold is affected by 

the same gain imbalance as the data and the distance between classes is preserved. In the 

multidate case with the feature described in II.D.2, Δr could be in theory slightly modified by 

channel gain imbalance, provided the latter is not stable in time, and depending on the 

temporal behaviour of the polarization ratio of the two classes; however, given the low 

probability of occurrence of such unfavourable conditions and the low impact they would 

have on the error, the overall effect is negligible.  

 

C. Cross-talk 

 

Cross-talk is representative of the channel isolation. It is a measure of the intensity in the 

polarization which is orthogonal to the one which is intended to be transmitted or received.  



We simplify the model presented in (17) by considering that cross-talk has the same value in 

both vertical and horizontal channels: δ1=δ2= δ. Values of |δ|dB below -30dB (i.e. 

|δ|=0.032=10-30/20) are now readily achieved with satellite SARs. When g=1, the measured 

scattering matrix is: 
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It is assumed that Shv=Svh. 

In theory, one needs to know the values of the three polarizations in order to assess the impact 

of cross-talk on classification methods based on TC and PR. It is therefore difficult to address 

this issue precisely in the general case. We can however investigate the magnitude of the 

perturbation caused by cross-talk in each channel, by considering a) that the HH and VV 

backscatter are usually of the same order of magnitude on natural targets and would not differ 

by more than 8dB, so |SHH|=a|SVV| with 1/2.5<a<2.5, and b) that HV is often one order of 

magnitude lower than the co-polarized channels (e.g. between 3 and 12dB lower), so 

|SHH|=b|SHV| and |SVV|=c|SHV| with 1.4<b<4 and 1.4<c<4. 

The percent perturbation in amplitude caused by cross-talk in co-polarized channels is:   
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When |δ| equals -30dB, ΔAco-pol is lower than 4.8%, which would lead to a maximum 

backscatter perturbation of 0.4dB. A co-polarized intensity ratio could be offset by a 

maximum value of 0.8dB in the worst case. The corresponding additional error can be read on 

Figure 7 with |d|=0.8dB, and is lower than 4% when Δr>4%. The effect of cross-talk is 

therefore relatively negligible in co-polarized channels.  

In cross-polarized channels, the percent perturbation in amplitude is:   
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When |δ| equals -30dB, ΔAcross-pol can reach 26%, which could lead to a backscatter 

perturbation as high as 2dB. The intensity ratio of one co-polarized channel and one cross-

polarized channel can therefore be around 2.4dB in unfavourable cases, and up to 4dB for a 

temporal ratio of cross-polarized intensities. The use of cross-polarizations in intensity ratios 

should therefore be subject to very severe requirements on cross-talk. For example, a cross-

talk value lower than -40dB would guarantee that the backscatter perturbation is lower than 

0.6dB for cross-polarizations. 

In conclusion, in classification methods based on an intensity ratio, cross-talk does not seem 

to be an issue as long as only co-polarizations are dealt with. However, how expected, it may 

be very critical when cross-polarizations are involved. 

 

IV. IMPACT OF OTHER SYSTEM PARAMETERS 

 

Apart from calibration parameters, other mission and system parameters (satellite repeat 

cycle, spatial resolution, ambiguity ratio) can affect the classification accuracy, but their effect 

cannot be assessed in the general case. They have to be considered together with application-

specific and scene-specific parameters, for example the temporal backscattering profile of the 

two classes when dealing with multitemporal ratios, the presence of targets with high 

backscatter that would maximize error due to ambiguity, or the typical size of patches. 

 

A. Impact of ambiguity 

 

Ambiguity is a form of ghosting that happens when bright targets are illuminated by the side 

lobes of the SAR antenna and contaminate the backscattering return attributed to 

neighbouring areas illuminated by the main lobe. Range ambiguity occurs from ambiguous 



zones whose slant range differs from that of the desired zone by non-zero multiples of the 

pulse repetition distance, and whose Doppler frequencies differ by multiples of the pulse 

repetition frequency (PRF) [25]. Azimuth ambiguity is caused by zones whose slant ranges 

are the same as the desired zone, but whose Doppler frequencies differ by multiples of the 

PRF [25]. The distributed target ambiguity ratio is the ratio of the unwanted ambiguous 

intensity to the wanted target intensity, taking into account both range and azimuth ambiguity. 

Typical values range from -17 dB to -40 dB.  

The impact of ambiguity may be expressed in the following terms. With an ambiguity ratio 

noted a, the measured complex amplitude Sa relates to the complex amplitude of the observed 

scene S0 and to the complex amplitude of the scene at the source of the ambiguity Ss by the 

following relationship: 

sa SaSS += 0  (21) 

The relationship equivalent to (21) for the backscatter intensity is retrieved using (18): 
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Ambiguities increase the measured backscatter, and the effect is more important when the 

backscatter of the ambiguous area is high compared to the backscatter of the observed area. 

Therefore, the change in backscatter is the most critical when the source of the ambiguity is 

the brightest elements in the scene, e.g. built up areas.  

To quantify the impact of ambiguity on the classification performance, one has to assess the 

changes in the class parameters rA and rB that are caused by the ambiguity. For that purpose, 

the original backscatter values I1 and I2 composing the intensity ratio r=I2/I1 need to be known 

for the two classes. For simplicity, we suppose here that rA=0dB, so I1,A=I2,A. This is quite 

realistic for the TC method (class A being usually assumed stable in time), and for the PR 

method in the case of a ratio of co-polarized intensities (co-polarizations being of the same 

order of magnitude in many natural targets). 



Under this assumption, the backscatter increase due to ambiguity is the same in I1,A and I2,A 

and rA remains equal to 0dB. The backscatter values of class B are I1,B and I2,B=(I1,B+Δr)dB. 

The effect of ambiguity on I1,B and I2,B is calculated from (22). We simulate here the worst 

case, when the ambiguous source is an urban area and when the ambiguous backscatter equals 

the right-hand side of the inequality in (22). The default backscattering value taken for urban 

areas is  at any date and polarization. The modified values of I1,B and I2,B lead to a 

modified intensity ratio rB and to a new value of the Δr parameter, noted Δra. 

dBI s 0=

Figure 6 shows the value of the class separability with ambiguity (Δra) as a function of the 

ambiguity ratio (a), for several values of I1,B and for an initial class separability Δr=8dB. As 

expected, the effect of ambiguities is higher when class B has low backscatter values. When 

I1,B=-16dB, Δra can decrease below 5dB in extreme cases (a=-17dB). 

 

Figure 6.  Effect of Ambiguity level a on Δra with several values of I1,B. 

 

The reduction in Δra leads to an increase of the classification error. Figures 7 shows the effect 

of ambiguity ratio on the additional classification error due to ambiguity for the case when 

I1,B=-10dB, Δr=8dB and p(B)=0.5, for several numbers of looks L. For the worst case of an 



ambiguity ratio equal to -17 dB, the additional error is higher than 4% for a low number of 

looks (L<16) and can rise up to 6%, but is negligible when L is above 30.  

 

Figure 7.  Effect of A on the additional error due to ambiguity 

 

The error also varies with Δr and I1,B. Figure 8 shows the additional error when a=-17dB, for 

four values of  I1,B from -20dB to -5dB, as a function of Δr and L. For sufficiently high values 

of both Δr and L, the additional error is negligible (below 2%). When the class separability is 

poor (Δr<4dB), the additional error is high and, somehow paradoxically, increases with the 

number of looks. When the number of looks is low (below 15), the classification performance 

is highly sensitive to ambiguity, even for high class separability. 

 

 

Figure 8.  Additional classification error due to ambiguity as a function of Δr and L, for four 

values of I1,B.  



 

In summary, ambiguities can have a critical impact on the performance of the classification 

methods when the ambiguity ratio is high (a=-17dB), if the class separability is low and/or if 

the number of looks is low. For a given SAR system, the methods should therefore be applied 

only when the classes are highly separable. Further simulations show that when the ambiguity 

is better than -30dB, the additional error is however limited to 6% in the very worst case, 

including poorly separable classes. 

 

B. Impact of the temporal sampling 

 

In both methods, it is generally implicitly supposed that the class separability, measured by 

Δr, is due mostly to the outstanding behaviour of the intensity ratio (TC or PR) of one class of 

interest, which reaches peculiar values in time, while the intensity ratio of the other class 

remains relatively constant around its typical value. We suppose here that the class of interest 

is class B, and that its intensity ratio is remarkable because of its high values (rB>rA). 

In some applications, the outstanding radiometric behaviour of class B is caused by a point 

event, and lasts forever after the event. In that case, the timing of the data acquisitions is not 

very important, provided one date is available after the event for the PR method, and one date 

before and one after for the TC method. Events such as deforestation or urbanization would 

be illustrative of this category. 

In other situations, the outstanding behaviour of class B is caused by a phenomenon, which 

lasts for a finite period during which the intensity ratio of class B expresses its particularity, 

and then stops. Applications such as crop monitoring or flood monitoring, are concerned by 

this approach. The Δr parameter then represents the theoretical optimal class separability 

obtained when data are acquired at the optimal dates. In the multitemporal case introduced in 



II.D., the value of the observed class separability will depend on the timing of the available 

acquisitions, and on the temporal backscattering profiles of the two classes during the period 

when the phenomenon occurs. The temporal sampling of the acquisitions is an important 

parameter in this case, as a high observation frequency will increase the probability to have 

optimal dates in the available dataset. 

 

In this sub-section, temporal backscattering profiles are modelled to simulate the typical 

behaviour of the two classes likely to be involved in classification schemes based on the 

temporal change or the polarization ratio. These modelled profiles are then used to assess the 

effect of the observation frequency on the classification performance.  

 

1) Theoretical data model 

 

We model here the backscattering profiles of the two classes during the period when the 

phenomenon occurs, which is assumed to last for c days. 

 

a) Temporal change method 

We illustrate the case corresponding for class B to a temporal backscattering increase, i.e. a 

positive intensity ratio. Therefore the multitemporal classification feature is 
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available time-series, as suggested in II.D.1. 

As suggested in IV.A, the backscatter intensity for class A is supposed to be constant during 

the c days of the considered phenomenon. Therefore rA,TC=0dB, and ΔrTC=rB,TC. The 

backscatter of class B is modelled by a function that increases from -10dB to -10+ΔrTCdB 



during c days. For a day D during this period, between day 0 and day c, the backscatter 

intensity of class B, at the polarization p, is given by: 
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(all the values are expressed in dB). 

 

b) Polarization ratio method 

The multitemporal classification feature for the polarization ratio method is 
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, max , where p1 and p2 are the two polarizations and (di)i=1:N represent the 

dates in the available time-series. We suppose that the polarization ratio of class A remains 

stable in time at a constant value rA,PR. Again, this value is taken equal to 0dB, leading to 

ΔrPR=rB,PR. The polarization ratio of class B is modelled by a function that increases from 0dB 

to ΔrPRdB during the first half of the period during which the phenomenon lasts (day 0 to c/2), 

and then decreases back to 0dB during the second half of the period (day c/2 to c).  

The polarization ratio of class B is given by: 
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When rA,PR is not equal to 0dB, ΔrPR should be replaced by ΔrPR+rA,PR in (24). 

 

Figure 9 illustrates the temporal behavior of the backscattering coefficient and of the 

polarization ratio of class B corresponding to the TC and PR methods respectively, when 

Δr=8dB and when the phenomenon causing the distinctive behaviour of class B lasts for 80 

and 120 days. 

 



 

Figure 9. Temporal evolution of the backscattering coefficient (left) and the polarization ratio 

(right) of class B when Δr=8dB. 

 

For the TC method, the backscatter of class B is illustrated in Fig. 9 with a value of -10dB for 

the dates outside of the event (D<0 and D>c). The drastic backscatter change (here, a 

decrease) at the end of the event is representative for example of harvest in crop monitoring 

applications. However, it has no consequence in this study as it is supposed that the SAR data 

are acquired only during the phenomenon (0≤D≤c). 

 

2) Model results 

 

The parameters ΔrTC and ΔrPR used in (23) and (24) represent the optimal class separability in 

the TC and PR methods, which is obtained when the data are acquired at the optimal dates, 

i.e. one date on the first day and one on the last day of the period for the TC method, and one 

date at mid-period for the PR method. In practice, the data can be acquired only at a limited 

number of dates when the area of interest is visible by the SAR instrument, which depends on 

the satellite orbit. The observed class separability is therefore lower than its theoretical value. 

It is considered here that the observation frequency is equal to the time-lapse between satellite 

repeat-pass orbits, which corresponds to the maximum acquisition frequency achievable under 



a fixed incidence angle. More frequent observations of a single area can be made by using 

multi-incidence datasets or different subsets of overlapping images from adjacent satellite 

tracks, but in both cases the local incidence angle will change from one image to the other, 

which can be a severe limitation as the backscattering profiles vary with the incidence. 

Moreover, when classifying a large area at a regional to continental scale, multi-incidence 

datasets cannot be made available because of acquisition conflicts between subsets of the area 

that could be illuminated simultaneously by the instrument at different incidence angles. 

 

The temporal sampling of the acquisitions has a direct impact on the observed class 

separability. Indeed, the more often the acquisitions take place, the more likely it is to catch a 

high value of the intensity ratio for class B, and therefore to maximize its classification 

feature rB and consequently the class separability Δr. 

Based on the temporal profiles of the backscattering and of the polarization ratio given in 

equations (23) and (24), we can compute the value of the Δr parameter for a dataset of several 

images acquired every f days during the c days corresponding to the full duration of the 

phenomenon. The value of Δr depends on the time of the first acquisition, between day 1 and 

day f after the beginning of the phenomenon. Therefore, the value of Δr is calculated for all f 

cases that can be encountered accordingly to the date of the first acquisition. To provide an 

estimation of Δr, we derive the Δr90% parameter corresponding to the value above which Δr is 

found in 90% of the possible cases. Δr90% is used as a proxy for Δr. 

 

Figure 10 gives the values of Δr90% for different values of c and f, for the TC (left) and PR 

(right) methods, when Δr=8dB. 

 



Figure 10. Δr90% parameter as a function of c for different values of f for the temporal change 

method (left) and for the polarization ratio method (right) with Δr=8dB. 

 

Particular values of f are highlighted in Figs 10, corresponding to ASAR onboard ENVISAT 

(f=35 days), Sentinel-1 with 1 satellite only (f=12 days) and Sentinel-1 in a constellation of 2 

satellites (f=6 days). 

 

Figure 11 gives the values of Δr90% for a wide range of values of c and f, for both methods, 

when Δr=8dB. 

Figure 11.  Δr90%  parameter as a function of c and f for the temporal change (left) and the 

polarization ratio (right) methods. 

 



The impact of the temporal sampling is small in the polarization ratio method. Δr90% remains 

above 7dB for most configurations, except when the duration of the phenomenon is close to 

the temporal sampling (c<60 days and f>30days). The classification accuracy corresponding 

to Δr=7dB and Δr=8dB is 96.0 % and 97.7% respectively when the number of looks is L=10. 

On the contrary, f is a critical parameter for the temporal change method, especially for short-

duration phenomenons. When the temporal sampling is not high enough compared to the 

duration of the phenomenon, the classes are not separable at all (Δr90%=0dB). For a 

phenomenon lasting for 100 days, Δr90% increases from 2.4dB to 6.6dB and 7.5dB when the 

temporal sampling increases from every 35 days to every 12 and 6 days, which corresponds to 

a classification of 72.9%, 95.1% and 97.0% respectively when L=10. 

 

C. Relationship between the mean size of significant elements, the spatial resolution, and the 

equivalent number of looks 

 

Space agencies usually deliver multilooked intensity products to users, with an initial number 

of looks equal to complementarily to Li. If Li is too low for the considered applications, users 

can perform a spatial multilooking to raise the number of looks from Li to Le, the equivalent 

number of looks. This consists in associating a unique pixel to any batch of  Li -look 

pixels, the intensity of this pixel being the mean intensity of the pixels in the batch. Of course, 

the image definition is degraded by a factor N. In SAR images, the number of independent 

samples in a population of X samples is found between X/4 and X/2 [26], therefore the 

resulting equivalent number of looks Le is such that:  

NN ×

24 22
iei LNLLN <<  (25) 

The spatial multilooking level should be related to the mean dimension F of the significant 

elements in the observed scene (for example, fields, forest stands, ice floes) and to the initial 



pixel spacing R at Li-look so that the multilooking step do not involve summing over too 

heterogeneous areas. For example, it can be decided that 2FNR <×  (the same inequality 

applies for most speckle filters based on NN ×  neighbouring windows) which leads to 

limitations in the final number of looks:  

22 8RLFL ie <  (26) 

or to requirements on the spatial resolution: 

ie LLFR 8< . (27) 

Hence for a given Li-look spatial resolution R and a given typical size F of the observed 

elements, one can derive the maximum equivalent number of looks to be used in Fig. 3 by 

applying (26). 

 

D. Summary of the results 

 

The following key parameters for this analysis have been identified: 

Satellite system parameters: 

- Satellite repeat cycle f (days) 

- Pixel spacing of a Li-look product  R(m) 

- Distributed target ambiguity ratio  a (dB) 

- Channel gain imbalance g (dB) – for PR method only 

- Radiometric stability s (dB) – for TC method only 

Processing parameters (multi-looking): 

- Initial number of looks of the product Li 

- Equivalent number of looks after spatial multi-looking Le 

Scene description parameters: 

- Mean size of observed elements F (m) 



- Duration of monitored phenomenon c (days) 

- Proportion of class B in land use p(B) (%) 

 

Figure 12 illustrates the relations between these parameters and the intermediary parameters 

introduced in Section II (namely L, Δr, p(B), and d), as it has been discussed in the two last 

sections.  

 

 

Figure 12. Effects of satellite system parameters (blue), image processing parameters (green) 

and scene parameters (in red) on the overall probability of error in mapping performance. 

The intermediary parameters are in grey boxes. 

 

Table 1 summarizes the effects of these parameters on the probability of error of the 

classifications. 

 

Table 1.  Impacts of satellite system parameters (top), image processing parameters  

(middle) and scene parameters (bottom) on the overall performance of the mapping 



algorithms based on intensity ratio methods (temporal change method and polarization 

ratio method). 

Input parameters Intermediary 
parameter Impact 

Satellite repeat cycle f (days)   
.                         

.                                            . 
Pixel spacing R of a L-look 

product (m) 
Distributed ambiguity ratio a 

(dB)                      
Channel gain imbalance g 

(dB)          .                 
Radiometric stability  s (dB)   

.                         

.                         
Cross-talk δ (dB) 

Δr 
             
.             
L            
. 
Δr           

.                   . 
d            
.             
d            
.             
.     

  Δr.          

TC: a low f (6 or 12 days) increases significantly the mapping 
accuracy compared to higher values (35 days). PR:  f is not 
critical. 
A lower R will allow a higher equivalent number of looks 
after multi-looking, thus a smaller error. 
Additional error is small (<6%) if a<30 dB, but can be critical 
for a=-17dB and a low Δr and/or L. 
PR: In the nominal case (|d|≤0.5 dB), the additional error is 
negligible (<1%). TC: No impact. 
TC: In the least favourable range of the nominal case 
(|d|≈1dB), the additional error can be non-negligible (≈6%). 
PR:  No impact. 
Very strong impact on cross-polarizations (needs to be lower 
than -40dB to limit the additional error to 6% in all cases). 

Initial number of looks Li        

. 

Equivalent number of looks 
Le after spatial multilooking 

L            
. 
L 

A higher Li will provide a higher L and thus reduce the 
probability of error. 
A higher Le will provide a higher L and thus reduce the 
probability of error. However Le is constrained by F and R. 

Mean element size F (m)      
. 

Duration of phenomenon  c 
(days)                     

Proportion of class B in land 
use p(B) (%) 

L            
. 
Δr           
.             

p(B) 

A higher F will allow a higher equivalent number of looks 
after multi-looking, thus a smaller error. 
TC: the error increases with decreasing phenomenon duration, 
reinforcing the need for a small f. PR: c is not critical. 
If d=0 dB (no channel gain imbalance, no radiometric 
stability), p(B) has no impact on the error. Otherwise, the 
additional error compared to the default value is negligible 
(<2%) for |d|≤0.5 dB. 

 
 
V. EXPERIMENTAL VALIDATION: COMPARISON WITH REAL DATA 

 

In order to assess the validity of the model presented in this paper, some of its outputs should 

be confronted with experimental results from real SAR data. Rice field classification is a 

convenient application for this purpose as it can illustrate both the temporal change and the 

polarization ratio methods. It was shown in past studies that rice fields are characterized by a 

high temporal backscatter increase during the rice season at HH and VV polarizations, and by 

a polarization ratio HH/VV that reaches high values during the season compared to other land 

use classes (see for example references listed in [16]). We suggest here to use the HH 



backscatter temporal change for the TC method and the HH/VV backscatter ratio for the PR 

method. In past experiments, it was found that in rice growing regions the other land cover 

types are usually tree plantations, perennial crops or urban/man-made areas, having low 

backscatter temporal change. For most of those non-rice classes, it is also true that HH≈VV. 

Therefore, for both TC and PR methods, class A is non-rice and class B is rice (rA<rB). 

However, some land use classes should sometimes be masked out, e.g. using Geographic 

Information System (GIS) data, like water surfaces with unpredictable changes in the TC 

method, or urban/man-made areas, which can also be characterised by a strong HH/VV 

polarization ratio, in the PR method. 

 

We have acquired three images from the ASAR instrument onboard ENVISAT, under the 

Alternating Polarization acquisition mode with polarizations HH and VV, over a rice-growing 

region in Vietnam. The three dates cover a whole rice growth period, and are separated by 

f=35 days, which corresponds to the satellite repeat-pass period. Short-cycle rice varieties are 

grown in this area with a growing period lasting for about c=80 days. 

The data are ordered in Single-Look Complex (SLC) format, providing the complex 

amplitudes at each pixel in slant-range geometry, and in Precision Image (PRI) format, 

providing multi-look intensities in ground-range geometry. 

An ancillary GIS dataset depicting rice and non-rice areas is available over a small region and 

is used to plot the histograms of the intensity ratio of each class for each method, and to 

retrieve the corresponding class parameters as described in [16]. The multitemporal approach 

is opted for. For the PR method with 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=
diVV

HH

iPRr 0

0

3,2,1
max

σ
σ , the class parameters are found to 

be rA,PR=0.87dB and rB,PR=7.44dB, therefore ΔrPR=6.57dB. For the TC method with 
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, the class parameters are rA,TC=1.43dB and rB,TC=2.82dB, therefore 

ΔrTC=1.39dB. Considering that these are the Δr90% parameters under the configuration f=35, 

c=80, this would correspond to the optimal class separabilities ΔrPR,opt=7.1dB and 

ΔrTC,opt=6.0dB in the model presented in IV.B.1, which is relatively consistent with the 

expected values according to past studies. 

The a priori probabilities of both classes are also derived from this GIS data, and lead to 

p(B)=0.75. 

 

The effects of SAR system parameters are simulated by either varying the classification 

threshold at different values (channel gain imbalance or radiometric stability) or by explicitly 

degrading the images (ambiguity). The corresponding probability of classification error is 

calculated based on the GIS data, in order to model the impact of these SAR parameters at 

different values. 

The effects of cross-talk cannot be addressed here as the HV channel is not available. 

 

A. Sensitivity to parameter d 

 

In this sub-section, we intend to test the sensitivity of the classification methods to parameter 

d=rt/r0, where rt is the retained classification threshold and BArrr =0 . As shown in III.A. 

and III.B., parameter d is representative of channel gain imbalance for the PR method and 

radiometric stability for the TC method. Because of potential inaccuracies in the class 

parameters estimations rA and rB, it seems that the optimal classification threshold ropt can be 

retrieved with more accuracy than r0, by testing a wide range of values for rt and identifying 

the value that minimizes the error. Therefore, it seems more relevant to consider the distance 



d’=rt/ropt rather than d. This parameter can be calculated from d theoretically: d’=d/dopt where 

dopt is given in (12), and depends on Δr, L and p(B). 

The methods are applied on the PRI images after calibration, georeferencing and spatial 

filtering to reduce the effect of speckle. The initial number of looks in the georeferenced data 

is calculated to be Li=1.8, which is consistent with the nominal numbers of looks given for 

that product (1 in range, 2 in azimuth). In this area, the fields are relatively large with 

F≈200m, and the pixel size is R=12.5m. This allows a 7x7 window to be used in the low-pass 

box filter. The resulting number of looks is Le=34.3, which is in agreement with (25) 

indicating that 22.0<Le<44.1. 

The experimental results with the real data and the theoretical outputs from the error model 

are compared in Fig. 13 for the PR method and in Fig. 14 for the TC method. In both figures, 

the overall classification accuracy is plotted in the left-hand side, and the additional error due 

to d in the right-hand side, both as a function of d/dopt. 

 

 

Figure 13. Effect of parameter d on the overall classification accuracy (left) and on the 

additional error (right) for the polarization ratio method 

 



 

Figure 14. Effect of parameter d on the overall classification accuracy (left) and on the 

additional error (right) for the temporal change method 

 

For the PR method, the experimental accuracy is lower than the theoretical accuracy 

calculated by the model (around 12%). This can be partly explained by the fact that the GIS 

database used to assess the experimental accuracy is partially inaccurate. In fact, a visual 

inspection reveals that the differences between the rice map obtained from the SAR images 

and from the GIS are spatially localised rather than randomly distributed, indicating that the 

GIS may not be up to date. The additional errors are however in very good agreement, with an 

absolute difference lower than 0.6%. For the TC method, the classification accuracies 

calculated in the two approaches compare rather badly. The additional errors have similar 

trends, but with different amplitudes, the modelled values being around three times as big as 

the experimental values. These discrepancies can however be explained by the high value of 

the satellite repeat cycle that makes the classification accuracy highly dependent on the timing 

of the acquisitions. The calculated value of ΔrTC is therefore not necessarily representative of 

the Δr90% parameter, and the assessment of ΔrTC,opt may be incorrect. 

 

Based on the results obtained in the PR method, the model can be effectively used to assess 

the effects of channel gain imbalance or radiometric stability. 



 

B. Sensitivity to ambiguity ratio 

 

The ambiguity is simulated by degrading the SLC images according to the relationship given 

in (21), for each polarization and each date, and for five ambiguity ratio values: -5dB, -10dB, 

-17dB, -20dB and -25dB. The -5dB and -10dB values are not realistic but are nevertheless 

simulated to test the sensitivity of the model. Contrarily to the analysis in IV.A. where the 

source of the ambiguity is set at a constant backscatter value of 0dB to simulate the worst 

possible case, a real scene is selected here from another subset of the image. This is therefore 

expected to produce lower additional errors than the theoretical study. 

After simulating the ambiguity in the complex amplitude images in slant-range geometry, the 

backscattering coefficient is computed, a 3x15 low-pass box-filter is applied to reduce the 

speckle while taking into account the different pixel spacing in range and azimuth, and the 

images are georeferenced to the GIS geometry using tie-points. The number of looks of the 

georeferenced images is calculated to be L=19. 

Figure 15 represents the variations of the Δr parameter and of the additional error due to 

ambiguity as a function of the ambiguity ratio, calculated for the five experimental values and 

simulated by the error model for the PR method. The error model is run with p(B)=0.75, 

L=19, Δr=6.57dB, and I1,B=-6dB, which is calculated from the HH and VV images.  



Figure 15. Effect of ambiguity ratio on the class separability (left) and additional error due to 

ambiguity (right) for the polarization ratio method 

As predicted by the model, the class separability decreases in the experimental dataset when 

the ambiguity ratio increases, but its decrease is expectedly less important in the experimental 

data than in the model. Consequently, the experimental additional error increases with 

ambiguity similarly to the theoretical error, but to a lower extent. The observed experimental 

trends related to the error are well described by the model. 

 

VI. CONCLUSION 

A new expression for the probability of error in classification methods based on a SAR 

intensity ratio has been provided, introducing a supplementary parameter corresponding to a 

bias between measured and true ratios.  

This error model has been used to assess the impact of SAR system parameters on the 

classification performance for the two-class problem. The effect of channel gain imbalance 

and radiometric stability has been directly estimated in the general case. When the two classes 

are fairly separable (i.e. the difference between their mean ratios is higher than 4dB), it was 

found that typical values of channel gain imbalance lead to a negligible additional error, while 

the impact of radiometric instability can be significant in its upper range for some values of 

the equivalent number of looks in classifications based on a temporal change. The case of 



close classes discriminated through the use of a high equivalent number of looks is very 

sensitive to channel gain imbalance or to radiometric stability for methods based respectively 

on a polarization ratio or a temporal change, and require low values of these calibration 

parameters. The effect of cross-talk on the backscattering coefficient was modelled and found 

to be critical when cross-polarizations are involved, unless stringent requirements are met. 

Degradation due to ambiguity was found to be negligible when the ambiguity ratio is lower 

than -30dB. In other cases, some configurations can lead to critical additional errors and 

should be avoided (low class separability, low number of looks). Typical temporal 

backscattering profiles have been modelled to investigate the impact of observation frequency 

in both methods. Simulations have demonstrated the importance of the temporal sampling, 

corresponding to the time lapse between two consecutive satellite’s repeat-pass orbits, for 

methods based on a temporal change. This reinforces the expectations set on the coming high-

repetition SAR mission Sentinel-1. 

The model has been validated by comparing its outputs to experimental results obtained from 

real SAR data used in rice field mapping methods. The sensitivity of the error model to 

channel gain imbalance, radiometric stability and ambiguity is tested, and shows a relatively 

good agreement between experimental and theoretical trends. 

In summary the error model proposed in this paper is expected to provide a useful tool for 

SAR mission design, also suitable for the development of classification methods based on 

existing instruments.  

 

APPENDIX I 

The retained classification threshold is rt = d.r0. 
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APPENDIX II 

Let us assume that n classes are considered, with class i characterized by a mean ratio ri, and 

r1<r2<…<rn. The distance between two consecutive mean ratios is ∆ri= ri+1-ri, with i varying 

from i to n-1, and the corresponding retained classification thresholds are 1+= iiti rrr . 

Considering that all classes are equiprobable (p(i)=1/n) The overall probability of error for 

n>2 is: 
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Equation (5) gives the probability of error of the 2-class problem for classes i and i+1 with 

equal a priori probabilities: 
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