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Influence of Intrinsic Parameters over Extrinsic Calibration between a
Multi-Layer Lidar and a Camera

Sergio A. Rodriguez F., Vincent Frémont and Philippe Bonnifait

Abstract— In this paper, we present an extensive study
about the influence and the behavior of the intrinsic camera
calibration imprecisions and their propagation into the extrinsic
calibration between a camera and a multi-layer lidar. Usually,
the extrinsic calibration process involves the pose estimation
of a reference object in the Cartesian frame of each sensor.
From this fact, it is necessary to know the camera intrinsic
parameters for estimating the position of an object on an image.
Therefore, the extrinsic calibration process is directly dependent
of the intrinsic camera parameters. By using different projective
camera models, we estimate the influence with respect to the
computation of the extrinsic parameters.

Keywords: Multi-sensor system, Extrinsic Calibration,
Circle based calibration target

I. INTRODUCTION

In the framework of multi-sensor fusion and object detec-
tion, an important aspect is the consistency and the quality of
the merged information. Occasionally, in the case of sensors
like camera and lidar, the information exchange is mainly
geometric. In this case, the consistency of this information
exchange depends on the extrinsic parameters (i.e. rigid
transformation) which relate them. The extrinsic parameters
are generally estimated using the measures reported by the
sensors. From this fact, the calibration procedure consists in
estimating the rigid transformation between a common set
of measurements which minimizes the transformation error.
Accordingly, the precision in the set of measurements to
be used in this process is critical, especially if there is a
large relative distance between the sensors like in vehicular
applications (see Figure 1).
Previous works on extrinsic laser-camera calibration solve
with accuracy the rigid transformation between a CCD
camera and a one-row laser range-finder [1] [2]. Another
calibration approach for outdoor scan systems without us-
ing a calibration target is presented in [3]. However, the
assumptions on the projective camera model and the errors
in the estimation of the intrinsic parameters can lead to a
3D biased perception. This work shows how the intrinsic
parameters of the camera influence on the estimate of the
rigid transformation between a camera and a multi-layer
lidar.
This paper is outlined as follows. Section II presents the
multi-sensor system, the extrinsic calibration problem, the
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mathematical models, the theoretical basis and definitions.
In section III, we present the calibration method summarized
in a circle-based target pose estimation step and rigid trans-
formation computation step. Then, the calibration algorithm
summary is clarified in section IV. Finally, results obtained
using two different camera projective models with simulated
data and real acquisitions are presented in section V.

II. MULTI-SENSOR SYSTEM

The multi-sensor system is rigidly fixed to the vehicle and
composed of a multi-layer range finder and a CCD camera.
The multi-layer lidar is located in the bumper section and the
camera is placed behind the windshield (see Figure 1). This
positioning only presents some occlusions to the camera for
short distances with respect to the multi-layer range finder.

A. Problem Statement

The problem consists in calculating the rigid transfor-
mation (6 dof corresponding to a rotation matrix and a
translation vector) between the camera and the 4-layer lidar
frames. In order to obtain an accurate estimation of the
extrinsic parameters, we use a method which takes advantage
of photographic and laser range data by using a circle-based
calibration target. It is worth to mention that the laser beam
of the lidar sensor is invisible (see Figure 1). The circle-
based calibration target is a rigid plane with a printed black
ring. The inner circle of the black ring describes a plane
perforation. The following are the advantages of using the
proposed calibration target. Firstly, it allows to obtain an
accurately estimation of the pose in the lidar frame. It is
possible by computing a circle fitting in the 3D space of the
lidar impacts lying in the contour of the perforation border in
the calibration target. Secondly, the geometric and algebraic
constraints of the two concentric circles generated by the
black ring, and their image projection allow us to obtain a
simultaneous estimation of the camera pose and the intrinsic
parameters (i.e. the focal lengths and the principal point).

B. Sensor Models and Frames

Our multi-layer lidar model is composed of 4 crossed-
scan-planes with a layer relative altitude aperture of 0.8◦ and
a constant azimuthal angle resolution. Figure 2 illustrates, in
a general way, the emission direction of the laser layers.
Let be i the layer ID and j the scan point element. Thus, a
3D laser impact is defined in the lidar frame, l, as:

lPij =
[
lPx,

lPy,
lPz

]T
(1)



Fig. 1. Overview of the proposed strategy (the lidar is often significantly
located far away from the camera)

At this point, let us consider the complete multi-sensor model
where the data provided by the lidar and the camera are
related by using a common detected object (i.e. circle-based
calibration target). We proceed to formalize the lidar to
camera transformation as a composition of the partial rigid
transformations illustrated in the Figure 2. Therefore, the
rigid transformation of a 3D point in the lidar frame, lPij ,
into the camera frame is given by the following equation:

cPij = cRt · (tRl · lPij + tTl) + cTt (2)

simplifying,
cPij = Φ · lPij + ∆ (3)

with Φ = cRt · tRl and ∆ = cRt · tTl+ cTt respectively the
orientation and the position of the lidar sensor with respect
to the camera. The rigid transformation composed of [Φ,∆]
are the unknown values of the calibration problem.
Additionally, the impact location of the lidar measurements
can be projected into the image even if the lidar beam is
invisible. For this purpose, the equation (3) and a classical
pinhole model are considered. Hence, the image projection
of a 3D point in the camera frame, cPij , is given by

[px, py, 1]T ∼ K · cPij (4)

with

K =

 fx 0 u0

0 fy v0
0 0 1

 (5)

where K is the intrinsic calibration matrix with fx and fy
the focal distance in x and y direction of the camera in pixels
units and [u0, v0]T the image coordinates of the principal
point, assuming no distortion and zero skew. The operator ∼
denotes “up to a scale factor”. Finally, the image projection
of lPij is computed by replacing the equation (3) in (4):

[px, py, 1]T ∼ K · (Φ · lPij + ∆) (6)

III. EXTRINSIC CALIBRATION

The method employed for obtaining the extrinsic param-
eters consists in estimating different poses of the calibration

Fig. 2. Rigid transformations

object detected simultaneously by the camera and the multi-
layer lidar. A minimum of 6 poses [4] have to be estimated in
the lidar and the camera frame in order to get all degrees of
freedom. Each pose of the calibration target is parameterized
by the 3D coordinates of the circle center and the normal
vector of its plane. Then, a first estimation of the rigid
transformation is obtained by solving the usual absolute
orientation problem [4]. This solution consists in determining
the relationship between the two coordinate frames using sets
of corresponded features (i.e. circle centers of each pose).
Finally, a non-linear 3D error minimization is done in order
to refine the estimated extrinsic parameters.

A. Target pose estimation in the lidar frame

First, a robust detection of the circle in the 3D space is
obtained by applying the robust outlier rejection technique
proposed in [1] on several 4-layers lidar scans. Then, the
points lying in the perforation border of the calibration target
are extracted. Taking into account that the pose of target
frame origin with respect to the lidar frame is defined by the
inversed transformation illustrated in Figure 2 where tRT

l

corresponds to the orientation of the calibration frame and
its origin in the lidar frame, lC = −(tRT

l · tTl). Based of
this fact, we perform a nonlinear 3D circle fitting problem
constrained to a known radius, r, and parameterized as fol-
lows: α̂, β̂ are orientation angles of the 3D circle axis vector,
lN(α̂, β̂), with respect to y-axis and z-axis respectively and
lĈ = [lĈx, lĈy, lĈz]T are the Cartesian coordinates of the
estimated 3D circle center coincident with the target frame
origin (see Figure 2). By using the geometric criteria as stated
in [5]:

iΠ1=lN(α̂, β̂)·
−−−→
lĈlPi (7)

iΠ2=‖lN(α̂, β̂)×
−−−→
lĈlPi‖ − r (8)

with
−−−→
lĈlPi = lPi − lĈ.

Where:
• iΠ1 corresponds to the Euclidean distance between a

target-contour laser range finder impact,lPi, and the



3D plane defined by lN(α̂, β̂) and the estimated circle
center, lĈ.

• iΠ2 represents the Euclidean distance between a
target-contour laser range finder point,lPi, and the 3D
circle axis defined by lN(α̂, β̂) and the estimated circle
center, lĈ.

Accordingly, we minimize the geometric criteria (7) and (8)
using the Levenberg-Marquardt algorithm (LM-algorithm)
[6]. After convergence of the non linear minimization al-
gorithm and by applying this technique to various poses (6
poses are needed for a solution) of the calibration target,
we obtain not only a first set of 3D laser features (i.e. circle
centers, lĈ, and normal plane vectors, lN) but also a 3D circle
reconstruction in the laser range finder frame for every pose.
Now, in order to acquire the corresponded features in the
camera frame, we have to analyze the image.

B. Target pose estimation in the camera frame

Like several camera calibration methods using projected
concentric circles [7] [8] [9], we estimate the position of
the calibration target in the camera frame. For this purpose,
it is necessary to estimate the intrinsic camera parameters.
As stated in [7], all intrinsic calibration parameters can be
obtained first by computing the image of the absolute conic
(IAC) with precision [10] from the imaged circular points
[11] [10] from three images of two concentric circles under
different orientations. By using the method exposed in [7]
the intrinsic camera parameters denoted in (5) are obtained.
Let us define A1 and A2 as the pixel centered point set
of the principal (i.e. external) and secondary (i.e. internal)
circle projection which can be obtained by the segmentation
methods widely explained in [9] [12]. Achieving a non linear
ellipse fitting algorithm stated in [13], we obtain two conic
matrices, Q1 and Q2, which are defined as follows:

Q =

a(fx/fy) b/2 d/2fy
b/2 c(fx/fy) e/2fx

d/2fy e/2fx f/(fxfy)

 (9)

Where a,b, c,d, e, f are the conic parameters and fx, fy
are the focal lengths in pixels. Q1 and Q2 are normalized
to det Q = −1. Extending the concept presented in [9] to
our camera model, the scale uncertainty is removed and the
normal vector to the target plane is given by:

cN0 = Q1

xc/fxyc/fy
1

 (10)

Where xc and yc are the image coordinates of the projected
circle center. Finally, the 3D circle center in the camera
frame, cĈ, is obtained as stated in [9]:

cĈ0 =

√
λ3 R [xc/fx yc/fy 1]T
cN0 · [xc/fx yc/fy 1]T

(11)

Where λ is the smaller positive eigenvalue of Q1 and R
is the radius of the principal circle in the target object.
cN0 and cĈ0 represents an algebraic closed-form solution

of the camera pose estimation which could be very sensible
to noise conditions but usually a very good first estimation.
Therefore, an accurate camera pose estimation is obtained by
minimizing the conic parameter error obtained between the
3D circle image projection and the image segmented conic,

f (cN,||cĈ||) = min(ε) (12)

with ε as the conic parameter error function

ε = ||e2x + e2y + e2M + e2m + e2θ|| (13)

where ex, ey , eM , em and eθ are the errors of the ellipse
center, the major axis, the minor axis and orientation angle
respectively. It is worth to mention that the number of the
nonlinear minimization parameters is reduced by taking into

account the direction of the translation vector,
−→
cĈ, as an

accurate estimation.
−→
cĈ is given by the image back-projection

of the projected circle center as follows,

−→
cĈ = K−1

xcyc
1

 (14)

The Figure 3 illustrates the algebraic closed-form solution of
the camera pose estimation, the nonlinear proposed solution
after convergence and the direction of the translation vector.

Fig. 3. Example of the camera pose estimation under an image noise of
3 pixels

C. Estimation of the rigid transformation between the lidar
and the camera

The method presented in the above subsection allows us
estimating the 3D center points of the circle-based calibration
target for various poses. These pose estimations are com-
posed with 3D corresponding center point set in the camera
and the laser range finder frame. Therefore, in order to
estimate an initial guess solution we formulate the extrinsic
calibration as a classical absolute orientation problem.

1) Initial guess from a linear solution: A well-known
closed-form solution for this problem is the method devel-
oped by Arun et al. [14]. This method consists in obtaining
the optimal rotation from the singular value decomposition



(SVD) of the correlation matrix of the centered point sets
represented by Σ:

Σ=[lĈi − lC̄][cĈi − cC̄]T (15)
Σ=U S VT (16)

Where lĈi are the coordinates of the 3D-circle center point
set estimated from the ith pose by the laser range finder
measures, lC̄ is the centroid of the 3D-circle center point
set in the laser range finder frame,cĈi are the coordinates of
the 3D-circle center point set estimated from the ith pose by
the camera measures and cC̄ is the centroid of the 3D-circle
center point set in the camera frame. Thus, the 3x3 optimal
rotation matrix is obtained as follows:

Φ0 = VUT (17)

The translation, ∆0, is obtained as the vector which aligns
the centroid of the 3D-circle center point set in the camera
frame, cC̄, and the rotated centroid Φ0 · lC̄:

∆0 = cC̄−Φ0 · lC̄ (18)

2) Refining parameters: The rigid transformation ob-
tained in the above section, [Φ0,∆0], is a linear minimiza-
tion of the Euclidean distance error between the 3D circle
center point sets. This solution is usually a good starting
guess of the extrinsic calibration. Therefore, in the aim of
refining these estimated parameters, we first generate the 3D
circles of the n poses estimated by the camera. It consists
in computing m points of each estimated circle pose by
using the 3D circle center and an orthonormal base lying
in circle’s plane. This orthonormal base is obtained from
the normal vector to the circle’s plane applying the Gram-
Schmidt procedure [15]. Let be cFi,k, the kth generated 3D
point using the camera estimation of the ith pose. Secondly,
the 3D circles of all the poses estimated by the lidar are
generated in the same way as presented for the camera
estimations obtaining lFi,k. Then, we apply systematically
the first guess for the rigid transformation, [Φ0,∆0], as in
the equation (3). Thirdly, under the assumption that the error
orientation of the first guess rigid transformation is lower
than π/2, we match the 3D points of the camera and lidar
transformed estimations for every pose by using the nearest
neighbor criterion as illustrated in Figure 4. At this point, it
is worth to mention that we have a 3D point set of camera
and lidar observations associated. Finally, the refining of the
rigid transformation parameters, [α, β, ρ, tx, ty, tz]T , is
obtained by minimizing the following non-linear objective
function:

ε =
n∑
i=1

m∑
k=1

W · [D2
ik] (19)

with

Dik = ||cFi,k − [Φ(α,β,ρ) · lFi,k + ∆(tx,ty,tz)]|| (20)

Where Dik represents the Euclidean distance residual of the
points after applying the rigid transformation and W is a
weighting matrix. The results are obtained by using a robust

M-estimator algorithm for calculating the robust weights as
stated in [16] and the LM-algorithm. After convergence, the
solution of the calibration problem is represented by [Φ,∆].

Fig. 4. Matching of the camera and lidar estimations

IV. CALIBRATION ALGORITHM

The following is a summary of the calibration method
explained in section III.

Algorithm 1 Circle-based Extrinsic Calibration Technique
1: for i = 1 to at least 6 do
2: Estimate the ith lidar calibration pose, [lN lĈ]i, as

stated in section III-A
3: Estimate the ith camera calibration pose, [cN cĈ]i, as

stated in section III-B
4: end for
5: Compute a first guess, [Φ0,∆0], for the lidar-camera

rigid transformation using the linear solution (III-C.1)
6: Match the 3D circle poses estimations (III-C.2)
7: repeat
8: Non-linear minimization using LM-algorithm
9: Robust noise variance estimation σ2 based in non-

linear minimization residuals
10: Weighting matrix W update from M-estimator
11: until convergence of [Φ,∆]

V. EXPERIMENTAL RESULTS

Evaluation tests have been carried out in order to estimate
the behavior and robustness of the presented method in
simulated and real conditions. They were implemented using
Matlab 7.4.

A. Synthetic data

Considering similar conditions to our multi-sensor
system, the simulation model correspond to the sensor
relative position on board the vehicle. The extrinsic
parameters used were the translation vector in meters
∆ = [−0.2, 0.8, 1.8]T and the orientation matrix Φα,β,ρ,
computed from the rotation angles α = 11◦, β = −1◦ and
ρ = 0.5◦. The multi-layer lidar impacts were generated as
the intersection of the lidar beam emission vectors and the
simulated calibration target plane. A 3D space constraint



was used to guarantee that all lidar layers impact the
calibration object. Then, a Gaussian white noise was added
in the direction of the lidar beam emission vector. By using
the model presented in (4), a synthetic image was computed
as a discrete image projection of the circle-based calibration
target. The intrinsic parameters used in the camera model
were a focal length in x direction fx, a focal length in y
direction fy and principal point (u0, v0). Next, a Gaussian
white noise was added to the image projection coordinates
of the circle-based calibration target and to the intrinsic
parameters of camera model.

1) Test No. 1: A first Monte Carlo-like simulation test
was made in order to evaluate the behavior of the extrinsic
calibration method with regard to the intrinsic parameters of
the camera. Thus, 7 random poses were oriented randomly in
the common field of view (FOV) of the multi-sensor system
by 50 trials. A Gaussian-white noise in a range between
1 to 3 pixels of standard deviation, σb, was added to the
image coordinates. The camera model used for this test was
constrained to an unitary aspect ratio. For each trial, the
extrinsic parameters were estimated. The results obtained by
the robust non-linear minimization of the 3D poses (see III-
C) are presented in the Figure 5(a) and 5(b). We have also
executed an iterative closest point algorithm (ICP) [18] as a
reference of a classical registration of 3D point sets.

(a)

(b)

Fig. 5. Absolute errors using camera model with unitary aspect: (a)
Translational (mm.); (b) Orientation (degrees)

2) Test No. 2: A second test was performed taking into
account the same conditions used for test No. 1 but now
the camera model was unconstrained to a non-unitary aspect
ratio. This test let us estimate the influence of the camera
model over the absolute error of the extrinsic calibration
parameters. Figure 6(a) and 6(b) illustrate an important
improvement by using an unconstrained camera model.
The results obtained in the test No.1 and No.2 reveal that

the intrinsic parameters have an important influence over the

(a)

(b)

Fig. 6. Absolute errors using unconstrained camera model: (a) Translational
(mm.); (b) Orientation (degrees)

extrinsic parameters. Let recall that the extrinsic calibration
method is based only in the minimization of the euclidean
error between the lidar and the camera perception.

B. Real data

Experiments using real data were made thanks to the
experimental platform of the Heudiasyc laboratory (see
Figure 7(a)). This vehicle is equipped with an IBEO Alasca
XT and a camera Sony DFW-VL500. The resolution of
the camera was set to 640 × 480 pixels. We have used a
calibration target with 2 concentric circles of radii 33 cm
and 23 cm. The camera focal distances fx and fy have
been estimated by using the circle-based calibration target.
However, the principal point was estimated by using the
classical Zhang’s method [19] due aux some instabilities
observed under these experimental conditions (i.e. the
important distance of the calibration target with respect
to the camera). A number of 20 scans were taken into
account for each pose in the calibration process. Only 7
poses were used to estimate the initial guess solution for
the rigid transformation. By using the rigid transformation,

Fig. 7. Experimental platform: Lidar (left), Camera (right)

a projection of the multi-layer measurements into the scene
image was made and illustrated in Figure 8 and Figure 9.
The image projection of the lidar data reveals that the error
induced by the assumption of unitary aspect ratio in the
projective camera model are almost imperceptible but the
table I shows that the assumption provides an estimate of the



Results of the Test using Real Data
Translation Two-Focal Camera One-Focal Camera Measured
tx -0.1651 m -0.3331 m -0.2 m
ty 0.9208 m 0.9246 m 0.88 m
tz 1.8466 m 1.8027 m 1.82 m
Rotation angles
Rx 1.5370 rad 1.5428 rad N/A
Ry -0.0455 rad -0.0505 rad N/A
Rz 1.6075 rad 1.6296 rad N/A

TABLE I
RESULTS ACHIEVED WITH REAL DATA

relative position without which is biased. It is observable by
the increase in the absolute error in the previous simulations.

Fig. 8. Projection image of lidar data using the extrinsic calibration method
and an unconstrained aspect ratio camera model

Fig. 9. Projection image of lidar data using the extrinsic calibration method
and an unitary aspect ratio camera model

VI. CONCLUSION

By using two different projective camera models, we
have shown the influence of the intrinsic parameters over
the extrinsic calibration between a multi-layer lidar and
a camera. The simulation results show that the intrinsic
parameters errors (i.e. focal distance and principal point)
have important impact on the extrinsic calibration process:
up to 80 mm translation error using a pinhole camera model
with unitary aspect ratio, no distortion and zero skew.
For instance, this means that a perception system that detects
obstacles using a lidar and then uses a camera for recognition
can cope with these errors. Contrary, a 3D data fusion system
will be very sensitive to camera intrinsic errors.
Nevertheless, the real experiments have shown that the in-
trinsic parameters errors are not perceptible in the projection
of the lidar data in the image. At this point, it is important

to mention that in real conditions, there are some critical
points like the lidar imprecisions due to surface’s reflectivity
and the segmentation errors of the ellipse in the image that
have also influence in the performance of the calibration
algorithm. These critical points can be one of the reasons
why the effects due to the intrinsic parameters of the camera
are not quite visible in the experimental results of extrinsic
calibration method.
The improvement of the accuracy and the stability of the
intrinsic calibration methods based in concentric circles
constitutes a perspective of this research, especially for a
correct estimation of the principal point.
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