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ABSTRACT 

In this paper I present several algorithmic techniques for improving the decision process of multiple types of agents 

behaving in environments where their interests are in conflict. The interactions between the agents are modelled by using 

several types of two-player games, where the agents have identical roles and compete for the same resources, or where 

they have different roles, like in query-response games. The described situations have applications in modelling behavior 

in many types of environments, like distributed systems, learning environments, resource negotiation environments, and 

many others. The mentioned models are applicable in a wide range of domains, like computer science or the industrial 

(e.g. metallurgical), economic or financial sector. 
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1. INTRODUCTION 

In this paper I present several techniques for 

optimizing the decision process of agents which have 

contrasting interests. These agents perform their actions 

in multiple types of environments, and the interactions 

between them are based on various rules. These 

interactions are modelled by considering several types of 

two-player games, in which the agents have identical 

roles (i.e. they compete for achieving the victory in the 

game), or in which they have different roles (e.g. the first 

agent may ask several restricted types of questions to the 

second agent, and the second agent tries to maximize the 

number of questions asked by the first agent before 

finding the answer it seeks). 

In Section 2 we introduce several game theoretic 

concepts which are useful in the following sections. In 

Section 3 we discuss several two-player games in which 

the players have identical roles. In Section 4 we discuss 

several games in which the players have different roles. 

In Section 5 we consider two agent pursuit games. In 

Section 6 we discuss three equitable resource allocation 

problems. In Section 7 we present related work and in 

Section 8 we conclude and discuss future work. 

2. GAME THEORY CONCEPTS 

We define in this section the main concepts and 

algorithmic techniques which will be used in the 

following sections. We consider that a game is played 

between two players (or two teams of players), which 

move in turns (one at a time, though not necessarily 

alternately). Each game has a state, which consists of all 

the relevant game parameters (e.g. positions of the two 

players or teams). We will consider an extra parameter p 

which will be considered explicitly, representing the 

player which will perform the next move. Thus, the state 

of a game consists of a pair (S,p), where S is a tuple 

containing all the other parameters. If the game is 

impartial, then both players can perform the same set of 

moves, given a particular state of the game. The 

objective of every game is, of course, to achieve victory. 

We will consider only the following types of winning a 

game: (1) the winner is the player which performs the 

last move (the losing player cannot perform any valid 

move) ; (2) at the end of the game (when the game 

reaches a final state), a score is computed for each of the 

2 players and the winner is the player with the largest 

score ; (3) a set of final states is given, for which the 

outcome (which player wins, or if the game ends as a 

draw) are known. Situation 2 also allows the game to 

end in a draw (equal score). Generally, the states of a 

game can be described by a directed acyclic graph GS, in 

which every vertex corresponds to a state (S,p). For 

every state (S,p), we know the states (S’,p’) which can be 

reached by performing one move; GS contains a directed 

edge from (S,p) to every such state (S’,p’) For some of 

these states we know the outcome directly (victory, 

draw, or defeat, for the player p whose turn is to move 

next). For the other states we will try to compute the 

outcomes in the case when both players play optimally. 

For every state (S,p) we will compute a value 

bestRes(S,p)=the best result which can be achieved by 

the current player p if the game is in state (S,p); the 

results can be victory, draw, or defeat. For those states 

(S,p) from which no move can be performed, the values 

bestRes(S,p) must be given (known in advance). Then, 

we will compute a topological sort of GS (since GS is 

acyclic) and we will compute the values for the states 

(S,p) in reverse order of this sort. For every state (S,p) 



 

 

we consider all the states (S’,p’) which can be reached 

from (S,p) by performing one move. If we have 

bestRes(S’,p’)=defeat (and p’≠p) or bestRes(S’,p’)= 

victory (and p’=p) for at least one of these states, then 

bestRes(S,p)=victory. Otherwise, if at least one of the 

considered states (S’,p’) has bestRes(S’,p’)=draw, then 

bestRes(S,p)=draw; otherwise, bestRes(S,p)=defeat. 

If a score is computed for each player, then the 

algorithm changes follows. Every move M modifies the 

score of each player q (in the current state (S,p)) by a 

value score(S,p,M,q). In general, in these games, every 

player attempts to maximize the difference between their 

score and the opponent’s score (which is not necessarily 

equivalent to maximizing one’s own score). Thus, for 

every state (S,p) we will compute maxDif(S,p)=the 

maximum difference between the score of the current 

player p and the opponent’s score, if the game is in state 

(S,p). For those states (S,p) of GS whose out-degree is 0, 

the score which is obtained by the player p (and, 

possibly, even the one obtained by the opposite player) is 

given (it may be 0, or some other value): thus, 

maxDif(S,p) is known for these states. For the other 

states we make use of the topological sort again. We 

traverse the states (S,p) in reverse order of the 

topological sort, like before. For a state (S,p) we consider 

all the moves M(S,p,1), …, M(S,p,r(S,p)), leading to the 

states (S’(1), p’(1)), …, (S’(r(S,p)), p’(r(S,p))). We have 

maxDif(S,p) = max{score(S, p, M(S, p, j), p)-score(S, p, 

M(S, p, j), opp(p))+(if p’(j)=p then maxDif(S’(j),p’(j)) 

else –maxDif(S’(j),p’(j))) |1≤j≤r(S,p)}. We denote by 

opp(p) the opponent of player p (if the players are 

numbered with 1 and 2, we can have opp(p)=3-p). 

When the game is impartial and the players move 

alternately, we can drop the index p from the state pairs 

(S,p); this is because after every move, it will always be 

the opponent’s turn (i.e. p’=opp(p), or p’(*)=opp(p)), 

and because the game is impartial, both players can 

perform the same moves (thus, we have bestRes(S,p)= 

bestRes(S,opp(p))=bestRes(S) and maxDif(S,p)= 

maxDif(S,opp(p))=maxDif(S)). In the score case, we will 

have score(S, p, M(S, p, j), p)=score(S, opp(p), M(S, 

opp(p), j), opp(p))=score1(S, M(S, j)) and score(S, p, 

M(S, p, j), opp(p))=score(S, opp(p), M(S, opp(p), j), 

p)=score2(S, M(S, j)). We now consider the situation in 

which the two players play K parallel games. When a 

player’s turn comes, it can perform a move in any of the 

K games (if the corresponding game still has any valid 

moves left). The rules for winning or losing are the same 

as in the case of a single game (e.g. the first player which 

cannot perform a move in any of the K games, loses the 

combined game, or the player whose score is larger 

wins). In this case, we can reduce the K games to a 

single game, as follows. We consider the graph GSC of 

the game, as follows. Let Qi be the state in the i
th

 game 

(1≤i≤K); Qi does not contain which player must move 

next in game i. Then, we set the state S of the combined 

game as S=(Q1, …, QK), i.e. a tuple consisting of the 

individual states of each of the K games. For every state 

(Qj’,p’) towards which there is a move from the state 

(Qj,p) in GS(j) (i.e. the state graph of game j), we add a 

directed edge from ((Q1, …, QK), p) to ((Q1, …, Qj-1, Qj’, 

Qj+1, …, QK), p’) in GSC (1≤j≤K). As before, if the 

players perform moves alternately, then the indices p (p’) 

can be dropped. GSC has V(GS(1))·…·V(GS(K)) states 

(where V(GS(i)) is the number of states in GS(i)). We 

can use any of the algorithms mentioned before on GSC. 

We will consider next three situations for the case 

when we do not use scores, which are not handled at all 

or are handled inefficiently by the algorithms described 

previously: (1) the graph GS of a game contains cycles; 

(2) the graph GSC of a combined game contains too 

many states; and (3) the graph GS of a game (not 

necessarily combined) contains too many states. 

For case (1), if GS contains cycles, then there is a 

chance that the game may never end. Thus, we will have 

to introduce extra rules. One possibility would be for the 

game to last for at most TMAX moves (after which, 

depending on the state of the game, one of the player 

wins, or the game ends as a draw). In this case, we 

construct a graph GST which contains vertices of the 

form (Q,p,t) (0≤t≤TMAX), where (Q,p) is a state in GS. 

For every directed edge (Q,p)->(Q’,p’) from GS, we add 

the edges (Q,p,t)->(Q’,p’,t+1) (0≤t≤TMAX-1) in GST. 

Graph GST is a directed acyclic graph. Since we now the 

result for the states (Q,p,TMAX), we can compute the 

game results for the other states, by using one of the 

algorithms described before. Another possibility is to 

decide that, if the game continues to infinity, then one of 

the players wins/loses automatically (or the game ends as 

a draw). We notice that the game continues to infinity if 

more than V(GS) moves are performed. Thus, we can set 

TMAX=V(GS)+1, after which we construct the graph 

GST as described above and run one of the previously 

mentioned algorithms on it; for the states (Q,p,TMAX) of 

GST we will set the result corresponding to the game 

continuing to infinity. Another possibility is to use the 

following iterative algorithm (inspired from [10]). We 

initially set bestRes(S,p)=uninitialized (for every state S). 

Then, we set bestRes(Sfin,p)=victory, defeat or draw (for 

all those states Sfin for which the result is given from the 

beginning). Then we proceed iteratively. At every 

iteration we consider all the states (S,p) with 

bestRes(S,p)=uninitialized. For every pair (S,p) we 

consider all the states (S’,p’) which can be reached if 



 

 

player p performs a move from S. If we find a state 

(S’,p’) with p’=p such that bestRes(S’,p’)=victory, or a 

state (S’,p’) with p’≠p such that bestRes(S’,p’)=defeat 

then we set bestRes(S,p)=victory. If all the considered 

states (S’,p’) have bestRes(S’,p’)≠uninitialized then we 

can compute bestRes(S,p) as described in one of the first 

algorithms from this section. At every iteration, at least 

one value bestRes(S,p) must change from uninitialized to 

victory, defeat, or draw. When no more such value 

changes occur, then we finish this stage. Afterwards, we 

run a similar algorithm again, considering at every 

iteration every state (S,p) with bestRes(S,p)=uninitialized 

and the player p would lose the game if the game 

continued to infinity. For each pair (S,p) we consider all 

the states (S’,p’) in which player p can move, and if 

bestRes(S’,p’)=draw for one of them, then we set 

bestRes(S,p)=draw. Like before, we stop when no more 

values bestRes(S,p) change. All the states (S,p) with 

bestRes(S,p)=uninitialized will be set to the values 

corresponding to the game continuing to infinity (player 

p wins, loses, or the game ends as a draw). The total 

number of iterations is O(V(GS)) and the time 

complexity per iteration is O(V(GS)+E(GS)) (where 

E(GS) is the number of edges of the graph GS). As 

before, if the game is impartial and the players move 

alternately, then the index p can be dropped (because 

from a state (S,p) we always move to another state 

(S’,p’) with p’≠p). For case (2) we will consider only 

impartial games, in which the winner is the player 

performing the last move, the players move alternately 

and the state graph of the game is acyclic (or the state 

graphs of the parallel games are acyclic, in the case of a 

combined game). The Sprague-Grundy game theory [9] 

was developed for such cases. Let’s assume that we have 

a combined game, composed of K parallel games. The 

state graph of each game i is GS(i). For every state Q in 

GS(i) (1≤i≤K) we compute the value Gi(Q)=the Grundy 

number associated to the state Q. For the states Q from 

which no move can be performed we set Gi(Q)=0. For 

the other states Q, in reverse topological order, we 

compute Gi(Q) as follows. Let Q1, …, Qr be the states 

which can be reached from state Q by performing one 

move. Let GQ={Gi(Qj)|1≤j≤r}, i.e. the set composed of 

the Grundy numbers of the states Q1, …, Qr. 

Gi(Q)=mex(GQ), where mex(SA) is the minimum 

excluded value from the set SA (i.e. the minimum non-

negative integer number which does not belong to the set 

SA). For a state Q in GS(i), if Gi(Q)>0, then the player 

whose turn to move from state Q is next has a winning 

strategy (considering only the game i); if Gi(Q)=0, then 

the player to move next from state Q cannot win in the 

game i if the other player plays optimally. The proof of 

these statements is simple. We notice that we have 

bestRes(i)(Q)=defeat every time we have Gi(Q)=0 and 

bestRes(i)(Q)=victory, every time Gi(Q)>0 (we denoted 

by bestRes(i) the values bestRes computed only for the 

game i). Let’s consider now that every game i is in the 

state Qi. The Grundy number of the combined game 

(composed of the K parallel games) is GC=G1(Q1) xor ... 

xor GK(QK). If GC>0 then the player which will perform 

the next move (from the state (Q1, …, QK)) has a winning 

strategy; otherwise, if GC=0, then the player performing 

the next move from the state (Q1, …, QK) will lose the 

game if its opponent plays optimally. The consequence 

of this result is that there is there is no need to construct 

the composed state graph GSC (consisting of 

V(GS(1))·…·V(GS(K)) vertices). Within the game, 

whenever we are in a combined state (Q1, ..., QK), we 

can evaluate the outcome based on the Grundy numbers 

of the independent states Q1, …, QK, in the 

corresponding state graphs GS(1), …, GS(K). 

For case (3) the construction of the state graph GS is 

too complicated even when it is not a combined game. 

We consider the same restrictions as in case (2). Thus, 

we cannot compute explicitly the values bestRes or the 

Grundy numbers. For some games, however, the Grundy 

numbers have some interesting properties, like 

periodicity. For these games we will attempt to find a 

pattern (a rule) for computing the Grundy number of any 

given state and we will use it for computing the Grundy 

numbers directly. These games will then be easily 

extended to combined games in which we won’t have to 

construct the state graphs GS(i) explicitly.  

In some cases (with the same restrictions as in case 

(2)) we only need to compute the outcome of the game 

for a given initial state of the game. Let’s assume that we 

have a combined games consisting of K types of parallel 

games, containing x(i)≥0 instances of every type i 

(1≤i≤K). In such cases, we will compute Gi(Qi) (where 

Qi is a state of a game instance of type i) and then we 

compute GG(i)=0, if x(i) is even, or GG(i)=Gi(Si), if x is 

odd, where Si is the initial state of game i. The Grundy 

number of the combined game is then GG(1) xor ... xor 

GG(K). This way, the numbers x(i) can be very large, 

because we are only interested in their parity. 

3. 2 AGENTS WITH IDENTICAL ROLES 

3.1. A PATH GAME ON A TREE 

We have a tree with n vertices. All of the vertices are 

initially unmarked. Two players play the following 

game. Player A chooses a vertex v and marks it. Then, 

player B chooses an unmarked vertex u which is adjacent 

to v, and marks it. The game continues, the two players 



 

 

taking turns alternately. At its turn, the current player 

chooses an unmarked vertex u which is adjacent to the 

vertex marked by the other player during the previous 

turn, and marks it. When one of the players cannot 

choose a vertex satisfying all the constraints when its 

turn comes, that player loses the game. We want to find 

out for which initial vertices v player A has a winning 

strategy against player B. We will first present a linear 

time algorithm for the case when the vertex v is fixed. 

We root the tree at vertex v, thus defining parent-son 

relationships between vertices. We make use of the 

notations from [4]. Then, we traverse the tree bottom-up 

(from the leaves towards the root) and, for each vertex i, 

we compute win(i)=true, if the player whose turn has 

come is allowed to choose vertex i, chooses it and has a 

winning strategy from now on (or false, if it doesn’t have 

a winning strategy as a result of choosing vertex i); after 

choosing vertex i, the opposite player will have to 

choose only one of vertex i’s sons. If i is a leaf, then 

win(i)=true. For a non-leaf vertex i, win(i)=true if all the 

values win(s(i,j)) (1≤j≤ns(i)) of its ns(i) sons are false 

(i.e. whichever vertex the other player chooses next, it 

won’t be able to win). If win(v)=true, then player A can 

choose vertex v at its first turn and has a winning 

strategy from now on. Obviously, we could run this 

algorithm with every tree vertex as the root, in order to 

check if player A could choose that vertex at its first turn. 

However, this approach would lead to an O(n
2
) solution. 

We will now show how we can maintain the linear time 

complexity. We will borrow ideas from the algorithmic 

framework for trees introduced in [5]. We will first 

choose an initial vertex v and run the algorithm 

described previously. During the algorithm we will also 

compute ntwin(i)=the number of sons s(i,j) of a vertex i 

for which win(s(i,j))=true.  Then, we will traverse the 

tree from top to bottom, by using a Depth-First Search 

(DFS) starting at the root v. For every visited vertex i, we 

will compute rwin(i)=the value of win(i) if the tree was 

rooted at vertex i, and ntrwin(i)=the number of sons of 

vertex i with win(i)=true if i were the root of the tree. 

Obviously, rwin(v)=win(v) and ntrwin(v)=ntwin(v). 

Let’s assume that we visited a vertex i (and we have 

already computed rwin(i) and ntrwin(i)) and we now 

want to visit one of its sons s(i,j) (actually, we will 

recursively visit the subtree of s(i,j)). At first, we will 

compute ntrwin’(i,j)=ntrwin(i)-(if win(s(i,j))=true then 1 

else 0). ntrwin’(i,j) is the number of sons q of vertex i 

with win(q)=true, if i were the root of the tree and s(i,j) 

were not one of vertex i’s sons.  Then, we will compute 

ntrwin(s(i,j))=ntwin(s(i,j))+(if (ntrwin’(i,j)=0) then 1 

else 0). If ntrwin(s(i,j))=0 then rwin(s(i,j))=true; 

otherwise, rwin(s(i,j))=false. This way, in O(n) time, we 

were able to compute the values rwin(*). At its first turn, 

player A can choose any vertex u with rwin(u)=true. 

3.2. GATHERING AN EVEN NUMBER OF OBJECTS 

There is one pile consisting of N objects (N is odd). 

Two players perform moves alternately. When its turn 

comes, a player may remove from the pile any number of 

objects x between 1 and K (as long as there are at least x 

objects in the pile). The player keeps the objects he/she 

removed and adds them to the objects removed during 

previous moves. When the pile becomes empty, each 

player counts the number of objects he/she gathered 

from the pile during the game. The winner of the game is 

the player who gathered an even number of objects 

(since the total number of objects is odd, only one of the 

two players may gather an even number of objects). In 

this case, the Sprague-Grundy theory cannot be used, 

because the winner is not the player who performs the 

last move. Instead, we can use dynamic programming. 

We will compute two sets of values: win[0,i] and 

win[1,i]. win[0,i] is 1, if the pile contains i objects, the 

winner must gather an even number of objects and the 

player whose turn is next has a winning strategy (and 0, 

otherwise); win[1,i] is defined in a similar manner, 

except that the winner must gather an odd number of 

objects. We have win[0,0]=1 and win[1,0]=0. For 

1≤i≤N, we have: 
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If win[0,N]=1, then the first player has a winning 

strategy; otherwise, the second player has one. The time 

complexity of an algorithm implementing the equations 

above directly is O(N·K). This algorithm can be 

improved to O(N), in the following way. We will 

compute the same sets of values as before, but we will 

maintain a structure last[x,y,z] (0≤x,y,z≤1), with the 

following meaning: the last value of i (number of objects 

in the pile) such that: the parity of the number of objects 

gathered by the winner is x (0 for even, 1 for odd), 

y=((the number i of objects in the pile) mod 2) and 

z=win[x,i]. The new equations for win[0,i] and win[1,i] 

(1≤i≤N)  and the algorithm are given below: 
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GatherAnEvenNumberOfObjects: 
last[x,y,z]=-∞, for all tuples (x,y,z) 

win[0,0]=1; win[1,0]=0 

last[0,0,win[0,0]]=0; last[1,0,win[1,0]]=0 



 

 

for i=1 to N do 

compute win[0,i] and win[1,i] using the equations above 

  last[0, (i mod 2), win[0,i]]=i 

  last[1, (i mod 2), win[1,i]]=i 

The values win[0,N] and win[1,N] (with odd N) 

present some unexpected patterns. For even K, we have 

win[0,N]=0, only if (N mod (K+2)=1). For odd K, we 

have win[0,N]=0, only if (N mod (2·K+2)=1). With 

these observations, we can determine in O(1) time which 

of the two players has a winning strategy. We should 

notice that, by computing the win[0,i] and win[1,i] 

values, we also solved the version of the game in which 

the winner has to gather an odd number of objects. The 

values of win[1,N] exhibit similar patterns. For odd K, 

we have win[1,N]=0, only if (N mod (2·K+2)=(K+2)). 

For even K, win[1,N]=0, only if (N mod (K+2)=(K+1)). 

Similar rules can be developed for win[0,N] and 

win[1,N] when N is even, but in this case both players 

may win the game: for even N and odd K, win[0,N]=0 

only if (N mod (2·K+2)=(K+1)), and win[1,N]=0 only if 

(N mod (2·K+2)=0); for even N and even K, win[0,N] is 

always 1, and win[1,N]=0 only if (N mod (K+2)=0). A 

short version of the presented solution was given in [7]. 

3.3. GATHERING OBJECTS FROM A BOARD 

We consider a linear board, on which n objects are 

placed, numbered from 1 to n (from left to right). Every 

object i has a value v(i)≥0. Two players perform moves 

alternately. At each turn, the current player gathers one 

of the two objects from the left or right end of the board. 

The game ends when all the objects were gathered. At 

the end, every player p computes its score score(p) as the 

sum of the values of the objects he/she gathered. Both 

players want to maximize the difference between their 

score and the opponent’s score. Optimal strategies 

(considering that both players play optimally) can be 

computed using dynamic programming. First, we 

compute the prefix sums SP(i)=v(1)+…+v(i) (SP(0)=0 

and SP(1≤i≤n)=SP(i-1)+v(i)). With the prefix sums we 

can compute the sum Sum(a,b) of all the values of the 

objects in an interval [a,b] in O(1) time: Sum(a,b)= 

SP(b)-SP(a-1). Then, we compute smax(i,j)=the 

maximum score that the current player may obtain if the 

board consists only of the objects from i to j (and we 

ignore the other objects). We have smax(i,i)=v(i). For 

i<j, we will consider the pairs (i,j) in increasing order of 

l=j-i. Thus, we have: for l=1 to n-1 do: for i=1 to n-l do: 

j=i+l; smax(i,j) = max{v(i)+Sum(i+1,j)-smax(i+1,j), 

v(j)+Sum(i,j-1)-smax(i,j-1)}. When the number of 

objects is even and the purpose of the game is for one of 

the players to obtain a larger score than the other one, 

the first player always has a strategy which guarantees 

him/her a victory or a draw. Let SumOdd (SumEven) be 

the sum of the values of the objects numbered with odd 

(even) numbers. The first player can always play in such 

a way that it gathers all the odd (even) numbered objects: 

at every move it chooses the object with odd (even) 

number, leaving the opponent to choose between two 

objects with even (odd) numbers. Thus, it can play in 

order to obtain a score equal to the larger of the two 

sums (SumOdd or SumEven). 

3.4. GATHERING CHARACTERS FROM A BOARD 

We consider a linear board, on which n characters of 

an alphabet A are placed, numbered from 1 to n (from 

left to right). The character on position i is c(i). Two 

players move alternately. Initially, they have an empty 

string S. At each turn, the current player can remove the 

character at the left or right end of the board and add it to 

the end of S. The purpose of the first player is to obtain 

the string S which is lexicographically minimum, while 

that of the second player is to obtain a string S which is 

lexicographically maximum. The outcome of the game 

can be computed by using dynamic programming. We 

compute Sres(i,j)=the resulting string, if the board 

consisted only of the characters on the positions from i to 

j. Obviously, Sres(i,i)=c(i). Like in the previous sub-

section, we consider the pairs (i,j) (with i<j) in 

increasing order of the value j-i. For a pair (i,j) we need 

to determine which player p will perform the move: p=1 

if (i-1+n-j) is even, and p=2 if (i-1+n-j) is odd. If p=1, 

then Sres(i,j)=min{c(i)+Sres(i+1,j), c(j)+Sres(i,j-1)}, 

where we denoted by A+B the concatenation of the 

strings A and B (c(i) can also be considered as a one-

character string). If p=2 then Sres(i,j)=max{ 

c(i)+Sres(i+1,j), c(j)+Sres(i,j-1)}. 

3.5. GATHERING MANY OBJECTS 

Two players play the following game. Initially, they 

have N objects in a pile. The two players perform moves 

alternately and the game proceeds in rounds. At every 

move, each player p may take from the pile any number 

of objects x which belongs to a given set S(p) (S(p) 

always contains the number 1), where p=1 or 2 is the 

index of the player. Every player puts the taken objects 

aside. The player taking the last object gets to keep all of 

his objects, while the other player must put all the 

objects he/she took back into the pile. After a player 

takes the last object, a round finishes. At the next round, 

the player performing the first move is: (case 1) the one 

who took the last object in the previous round; (case 2) 

the one who did not take the last object in the previous 

round. The game ends when no more objects are put 

back into the pile. The winner of the game is the player 

who gathered the largest number of objects overall. The 

first move of the game is performed by player 1 and we 

want to know which of the two players will win (in 

either of the two cases), considering that both will play 

optimally. We will compute the values Gmax(i,j,q,p)=the 



 

 

maximum total number of objects which can be gathered 

by the player p (whose turn to move is next), knowing 

that this player has i objects put aside in this round, the 

opponent has j objects put aside in this round, and the 

pile contains q objects. Gmax(0, 0, N, 1) will be the 

answer to our problem (i.e. the largest number of objects 

that player 1 can gather; if this number is larger than N/2, 

then player 1 will win, if it is equal to N/2 then the game 

ends as a draw; otherwise, player 1 will lose the game). 

If q=0 then the previous player emptied the pile. Thus, 

the opponent gets to keep its j objects. We have 

Gmax(i,j,0,p) equal to Gmax(0,0,i,p) (for case 2), or to 

(i-Gmax(0,0,i,3-p)) (for case 1). For q≥1 we will 

consider every value k from S(p), such that k≤q. If the 

current player p took k objects from the pile at its next 

move, then it would have i+k objects put aside, the 

opponent would have j objects put aside and there would 

be q-k objects left in the pile. At the next move, the 

opponent would move and would be able to gather, 

overall, Gmax(j, i+k, q-k, 3-p) objects. Thus, the current 

player p will be able to gather at most (i+j+q)-Gmax(j, 

i+k, q-k, 3-p) objects. Thus, Gmax(i,j,q,p)= 

max{(i+j+q)-Gmax(j, i+k, q-k, 3-p) | k∈S(p) and k≤q}. 

We will compute the values Gmax(i,j,q,p) in increasing 

order of the sum (i+j+q), starting from i=j=q=0 

(Gmax(0,0,0,*)=0). The tuples (i,j,q) with the same sum 

(i+j+q) will be considered in increasing order of q. The 

time complexity of the algorithm is O(N
3
·max{|S(1)|, 

|S(2)|}), which, in the worst case, is O(N
4
). When 

S(1)=S(2) we can drop the index p (and the reference 3-

p) from the states of the table Gmax, maintaining only 

the 3 indices i, j, and q. 

3.6. PARALLEL TREBLECROSS 

We consider a combined game, consisting of K types of 

simple games. We have x(i)≥0 identical instances of every 

type of game i (1≤i≤K). An instance of a game i consists of 

a linear board containing N(i)≥3 positions (numbered from 

1 to N(i)). Some of these positions are unmarked, while the 

others are marked. During a simple game, the two players 

make moves alternately. At every move, the current player 

chooses one of the unmarked positions and marks it. When, 

as a result of a player’s move, there are 3 consecutive 

marked positions, then that player wins the game. In the 

initial state of a simple game, there will not be any two 

consecutive marked positions and neither two marked 

positions separated by an unmarked position between them 

(because, in this game, the first player would win 

immediately). In a combined game, the next player to move 

can choose an unmarked position from any of the K games. 

The winner is the one obtaining three consecutive marked 

positions in any of the K games. We want to decide which 

of the two players (the first player, performing the first 

move, or the second player) has a winning strategy. 

Let’s consider a linear board in which some positions 

are marked and the others are unmarked and in which the 

current player cannot win at its next move. At its next move, 

no player will choose an unmarked position which is 

adjacent to a marked position (because then the other player 

would win at its next move) or which is located two 

positions away from it (i.e. if position i is marked, then the 

player will not choose the positions i-1, i-2, i+1, or i+2 for 

its next move, if they are unmarked, unless it is forced to do 

so). Thus, we can consider all the unmarked positions which 

are at distance 1 or 2 from a marked position as being 

lightly marked. Then, the unmarked positions which are not 

lightly marked form a set of R≥0 maximal disjoint intervals 

(composed of consecutive unmarked positions which are 

not lightly marked), separated by marked or lightly marked 

positions. The lengths of these intervals are L(1), …, L(R) 

(L(i)≥1; 1≤i≤R). We will compute G(Q)=the Grundy 

number for a linear board consisting of Q unmarked 

positions. G(0)=0. For Q≥1, we will consider all the Q 

positions i which the player can select: G(Q)= 

mex({G(max{i-3, 0}) xor G(max{Q-i-2,0})) | 1≤i≤Q}). The 

Grundy number of the initial board is G(L(1)) xor … xor 

G(L(R)). This way, we can compute a Grundy number for 

every instance of a game i. If (x(i) mod 2=0) then GG(i)=0; 

otherwise, GG(i)=the Grundy number of an instance of 

game i. The Grundy number of the entire combined game is 

GG(1) xor … xor GG(K). If this number is 0, then the 

second player has a winning strategy; otherwise, the first 

player has a winning strategy. 

4. 2 AGENTS WITH DIFFERENT ROLES 

4.1. GUESSING A SECRET STRING 

We consider a secret string S, composed of symbols 

from the set {0, 1, ..., K-1}, and having an unknown 

length L. The player must ask questions in order to 

identify the string S. A question has the following form: 

Ask(S’), and the answer is true, if S’ is a (not necessarily 

contiguous) subsequence of S (i.e. if S’ can be obtained 

from S by deleting zero or more symbols), or false, 

otherwise. We want to determine the string S by asking 

as few questions as possible. I will present a strategy 

which asks at most (K+1)·(L+1) questions. 

We will identify the string S one step at a time. We 

will maintain a representation SR of S, having the 

following structure. SR will be a sequence of zones, 

where each zone is of one of the following three types: 

uncertain zone (type 1), empty zone (type 2), and certain 

zone (type 3). Before and after every uncertain or empty 

zone there is a certain zone (except, possibly, for the first 

and last zone of SR). A certain zone is composed of just 

one symbol.  Let’s assume that SR consists of Q zones 

(numbered, in order, from 1 to Q). The type of zone i is 

denoted by ztype(i) (1≤i≤Q). Initially, SR consists of only 

one uncertain zone. We will adjust the representation SR 

one step at a time, in rounds, until it will contain no more 

uncertain zones. When that happens, the concatenation 



 

 

of the symbols of the certain zones (from the first one to 

the last) will be the secret string S. At every round we 

will choose the first uncertain zone i from SR (the one 

with the lowest index). Let i-1 and i+1 be the certain 

zones before and after the uncertain zone i (if they exist). 

Let cs(i-1) and cs(i+1) be the symbols corresponding to 

these two zones (if i-1=0 then cs(i-1)=0; if i+1>Q then 

cs(i+1)=0). Let cstart=max{cs(i-1), cs(i+1)}. We will 

consider, one at a time, every character c (cstart≤c≤K-1) 

and we will construct the string S’(c), as follows: we 

concatenate all the symbols of the certain zones j’<i 

(from the lowest index to the largest one), then we add 

the symbol c, and then we add at the end the 

concatenation of all the symbols of the certain zones 

j’’>i (from the lowest index to the largest one). Then, we 

ask the question Ask(S’(c)). When we get an affirmative 

answer, we break the loop (i.e. we do not construct the 

strings S’(c’) with c<c’≤K-1) and then we modify the 

representation SR. The uncertain zone i will be replaced 

by an uncertain zone, followed by a certain zone 

containing the symbol c, and then followed by another 

uncertain zone. These 3 zones are inserted in SR in the 

place of the former uncertain zone i. If the answer is 

negative for every question, then we transform the 

uncertain zone i into an empty zone. The round ends 

either by replacing the uncertain zone i by three other 

zones, or by turning it into an empty zone. Then, we will 

move to the next round. The algorithm ends when SR 

contains no more uncertain zones. We notice that we ask 

at most K questions at every round. The total number of 

rounds is at most 2·L+1, because: (1) there may be at 

most L rounds in which a new certain zone is created; (2) 

there will never be more than L+1 uncertain zones which 

are turned into empty zones, during the execution of the 

algorithm. So, apparently, we may get to ask at most 

2·K·(L+1) questions. However, because at every round 

we do not consider the symbol c in the range [0,K-1], 

but in the range [cstart,K-1], the total number of 

questions is at most (K+1)·(L+1). 

4.2. HOTTER OR COLDER 

In this section we consider the following resource 

discovery problem, modelled as a guessing game. An 

agent thinks of a secret natural number S from the 

interval [1,N] (the value of the resource amount). At the 

first question, a second agent (the player) asks an integer 

number x and expects no answer. At each of the next 

questions, whenever the player asks an integer number y 

(and at the previous question he/she asked a number x), 

it will receive the answer Hotter (Colder), depending on 

whether the secret number S is closer to (farther from) y 

than to (from) x. If |S-x|=|S-y|, any of the two answers 

may be received. The game ends when the player is 

absolutely sure which the secret number S is. We want to 

find a strategy which asks a minimum number of 

questions in the worst case (i.e. no matter what the secret 

number is). We consider two versions of this problem, 

one in which the number asked at every question must be 

a valid number (i.e. it must be one of the potential values 

for S, considering all the previous answers), and one in 

which it doesn’t need to be a valid number. Both 

solutions are similar. We will compute a table T(a,b,x)= 

the minimum number of questions required to find S in 

the worst case, if S is within the interval [a,b] and the 

player asked x at the previous question. The answer will 

be min{T(1,N,x)|1≤x≤N} (at the first question, it makes 

no sense to ask for an invalid number). If a=b, then 

T(a,b,x)=0. For a<b, we will consider all the 

possibilities for the number y to be asked at the next 

question. In the first version, we will consider that y is 

between a and b; in the second version, y’s range is 

computed such that either (x+y)/2 belongs to the interval 

[a,b], or y is closer to [a,b] than x (we define distance(z, 

[a,b])=if a≤z≤b then 0 else min{|z-a|, |z-b|}). We now 

need to evaluate the maximum number of questions that 

the strategy will need to ask in the future, in case it asks 

y at the next question. If the answer is Hotter, then the 

secret number belongs to the intersection of [a,b] with 

closerPart(y,x); if the answer is Colder, the secret 

number belongs to the intersection of [a,b] with 

closerPart(x,y). closerPart(u,v) is defined as follows: if 

(u≤v) then [u, floor((u+v)/2)] else [ceil((u+v)/2), u]. Let 

[c’,d’] be the new (reduced) interval to which the secret 

number belongs if the answer is Hotter, and [c’’,d’’] the 

interval to which it belongs if the answer is Colder. The 

maximum number of questions which may need to be 

asked after asking y at the next question is 

Q(a,b,x,y)=max{T(c’,d’,y), T(c’’,d’’,y)}. Thus, for a<b, 

T(a,b,x)=1+min{Q(a,b,x,y)| y obeys the conditions 

mentioned above}. The time complexity of this solution 

is roughly O(N
4
), but can be reduced to O(N

3
), by using 

the following observation: T(a,b,x)=T(1, b-a+1, x-a+1). 

This observation says that the actual interval [a,b] is not 

important for computing the number of required 

questions, only its length is. Thus, we will compute 

T’(L,x)=the minimum number of questions required to 

find S in the worst case, if S is within the interval 

[a,b]=[1,L] and the player asked x at the previous 

question (whenever the interval [a,b] is mapped to the 

interval [1,L], x is also decreased by (a-1), in order to 

maintain its position relative to a and b). With this 

definition, we have Q’(L,x,y)=max{T’(d’-c’+1, y-c’+1), 

T’(d’’-c’’+1, y-c’’+1)} (instead of Q(a,b,x,y)) and 

T’(L,x)=1+min{Q’(L,x,y)| y obeys the given conditions}. 

The problem can be extended as follows. Let’s 

assume that before getting the first answer, the player 



 

 

must ask D≥1 questions. Then, at the (D+1)
th

 question, 

the (D+1)
th

 value is compared against the first value and 

we get the answer Hotter or Colder as before. Then, at 

every question qu≥D+1, the value asked at that question 

is compared against the value asked at the question qu-D 

and the answer Hotter or Colder is given. The case 

described so far is equivalent to the extended problem 

for D=1. The strategy can be adapted as follows. The 

index x of the values T(a,b,x) and Q(a,b,x,y) is replaced 

by a tuple of D values, representing the previous D 

values asked: x, x2, …, xD (we denoted the first value by 

x, instead of x1, on purpose). Then, Q(a, b, x, x1, …, xD, 

y)=max{T(c’, d’, x2, …, xD, y), T(c’’, d’’, x2, …, xD, y)} 

and T(a, b, x, x1, …, xD)=1+min{Q(a, b, x, x1, …, xD, y)|y 

obeys the specified conditions}. For the case in which the 

indices a and b are replaced by the length b-a+1 of the 

interval [a,b], we perform the same substitutions. Then, 

we have Q’(L,x,x2,…,xD,y)=max{T’(d’-c’+1,x2-c’+1, …, 

xD-c’+1, y-c’+1), T’(d’’-c’’+1, x2-c’’+1, …, xD-c’’+1, y-

c’’+1)} and T’(L,x,x2,…,xD)=1+min{Q’(L,x,x2,…,xD,y) | 

y obeys the specified conditions}. The time complexity 

now becomes O(N
D+3

) (for the first solution), or O(N
D+2

) 

(for the second solution). 

4.3. FINDING A COUNTERFEIT COIN 

We are given a set of n≥3 coins, out of which one is 

different (heavier or lighter) than the others. We have a 

balance with 2 pans. We can place any equal number of 

coins k (1≤k≤n/2) on each pan and compare the total 

weight of the coins on the left pan to the total weight of 

the coins on the right pan (i.e. ask a question). There are 

3 possible outcomes: the coins on the left pan are lighter 

than, heavier than, or of the same weight as those on the 

right pan. We assign to each coin i a set C(i) which 

consists of all the possible types coin i may have (e.g. 

normal, lighter, or heavier). Initially, all the sets C(i) are 

equal to {lighter, heavier, normal}. The current state S of 

the game consists of all the sets C(i). After every 

comparison performed, some of the sets C(i) will be 

reduced. We define the uncertainty U(S) of a state S to 

be equal to -1, plus the sum of the values (|C(i)|-1) 

(1≤i≤n); |C(i)| denotes the cardinality of the set C(i). At 

each moment during the game (when the uncertainty is 

not zero), every set C(i) (coin i) can be of 4 types: (1) 

{normal, lighter, heavier}; (2) {normal, lighter}; (3) 

{normal, heavier}; (4) {normal}. We denote by num(i) 

the number of sets (coins) of type i (1≤i≤4). Obviously, 

num(1)+num(2)+num(3)+num(4)=n. When asking a 

question, we can place any combination of coins of each 

type on each pan, with the condition that coins of type 4 

are placed on at most one of the pans. If the result of a 

question Q is that the coins on the left (right) pan are 

lighter than those on the right (left) pan, then we remove 

the element heavier from the sets C(i) of the coins i on 

the left (right) pan and the element lighter from the sets 

C(j) of the coins j on the right (left) pan. Moreover, the 

sets C(k) of all the coins k which were not placed on any 

pan are set to {normal}. If the sets of coins on the two 

pans have equal weights, then we set the sets C(i) of the 

coins i placed on any of the two pans to {normal}. If, at 

some point, only one set C(i) is different than {normal} 

and contains only two elements, then coin i is the 

different coin: if (lighter∈C(i)), then coin i is lighter 

than the other n-1 coins; otherwise, coin i is heavier. 

Notice that before receiving the first answer in 

which the coins on one of the pans are lighter or heavier 

than those on the other pans, we only have sets of two 

types: 1 and 4. After receiving the first answer where the 

coins on the two pans have different weights, then we 

have no more sets of type 1. As long as we only have 

sets of types 1 and 4, we have O(n
2
) possible questions 

(at each step). A question is uniquely defined by the total 

number of coins k on each of the two pans and by the 

number x≤min{num(1), k} of coins of type 1 which are 

placed on the left pan. The right pan will contain k coins 

of type 1 and the left pan will contain k-x extra coins of 

type 4 (we must have x+k≤num(1)). If the weight of the 

two pans is equal, then the total uncertainty decreases by 

2·(k+x). If one of the pans is lighter (heavier) than the 

other, then the total uncertainty decrease by 

k+x+2·(num(1)-k-x)=2·num(1)-k-x. If we denote by 

S(k,x)=k+x, we notice that in the first case the total 

uncertainty decreases by 2·S(k,x), and in the second case, 

by 2·num(1)-S(k,x). The best case is when the minimum 

value of the two uncertainty decrements is as large as 

possible. This occurs when 2·S(k,x)=2·num(1)-S(k,x) 

and, thus, S(k,x) is equal either to floor(2/3·num(1)) or to 

ceil(2/3·num(1)). Thus, we have only 2=O(1) 

possibilities for choosing the next question. Once S(k,x) 

is fixed, we can choose k=ceil(S(k,x)/2) and x=S(k,x)-k. 

When we have only coins of types 2, 3 and 4, there 

are O(n
4
) possible questions for the next step. A question 

is defined by the number of coins k placed on each pan, 

the number x of coins of type 2 (x≤num(2)) and the 

number y of coins of type 3 placed on the left pan 

(y≤num(3) and x+y≤k), and the number z of coins of type 

2 placed on the right pan. The left pan will also contain 

k-(x+y) coins of type 4 and the right pan will also 

contain k-z coins of type 3. We must have num(2)-x≥z 

and num(3)-y≥k-z, i.e. num(2)-x≥z≥k+y-num(3) 

(x+y+k≤num(2)+num(3)). If the result of such a 

question is that the coins on both pans have equal 

weights, then the total uncertainty decreases by 

(x+y+z+k-z)=(x+y+k). If the coins on the left pan are 

lighter, then the uncertainty decreases by (y+z+num(2)-

x-z+num(3)-y-(k-z)) = (num(2)+num(3)-x+z-k). If the 

coins on the right pan are lighter, then the uncertainty 

decreases by (k-z+x+num(2)-x-z+num(3)-y-(k-



 

 

z))=(num(2)+num(3)-z-y). Let’s assume that x+y=S(x,y), 

y+z=S(y,z) and D(x,z)=x-z. Obviously, the uncertainty 

depends on the values S(x,y), S(y,z) and D(x,z), rather 

than on the actual x, y and z values. Let’s consider a 

different value z’, such that z-z’=dz. Then we have 

y’=y+dz, x’=x-dz and x’-z’=x-dz-(z-dz)=x-z. Thus, for 

any value of z, we can find a pair (x,y) which maintains 

the same values of S(x,y), S(y,z) and D(x,z). The 

maximum possible difference dzmax (by which a chosen 

value of z can be reduced) has the following properties: 

z-dzmax≥0, x-dzmax≥0, y+dzmax≤num(3) and y’+k-

z’≤num(3) � y+dzmax+k-(z-dzmax)≤num(3). From 

these constraints it is trivial to compute the largest 

possible value of dzmax, given the values of x, y and z. 

The key observation here is that if x, y and k are fixed, 

then z can be chosen to be as small as possible (but 

without violating the constraints). Choosing z can be 

done in O(1) time, leaving us with only O(n
3
) 

possibilities, for the parameters x, y and k. 

A better approach is the following. We would like to 

maximize the minimum value of the uncertainty 

decrements of each of the three situations. We can do 

this by binary searching this minimum (integer) value W. 

Then, we have the following constraints: x+y+k≥W, 

num(2)+num(3)-x+z-k≥W, num(2)+num(3)-z-y≥W, x≥0, 

y≥0, z≥0, x+z≤num(2), y+k-z≤num(3), x+y≤k, z≤k. 

These equations define half-hyperspaces in the hyper-

space with four dimensions, in which every dimension 

corresponds to one of the parameters x, y, z, and k. W is a 

feasible value (i.e. all the constraints can be satisfied), if 

the intersection of all these half-hyperspaces is non-

empty and contains at least one point with integer 

coordinates (inside of it, or on one of its sides). If W is 

feasible, then we will test a larger value of W in the 

binary search; otherwise, we will test a smaller value. 

Since we have O(1) half-hyperspaces, we can compute 

their intersection in O(1) time, obtaining a convex 4-

dimensional polyhedron. However, we are not aware of 

any efficient method of checking if the polyhedron 

contains any point with integer coordinates.  If we 

consider every possible value of k, then, for every such 

fixed value of k, the only free parameters will be x, y, 

and z. In this case, the specified constraints define half-

spaces in a 3D space (with the dimensions corresponding 

to the parameters x, y and z). The intersection of the half-

spaces is now a 3D convex polyhedron, but we still don’t 

know how to find a point with integer coordinates inside 

of it. If we fix the values of two parameters, e.g. k and x 

(i.e. we consider every possible value of k and x and then 

find some suitable values for the parameters y and z), 

then the specified constraints become half-planes 

delimited by lines in the plane (the 2 dimensions of the 

plane correspond to the two free parameters, e.g. y and 

z). These lines have only 4 different orientations: parallel 

to the horizontal or vertical axes, or parallel to the two 

axes rotated by 45 degrees counter-clockwise. If the 

intersection of the half-planes is non-empty, then the 

resulting polygon is a convex polygon with O(1) (at most 

6) sides. The polygon’s vertex coordinates are either 

integers or are of the form (p+q)/2, where p and q are 

integer numbers. However, a simple analysis shows us 

that, if the intersection is non-empty, then at least one of 

the vertices of the polygon must have integer 

coordinates. Thus, it is sufficient to check if the 

intersection is non-empty and, afterwards, look at the 

vertices of the intersection. This way, we only need to 

test O(n
2
) possibilities (e.g. for the values of the 

parameters k and x). The intersection of the original 4D 

half-hyperplanes is non-empty and contains a point with 

integer coordinates if there exists at least one pair of 

values (k,x) for which we can find a point with integer 

coordinates in the corresponding intersection polygon 

(or if there exists at least a value of k for which the 

intersection of the obtained 3D half-spaces is non-empty 

and contains at least a point with integer coordinates). 

We conjecture that a property similar to the one for 

the 2D case also holds for the 4D case. Thus, we only 

need to check if the intersection of the half-hyperspaces 

is non-empty and then only look at the contour of the 

intersection polyhedron (e.g. its vertices, edges, or faces) 

in order to find a point with all of its coordinates integer 

numbers. With this conjecture, we are able to decide the 

next question in O(log(n)) time (for the second case), 

instead of O(n
2
·log(n)), and in O(1) time for the first 

case. In both cases, at each step, we set the values of all 

the relevant parameters for each of the considered 

possibilities and we choose that possibility for which the 

worst case uncertainty decrement (i.e. the minimum 

possible uncertainty decrement) is as large as possible; 

the chosen possibility will be the question asked next. 

4.4. MAXIMIZING WORST-CASE BET REVENUES 

Let’s consider the following game. A player has X 

monetary units initially. A box contains N+R objects: N 

black objects and R red objects. The player cannot see the 

objects inside the box. The game is played for N+R rounds. 

At every round, the player bets any percent p between 0 and 

100% of its current sum on one of the two colors: black or 

red. Then, an object from the box is extracted (and never 

placed back). If the color of the extracted object is the same 

as the color on which the player bet, then the player gains 

an amount of monetary units equal to its bet; otherwise, the 

player loses the sum it bet at the current round. We would 

like to maximize the final amount of monetary units in the 

worst-case. In order to do this, we need to compute a 

strategy which tells the player what percent p to bet at every 

round and on which color. We will compute pmax(i,j)=the 

maximum multiplication factor by which the player’s initial 

amount can be multiplied in the end, if the box initially 



 

 

contains i black objects and j red objects. To be more 

precise, if the player initially has X monetary units, then 

there is a strategy which guarantees him/her at least 

pmax(i,j)·X monetary units in the end, and no other strategy 

can guarantee more than that. We notice that 

pmax(0,j)=pmax(j,0)=2
j
 (because, at every round, the 

player can bet its entire amount of monetary units). For i≥1 

and j≥1, let’s assume that the player bets a percent p. on the 

color black. If it is right, then its sum will increase 

(1+p)·pmax(i-1, j) times; if it is wrong, then its sum 

increases (1-p)·pmax(i, j-1) times. The percent p must be 

chosen such that, in the worst case, its final sum is as large 

as possible. This occurs when (1+p)·pmax(i-1, j)=(1-

p)·pmax(i, j-1) => p=(pmax(i,j-1) - pmax(i-1,j)) / (pmax(i-1, 

j) + pmax(i, j-1)). If p≥0, then pmax(i,j)=(1+p)·pmax(i-1, j). 

If p<0, then the player should not bet on the black color, 

but on the red color instead. By using the same argument 

we obtain (1+p)·pmax(i, j-1)=(1-p)·pmax(i-1, j) => 

p=(pmax(i-1,j) – pmax(i,j-1)) / (pmax(i-1, j) + pmax(i, j-1)) 

and pmax(i,j)=(1+p)·pmax(i, j-1). The maximum final 

amount of monetary units which can be guaranteed by the 

best strategy is X·pmax(N,R). The time complexity of the 

described algorithm is O(N·R). 

4.5. ALGEBRAIC COMPUTATIONS 

We consider M triples of numbers: P, Q and N and we 

know that P=a+b and Q=a·b (for some numbers a and 

b). We need an efficient algorithm which computes, for 

every triple, the values a
N
+b

N
. A first solution, with 

O(N) time complexity, is the following. We define 

SP(pow)=a
pow

+b
pow

. SP(0)=2 and SP(1)=P. For 

2≤pow≤N, we have SP(pow)=SP(pow-1)·P-SP(pow-

2)·Q. More precisely, we have (a
pow-1

+b
pow-1

)·(a+b)-

(a
pow-2

+b
pow-2

)·a·b = a
pow

+b
pow

+b·apow-1
+a·b

pow-1
-b·a

pow-1
-

a·b
pow-1

=a
pow

+b
pow

. A faster solution is based on using 

the characteristic polynomial of the recurrence relation 

mentioned above. We compute delta=sqrt(P
2
-4·Q); 

c1=(P+delta)/2; c2=(P-delta)/2 (sqrt(x) denotes the 

square root of x). Let V=(P-2·c1)/(c2-c1) and U=2-V. We 

will then determine the binary representation of the 

number N: b(BMAX), b(BMAX-1), ..., b(0) (N=the sum 

of the values b(j)·2
j
 for 0≤j≤BMAX); we have 

b(BMAX)=1 (the most significant bit of 1 in the binary 

representation of N). We will compute d1=c1
N
 and 

d2=c2
N
 in O(log(N)) steps, by using this binary 

representation: we initialize d1=d2=1 and then we 

traverse the bits j from j=BMAX down to j=0; for every 

bit j, we set d1=d1
2
 and d2=d2

2
; then, if b(j)=1, we set 

d1=d1·c1 and d2=d2·c2. The final answer is U·d1+V·d2. 

Note, however, that V=1 and, thus, U=1, too. 

5. AGENT PURSUING GAMES ON GRAPHS 

5.1. PURSUING A SET OF ROBBERS 

In a directed graph with n vertices and m edges there 

are A cop agents (cops) and B robber agents (robbers): 

every cop i is initially located at vertex P(i) (1≤i≤A) and 

every robber j is initially located at vertex S(j) (1≤j≤B). 

We are also given a sequence of K pairs (type(0), idx(0)), 

..., (type(K-1), idx(K-1)), meaning that at time moment T 

(T≥0) the agent that will perform the move is of type 

type(T mod K) (i.e. cop or robber) and its index is idx(T 

mod K) (between 1 and A for cops, and between 1 and B 

for robbers). A move consists of moving the agent from 

its current vertex i to an adjacent vertex j such that the 

directed edge i->j exists in the graph (the graph is 

allowed to have loops, i.e. j=i). The cops win if at least 

B’≤B robbers are captured (a robber is captured 

whenever a cop moves to the same vertex as the robber). 

The robbers win if at least B’’≤B robbers reach their safe 

vertices: every robber j has a set of vertices H(j) 

representing its safe vertices – if it reaches one of these 

vertices, it cannot be captured by any cop anymore. If the 

game continues indefinitely, then it ends as a draw. A 

state of the game consists of a tuple with A+B+1 values: 

(pozc(1), ..., pozc(A), pozr(1), ..., pozr(B), p); p is the 

index of the current move (0≤p≤K-1). pozc(i) is the 

vertex where the i
th

 cop is located (1≤i≤A) and pozr(j) is 

the vertex where the j
th

 robber is located (1≤j≤B). We 

also consider two special extra positions for the robbers, 

which indicate if the robber was captured, or if it already 

arrived to one of its safe places. Thus, based on this 

representation, we can decide for some of the states if 

they lead to the victory or defeat of the cops (robbers) : 

for instance, those states where at least B’ robbers are 

captured are winning states for the cops, while those 

with at least B’’ robbers in their safe places are winning 

states for the robbers. More generally, some states of the 

game are known to lead to the victory or defeat of the 

cops (robbers) or to a draw. 

We will construct the state graph GS, by adding 

directed edges from every state (pozc(1), …, pozc(A), 

pozr(1), …, pozr(B), q) to every state (pozc’(1), …, 

pozc’(A), pozr’(1), …, pozr’(B), (q+1) mod K), where 

only the position of the agent (cop or robber) whose turn 

is to move next is changed, and all the other positions 

remain the same. If GS is acyclic, then we can easily use 

any of the algorithms described in Section 2 for deciding 

the outcome. Otherwise, we can use the other techniques 

presented in Section 2: we can either introduce an extra 

parameter T≥0, indicating the index of the current move, 

which is bounded from above by V(GS)+1 (in which 

case we drop the index q from the game state ; q can be 

easily computed as q=T mod K), or we can use the 

iterative solution. Since V(GS)=O(K·N
A+B

), the time 

complexity of any of the presented approaches is high. 

5.2. THE CASE WITH 1 COP AND 1 ROBBER 



 

 

We now consider the same game as in the previous 

subsection, with the following restrictions. There is only 

one cop and one robber and they move alternately. The 

game starts when the cop chooses an initial vertex, after 

which the robber chooses an initial vertex. Only after the 

initial choices, the cop and the robber start moving 

alternately. Moreover, the graph where all the action 

takes place is undirected. The robber has no safe place. 

Thus, the cop wins if it moves to the same vertex as the 

robber, while the game ends as a draw (or, equivalently, 

the robber wins) if the robber can escape the cop 

indefinitely. At first, we should notice that we can use 

the methods presented in the previous subsection. 

However, this problem was considered in [13] and the 

following generic algorithm was given for deciding if the 

cop has a winning strategy. We say that a vertex X 

dominates another vertex Y if the edge (X,Y) exists in the 

graph and for every other vertex Z, such that Z is a 

neighbor of Y, Z is also a neighbor of X (vertex X may 

also have other neighbors except Y and Y’s neighbors). 

A vertex Y is dominated if there exists at least one vertex 

X such that X dominates Y. It should be obvious that, if 

the cop has a winning strategy, before the last move of 

the robber the cop is located at a vertex X and the robber 

is located at a vertex Y, such that X dominates Y. If the 

graph contains no dominated vertex Y, then the cop has 

no winning strategy (the robber will be able to escape the 

cop indefinitely). The following observation is 

paramount. If a graph G contains a dominated vertex Y, 

then the cop has a winning strategy in G if and only if it 

has a winning strategy in G’=G\Y (i.e. the graph G from 

which we remove the vertex Y, together with all of its 

adjacent edges). With this observation, we have the 

following algorithm: 

1. while the graph has at least 2 vertices and contains at 

least one dominated vertex, then find any dominated 

vertex Y and remove it from the graph 

2. if the graph has only one vertex left, then the cop has a 

winning strategy; otherwise, the robber will be able to 

escape the cop indefinitely. 

Step 1 is executed O(n) times. Thus, the essential part 

of the algorithm is finding a dominated vertex Y 

efficiently. The naive solution is to consider every vertex 

Y at every iteration of Step 1. Then, for every such 

vertex Y, we consider every vertex X which is a neighbor 

of Y, and then we check if every other neighbor Z of Y 

(Z≠X) is also a neighbor of X (the check can easily be 

performed if we represent the graph by using its 

adjacency matrix). If all the conditions hold, we found a 

dominated vertex Y and we do not consider any other 

vertex until the next iteration of Step 1. Afterwards, we 

remove Y from the graph (e.g. by marking it as removed, 

and by removing the edges between Y and its neighbors 

from the adjacency matrix). This approach has O(n
3
) 

time complexity per iteration and, thus, O(n
4
) overall. 

However, in practical settings, this naive solution is quite 

good, because: (1) in dense graphs (i.e. with many 

edges), a dominated vertex Y is found quickly (if one 

exists); (2) in sparse graphs, the time complexity is lower 

than O(n
3
) per iteration. 

Nevertheless, a smarter solution exists. Initially, we 

will compute all the values NVC(X,Y)=the number of 

common neighbors between the vertices X and Y. We do 

this in O(n
3
) time by initializing NVC(*,*)=0 and then 

considering every vertex Z: for every vertex Z we 

consider every pair of neighbors X and Y of the vertex Z 

and we increment NVC(X,Y) and NVC(Y,X) by 1. 

Moreover, we will also compute the values NV(X)=the 

number of neighbors of the vertex X, for every vertex X 

of the graph. Then, at every iteration of Step 1, we will 

consider every vertex Y and check if it is dominated. We 

do this in O(n) time, by considering every neighbor X of 

Y and checking if NVC(X,Y)=NV(Y)-1. If the condition 

holds, then vertex Y is dominated by vertex X. In order to 

remove vertex Y from the graph we first consider every 

neighbor Z of Y and decrease NV(Z) by 1 (and also 

remove Y from the list of neighbors of vertex Z). Then, 

we consider every pair (Z,X) of neighbors of vertex Y, 

and we decrement NVC(Z,X) and NVC(X,Z) by 1. As we 

can see, the time complexity per iteration is O(n
2
). Thus, 

the overall time complexity is O(n
3
). 

6. EQUITABLE RESOURCE ALLOCATION 

6.1. UNCONSTRAINED REALLOCATIONS 

We consider the following problem. We have n 

resource containers, numbered from 1 to n. Each 

container i contains an amount of resources r(i)≥0. We 

want to perform reallocations such that, in the end, every 

container contains the same amount of resources 

q=(r(1)+…+r(n))/n. A reallocation consists of taking 

any amount x of resources from a container i and moving 

them to any other container j. We do not care about 

minimizing the total number of reallocations, but this 

number should be of the order O(n). We will sort the 

containers in increasing order of their resource amounts: 

r(p(1))≤…≤r(p(n)). We initialize a variable left=1 and a 

variable right=N. While left<right we perform the 

following actions: if r(p(left))=q, then left=left+1; else, 

if r(p(right))=q, then right=right-1; otherwise: (1) 

x=min{q-r(p(left)), r(p(right))-q}; (2) we move x 

resource units from the container p(right) to the 

container p(left), i.e. we set r(p(right))=r(p(right))-x and 

r(p(left))=r(p(left))+x. In the end, all the containers will 



 

 

contain q resource units. The time complexity of the 

algorithm is O(n·log(n)), or O(n) if the containers are 

given sorted according to their resource amounts. 

6.2. MAXIMIZING THE AMOUNT OF RESOURCES 

Along a line there are n containers, numbered from 1 

to n (form left to right). Every container i contains an 

amount r(i) of resources. We want to redistribute these 

resources in such a way that the minimum amount of 

resources in any container is maximized. In order to 

perform the redistribution, the resources can be 

transported along the line. If we transport resources on 

the line segment between the containers i and i+1 

(1≤i≤n-1), q(i) resources are consumed because of the 

transportation. We will binary search the maximum 

value Xopt such that there is a redistribution strategy 

which leaves in every container at least Xopt resource 

units. Let’s assume that we selected a value X during the 

binary search. We will now perform a feasibility test. If 

X is feasible, then we can obtain at least X resource units 

in every container and, thus, we will consider larger 

values of X in the binary search next; if X is not feasible, 

then we will consider smaller values during the binary 

search next. The feasibility test has a linear (i.e. O(n)) 

time complexity. We will traverse the containers from 1 

to n (in increasing order) and we will maintain a variable 

E, representing the surplus (if E≥0) or the uncovered 

required amount (if E<0) of resources. We start with 

E=0. Let’s assume that we reached the container i. If 

r(i)≥X, then we increment E by (r(i)-X); otherwise, if 

r(i)<X, then we decrement E by (X-r(i)) (thus, in both 

cases, we can increment E by (r(i)-X)). If i<n then, 

before going to the next container i+1, we perform the 

following actions: (1) if E≥0 then we set E=max{E-q(i), 

0} ; (2) if E<0 then we set E=E-q(i). After traversing all 

the containers, if E≥0 then X is a feasible value; 

otherwise, X is not feasible. The problem can be 

generalized by associating to every container i a non-

decreasing function fi(X) and we want to find the largest 

value of X such that every container i contains at least 

fi(X) resources. The feasibility test is modified slightly: 

when we reach a container i during their traversal, we 

increment E by (r(i)-fi(X)) instead of (r(i)-X). 

6.3. RESOURCE REALLOCATIONS IN A TREE 

We consider a tree with n vertices (numbered from 1 

to n). Every vertex i contains an integer number b(i)≥0 of 

resource units. We can perform reallocations which 

consist of moving one resource unit from a vertex i to a 

neighboring vertex j; the cost of such a move is c(i,j) 

monetary units (c(i,j) may be different than c(j,i)) We 

want to compute a strategy with minimum total cost such 

that, in the end, every vertex i contains exactly q(i) 

resource units (the sum of the b(i) values is equal to the 

sum of the q(i) values; 1≤i≤n). We will root the tree at a 

vertex r and we will establish parent-son relationships, 

based on the chosen root. Then, we will traverse the tree 

from the leaves towards the root. For every node i we 

will compute S(i)=the surplus of resources from vertex 

i’s subtree (S(i) may be negative). We will maintain a 

variable C, representing the total cost of the moves 

which we need to execute (C is zero, initially). Let’s 

assume that we have to handle a leaf i of the tree. If 

b(i)<q(i), then S(i)=(b(i)-q(i)) and we increment C by 

|S(i)|·c(parent(i),i) (q(i)-b(i) resource units will have to 

be moved from leaf i’s parent to leaf i); if b(i)≥q(i) then 

S(i)=b(i)-q(i) and we increment C by S(i)·c(i,parent(i))  

(we will have to move b(i)-q(i) resource units from the 

leaf i to its parent). Let’s assume that we reached an 

internal node i. We initialize S(i) to the sum of the values 

S(j) of the sons j of the vertex i. If b(i)<q(i), we will 

decrement S(i) by (q(i)-b(i)) (q(i)-b(i) resource units 

must be brought to vertex i); if b(i)≥q(i), we will 

increment S(i) by (b(i)-q(i)) (b(i)-q(i) resource units will 

have to be moved from vertex i towards other vertices, 

either in vertex i’s subtree, or towards vertex i’s parent if 

i≠r). If S(i)<0, then |S(i)| resource units will have to be 

moved from vertex i’s parent to vertex i; thus, we 

increment C by |S(i)|·c(parent(i),i). If S(i)≥0 then we will 

have to move S(i) resource units from vertex i towards 

vertex i’s parent; thus, we increment C by 

S(i)·c(i,parent(i)). Every time, we only performed those 

moves which were strictly required; some moves were 

performed before having enough resources in the vertex 

from which the resources had to be moved (for the cases 

with negative S(*)), but these resources will be brought 

later by the algorithm. C will be the minimum total cost 

of the moves which need to be performed such that, in 

the end, every node i contains exactly q(i) resource units. 

7. RELATED WORK 

Two-player games with identical player roles have 

been studied extensively in the literature and many 

techniques for computing optimal strategies were 

developed. We refer the reader, for instance, to [7] and 

[9]. Two-player games with different roles have also 

been studied from multiple perspectives; see [2] for a 

problem similar to the one discussed in subsection 4.2.  

An excellent survey of single- and two-player games 

which can be solved by dynamic programming is 

presented in [15]. An interesting hidden evader pursuit 

problem was brought to my attention by C. Negruseri. A 

hidden evader is located at an unknown vertex of a graph 

G. At each time step, the searcher performs a move and 



 

 

then the evader performs a move. When the searcher 

peforms a move, it selects a vertex of the graph and 

checks if the evader is located at that vertex. If the 

evader is there, then the evader is captured; otherwise, 

the searcher gathers the knowledge that the evader is not 

located at that vertex. The evader’s move consists of 

moving from its current vertex v to a vertex u which is 

adjacent to v (i.e. it is connected to v by an edge); the 

evader cannot remain in the same vertex for two 

consecutive time steps. We want to know if the searcher 

has a strategy according to which it will eventually find 

the evader, no matter where the evader was located 

initially. The problem actually asks to characterize the 

graphs on which such a strategy exists. It turns out that 

such a strategy exists only on graphs in which every 

connected component is an extended caterpillar. An 

extended caterpillar is a tree graph, in which we can 

identify a central path of vertices. Then, every vertex v 

on that path may have as neighbors any number of leaves 

(vertices of degree 1) and any number of leaf-neighbors 

(vertices whose neighbors are only leaves, plus the 

vertex v), except for the (at most) two neighbors on the 

central path. Verifying if a connected component is an 

extended caterpillar is easy. First, we check if it is a tree. 

Then, we mark all the leaves. Afterwards, we mark all 

the leaf-neighbors (i.e. all the vertices having only one 

neighbor which is not a leaf). The remaining unmarked 

vertices must be located on the central path, i.e. every 

such vertex must have at most 2 neighbors which are not 

leaves or leaf-neighbors. Checking if a tree is a 

caterpillar is performed similarly: every vertex with 

degree greater than 1 is allowed to have at most 2 

neighbors with degrees greater than 1. Thus, linear time 

recognitions algorithms for caterpillars and extended 

caterpillars exist. We should note that a caterpillar is also 

equivalent to a tree interval graph (i.e. the class of 

interval graphs which are also trees is equal to the class 

of caterpillar graphs). 

Resource (re)allocation methods and strategies were 

discussed, for instance, in [3], [4], [6] and [8]. Assigning 

and computing resource costs is also an important issue, 

which was partly discussed in [11]. The counterfeit coin 

problem and variations of it have been studied 

extensively, for instance, in [1], [12] and [14]. Some 

cops-and-robbers games were discussed in [10] and [13]. 

8. CONCLUSIONS AND FUTURE WORK 

In this paper we considered several types of rules for 

modelling the interaction between pairs of agents with 

contrasting interests, having identical or different roles. 

We expressed these rules in the context of several two-

player games, for which we presented algorithmic 

techniques for optimizing the decision process of the 

involved agents. As future work, we intend to consider 

other types of rules for modelling the interactions 

between agents, like, for instance, rules based on 

resource negotiations, auctions, and several others. 
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