
HAL Id: hal-00464905
https://hal.science/hal-00464905

Submitted on 18 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithmic Decision Optimization Techniques for
Multiple Types of Agents with Contrasting Interests

Mugurel Ionut Andreica

To cite this version:
Mugurel Ionut Andreica. Algorithmic Decision Optimization Techniques for Multiple Types of Agents
with Contrasting Interests. Metalurgia International (ISSN: 1582-2214), 2009, 14 (special issue no.
11), pp.162-170. �hal-00464905�

https://hal.science/hal-00464905
https://hal.archives-ouvertes.fr

Algorithmic Decision Optimization Techniques for Multiple Types of Agents with Contrasting

Interests

Mugurel Ionut Andreica

Politehnica University of Bucharest, Bucharest, Romania, email: mugurel.andreica@cs.pub.ro

ABSTRACT

In this paper I present several algorithmic techniques for improving the decision process of multiple types of agents

behaving in environments where their interests are in conflict. The interactions between the agents are modelled by using

several types of two-player games, where the agents have identical roles and compete for the same resources, or where

they have different roles, like in query-response games. The described situations have applications in modelling behavior

in many types of environments, like distributed systems, learning environments, resource negotiation environments, and

many others. The mentioned models are applicable in a wide range of domains, like computer science or the industrial

(e.g. metallurgical), economic or financial sector.

KEYWORDS
Contrasting Interests, Decision Optimization Techniques, Two-Player Games, Equitable Resource Allocation.

1. INTRODUCTION

In this paper I present several techniques for

optimizing the decision process of agents which have

contrasting interests. These agents perform their actions

in multiple types of environments, and the interactions

between them are based on various rules. These

interactions are modelled by considering several types of

two-player games, in which the agents have identical

roles (i.e. they compete for achieving the victory in the

game), or in which they have different roles (e.g. the first

agent may ask several restricted types of questions to the

second agent, and the second agent tries to maximize the

number of questions asked by the first agent before

finding the answer it seeks).

In Section 2 we introduce several game theoretic

concepts which are useful in the following sections. In

Section 3 we discuss several two-player games in which

the players have identical roles. In Section 4 we discuss

several games in which the players have different roles.

In Section 5 we consider two agent pursuit games. In

Section 6 we discuss three equitable resource allocation

problems. In Section 7 we present related work and in

Section 8 we conclude and discuss future work.

2. GAME THEORY CONCEPTS

We define in this section the main concepts and

algorithmic techniques which will be used in the

following sections. We consider that a game is played

between two players (or two teams of players), which

move in turns (one at a time, though not necessarily

alternately). Each game has a state, which consists of all

the relevant game parameters (e.g. positions of the two

players or teams). We will consider an extra parameter p

which will be considered explicitly, representing the

player which will perform the next move. Thus, the state

of a game consists of a pair (S,p), where S is a tuple

containing all the other parameters. If the game is

impartial, then both players can perform the same set of

moves, given a particular state of the game. The

objective of every game is, of course, to achieve victory.

We will consider only the following types of winning a

game: (1) the winner is the player which performs the

last move (the losing player cannot perform any valid

move) ; (2) at the end of the game (when the game

reaches a final state), a score is computed for each of the

2 players and the winner is the player with the largest

score ; (3) a set of final states is given, for which the

outcome (which player wins, or if the game ends as a

draw) are known. Situation 2 also allows the game to

end in a draw (equal score). Generally, the states of a

game can be described by a directed acyclic graph GS, in

which every vertex corresponds to a state (S,p). For

every state (S,p), we know the states (S’,p’) which can be

reached by performing one move; GS contains a directed

edge from (S,p) to every such state (S’,p’) For some of

these states we know the outcome directly (victory,

draw, or defeat, for the player p whose turn is to move

next). For the other states we will try to compute the

outcomes in the case when both players play optimally.

For every state (S,p) we will compute a value

bestRes(S,p)=the best result which can be achieved by

the current player p if the game is in state (S,p); the

results can be victory, draw, or defeat. For those states

(S,p) from which no move can be performed, the values

bestRes(S,p) must be given (known in advance). Then,

we will compute a topological sort of GS (since GS is

acyclic) and we will compute the values for the states

(S,p) in reverse order of this sort. For every state (S,p)

we consider all the states (S’,p’) which can be reached

from (S,p) by performing one move. If we have

bestRes(S’,p’)=defeat (and p’≠p) or bestRes(S’,p’)=

victory (and p’=p) for at least one of these states, then

bestRes(S,p)=victory. Otherwise, if at least one of the

considered states (S’,p’) has bestRes(S’,p’)=draw, then

bestRes(S,p)=draw; otherwise, bestRes(S,p)=defeat.

If a score is computed for each player, then the

algorithm changes follows. Every move M modifies the

score of each player q (in the current state (S,p)) by a

value score(S,p,M,q). In general, in these games, every

player attempts to maximize the difference between their

score and the opponent’s score (which is not necessarily

equivalent to maximizing one’s own score). Thus, for

every state (S,p) we will compute maxDif(S,p)=the

maximum difference between the score of the current

player p and the opponent’s score, if the game is in state

(S,p). For those states (S,p) of GS whose out-degree is 0,

the score which is obtained by the player p (and,

possibly, even the one obtained by the opposite player) is

given (it may be 0, or some other value): thus,

maxDif(S,p) is known for these states. For the other

states we make use of the topological sort again. We

traverse the states (S,p) in reverse order of the

topological sort, like before. For a state (S,p) we consider

all the moves M(S,p,1), …, M(S,p,r(S,p)), leading to the

states (S’(1), p’(1)), …, (S’(r(S,p)), p’(r(S,p))). We have

maxDif(S,p) = max{score(S, p, M(S, p, j), p)-score(S, p,

M(S, p, j), opp(p))+(if p’(j)=p then maxDif(S’(j),p’(j))

else –maxDif(S’(j),p’(j))) |1≤j≤r(S,p)}. We denote by

opp(p) the opponent of player p (if the players are

numbered with 1 and 2, we can have opp(p)=3-p).

When the game is impartial and the players move

alternately, we can drop the index p from the state pairs

(S,p); this is because after every move, it will always be

the opponent’s turn (i.e. p’=opp(p), or p’(*)=opp(p)),

and because the game is impartial, both players can

perform the same moves (thus, we have bestRes(S,p)=

bestRes(S,opp(p))=bestRes(S) and maxDif(S,p)=

maxDif(S,opp(p))=maxDif(S)). In the score case, we will

have score(S, p, M(S, p, j), p)=score(S, opp(p), M(S,

opp(p), j), opp(p))=score1(S, M(S, j)) and score(S, p,

M(S, p, j), opp(p))=score(S, opp(p), M(S, opp(p), j),

p)=score2(S, M(S, j)). We now consider the situation in

which the two players play K parallel games. When a

player’s turn comes, it can perform a move in any of the

K games (if the corresponding game still has any valid

moves left). The rules for winning or losing are the same

as in the case of a single game (e.g. the first player which

cannot perform a move in any of the K games, loses the

combined game, or the player whose score is larger

wins). In this case, we can reduce the K games to a

single game, as follows. We consider the graph GSC of

the game, as follows. Let Qi be the state in the i
th

 game

(1≤i≤K); Qi does not contain which player must move

next in game i. Then, we set the state S of the combined

game as S=(Q1, …, QK), i.e. a tuple consisting of the

individual states of each of the K games. For every state

(Qj’,p’) towards which there is a move from the state

(Qj,p) in GS(j) (i.e. the state graph of game j), we add a

directed edge from ((Q1, …, QK), p) to ((Q1, …, Qj-1, Qj’,

Qj+1, …, QK), p’) in GSC (1≤j≤K). As before, if the

players perform moves alternately, then the indices p (p’)

can be dropped. GSC has V(GS(1))·…·V(GS(K)) states

(where V(GS(i)) is the number of states in GS(i)). We

can use any of the algorithms mentioned before on GSC.

We will consider next three situations for the case

when we do not use scores, which are not handled at all

or are handled inefficiently by the algorithms described

previously: (1) the graph GS of a game contains cycles;

(2) the graph GSC of a combined game contains too

many states; and (3) the graph GS of a game (not

necessarily combined) contains too many states.

For case (1), if GS contains cycles, then there is a

chance that the game may never end. Thus, we will have

to introduce extra rules. One possibility would be for the

game to last for at most TMAX moves (after which,

depending on the state of the game, one of the player

wins, or the game ends as a draw). In this case, we

construct a graph GST which contains vertices of the

form (Q,p,t) (0≤t≤TMAX), where (Q,p) is a state in GS.

For every directed edge (Q,p)->(Q’,p’) from GS, we add

the edges (Q,p,t)->(Q’,p’,t+1) (0≤t≤TMAX-1) in GST.

Graph GST is a directed acyclic graph. Since we now the

result for the states (Q,p,TMAX), we can compute the

game results for the other states, by using one of the

algorithms described before. Another possibility is to

decide that, if the game continues to infinity, then one of

the players wins/loses automatically (or the game ends as

a draw). We notice that the game continues to infinity if

more than V(GS) moves are performed. Thus, we can set

TMAX=V(GS)+1, after which we construct the graph

GST as described above and run one of the previously

mentioned algorithms on it; for the states (Q,p,TMAX) of

GST we will set the result corresponding to the game

continuing to infinity. Another possibility is to use the

following iterative algorithm (inspired from [10]). We

initially set bestRes(S,p)=uninitialized (for every state S).

Then, we set bestRes(Sfin,p)=victory, defeat or draw (for

all those states Sfin for which the result is given from the

beginning). Then we proceed iteratively. At every

iteration we consider all the states (S,p) with

bestRes(S,p)=uninitialized. For every pair (S,p) we

consider all the states (S’,p’) which can be reached if

player p performs a move from S. If we find a state

(S’,p’) with p’=p such that bestRes(S’,p’)=victory, or a

state (S’,p’) with p’≠p such that bestRes(S’,p’)=defeat

then we set bestRes(S,p)=victory. If all the considered

states (S’,p’) have bestRes(S’,p’)≠uninitialized then we

can compute bestRes(S,p) as described in one of the first

algorithms from this section. At every iteration, at least

one value bestRes(S,p) must change from uninitialized to

victory, defeat, or draw. When no more such value

changes occur, then we finish this stage. Afterwards, we

run a similar algorithm again, considering at every

iteration every state (S,p) with bestRes(S,p)=uninitialized

and the player p would lose the game if the game

continued to infinity. For each pair (S,p) we consider all

the states (S’,p’) in which player p can move, and if

bestRes(S’,p’)=draw for one of them, then we set

bestRes(S,p)=draw. Like before, we stop when no more

values bestRes(S,p) change. All the states (S,p) with

bestRes(S,p)=uninitialized will be set to the values

corresponding to the game continuing to infinity (player

p wins, loses, or the game ends as a draw). The total

number of iterations is O(V(GS)) and the time

complexity per iteration is O(V(GS)+E(GS)) (where

E(GS) is the number of edges of the graph GS). As

before, if the game is impartial and the players move

alternately, then the index p can be dropped (because

from a state (S,p) we always move to another state

(S’,p’) with p’≠p). For case (2) we will consider only

impartial games, in which the winner is the player

performing the last move, the players move alternately

and the state graph of the game is acyclic (or the state

graphs of the parallel games are acyclic, in the case of a

combined game). The Sprague-Grundy game theory [9]

was developed for such cases. Let’s assume that we have

a combined game, composed of K parallel games. The

state graph of each game i is GS(i). For every state Q in

GS(i) (1≤i≤K) we compute the value Gi(Q)=the Grundy

number associated to the state Q. For the states Q from

which no move can be performed we set Gi(Q)=0. For

the other states Q, in reverse topological order, we

compute Gi(Q) as follows. Let Q1, …, Qr be the states

which can be reached from state Q by performing one

move. Let GQ={Gi(Qj)|1≤j≤r}, i.e. the set composed of

the Grundy numbers of the states Q1, …, Qr.

Gi(Q)=mex(GQ), where mex(SA) is the minimum

excluded value from the set SA (i.e. the minimum non-

negative integer number which does not belong to the set

SA). For a state Q in GS(i), if Gi(Q)>0, then the player

whose turn to move from state Q is next has a winning

strategy (considering only the game i); if Gi(Q)=0, then

the player to move next from state Q cannot win in the

game i if the other player plays optimally. The proof of

these statements is simple. We notice that we have

bestRes(i)(Q)=defeat every time we have Gi(Q)=0 and

bestRes(i)(Q)=victory, every time Gi(Q)>0 (we denoted

by bestRes(i) the values bestRes computed only for the

game i). Let’s consider now that every game i is in the

state Qi. The Grundy number of the combined game

(composed of the K parallel games) is GC=G1(Q1) xor ...

xor GK(QK). If GC>0 then the player which will perform

the next move (from the state (Q1, …, QK)) has a winning

strategy; otherwise, if GC=0, then the player performing

the next move from the state (Q1, …, QK) will lose the

game if its opponent plays optimally. The consequence

of this result is that there is there is no need to construct

the composed state graph GSC (consisting of

V(GS(1))·…·V(GS(K)) vertices). Within the game,

whenever we are in a combined state (Q1, ..., QK), we

can evaluate the outcome based on the Grundy numbers

of the independent states Q1, …, QK, in the

corresponding state graphs GS(1), …, GS(K).

For case (3) the construction of the state graph GS is

too complicated even when it is not a combined game.

We consider the same restrictions as in case (2). Thus,

we cannot compute explicitly the values bestRes or the

Grundy numbers. For some games, however, the Grundy

numbers have some interesting properties, like

periodicity. For these games we will attempt to find a

pattern (a rule) for computing the Grundy number of any

given state and we will use it for computing the Grundy

numbers directly. These games will then be easily

extended to combined games in which we won’t have to

construct the state graphs GS(i) explicitly.

In some cases (with the same restrictions as in case

(2)) we only need to compute the outcome of the game

for a given initial state of the game. Let’s assume that we

have a combined games consisting of K types of parallel

games, containing x(i)≥0 instances of every type i

(1≤i≤K). In such cases, we will compute Gi(Qi) (where

Qi is a state of a game instance of type i) and then we

compute GG(i)=0, if x(i) is even, or GG(i)=Gi(Si), if x is

odd, where Si is the initial state of game i. The Grundy

number of the combined game is then GG(1) xor ... xor

GG(K). This way, the numbers x(i) can be very large,

because we are only interested in their parity.

3. 2 AGENTS WITH IDENTICAL ROLES

3.1. A PATH GAME ON A TREE

We have a tree with n vertices. All of the vertices are

initially unmarked. Two players play the following

game. Player A chooses a vertex v and marks it. Then,

player B chooses an unmarked vertex u which is adjacent

to v, and marks it. The game continues, the two players

taking turns alternately. At its turn, the current player

chooses an unmarked vertex u which is adjacent to the

vertex marked by the other player during the previous

turn, and marks it. When one of the players cannot

choose a vertex satisfying all the constraints when its

turn comes, that player loses the game. We want to find

out for which initial vertices v player A has a winning

strategy against player B. We will first present a linear

time algorithm for the case when the vertex v is fixed.

We root the tree at vertex v, thus defining parent-son

relationships between vertices. We make use of the

notations from [4]. Then, we traverse the tree bottom-up

(from the leaves towards the root) and, for each vertex i,

we compute win(i)=true, if the player whose turn has

come is allowed to choose vertex i, chooses it and has a

winning strategy from now on (or false, if it doesn’t have

a winning strategy as a result of choosing vertex i); after

choosing vertex i, the opposite player will have to

choose only one of vertex i’s sons. If i is a leaf, then

win(i)=true. For a non-leaf vertex i, win(i)=true if all the

values win(s(i,j)) (1≤j≤ns(i)) of its ns(i) sons are false

(i.e. whichever vertex the other player chooses next, it

won’t be able to win). If win(v)=true, then player A can

choose vertex v at its first turn and has a winning

strategy from now on. Obviously, we could run this

algorithm with every tree vertex as the root, in order to

check if player A could choose that vertex at its first turn.

However, this approach would lead to an O(n
2
) solution.

We will now show how we can maintain the linear time

complexity. We will borrow ideas from the algorithmic

framework for trees introduced in [5]. We will first

choose an initial vertex v and run the algorithm

described previously. During the algorithm we will also

compute ntwin(i)=the number of sons s(i,j) of a vertex i

for which win(s(i,j))=true. Then, we will traverse the

tree from top to bottom, by using a Depth-First Search

(DFS) starting at the root v. For every visited vertex i, we

will compute rwin(i)=the value of win(i) if the tree was

rooted at vertex i, and ntrwin(i)=the number of sons of

vertex i with win(i)=true if i were the root of the tree.

Obviously, rwin(v)=win(v) and ntrwin(v)=ntwin(v).

Let’s assume that we visited a vertex i (and we have

already computed rwin(i) and ntrwin(i)) and we now

want to visit one of its sons s(i,j) (actually, we will

recursively visit the subtree of s(i,j)). At first, we will

compute ntrwin’(i,j)=ntrwin(i)-(if win(s(i,j))=true then 1

else 0). ntrwin’(i,j) is the number of sons q of vertex i

with win(q)=true, if i were the root of the tree and s(i,j)

were not one of vertex i’s sons. Then, we will compute

ntrwin(s(i,j))=ntwin(s(i,j))+(if (ntrwin’(i,j)=0) then 1

else 0). If ntrwin(s(i,j))=0 then rwin(s(i,j))=true;

otherwise, rwin(s(i,j))=false. This way, in O(n) time, we

were able to compute the values rwin(*). At its first turn,

player A can choose any vertex u with rwin(u)=true.

3.2. GATHERING AN EVEN NUMBER OF OBJECTS

There is one pile consisting of N objects (N is odd).

Two players perform moves alternately. When its turn

comes, a player may remove from the pile any number of

objects x between 1 and K (as long as there are at least x

objects in the pile). The player keeps the objects he/she

removed and adds them to the objects removed during

previous moves. When the pile becomes empty, each

player counts the number of objects he/she gathered

from the pile during the game. The winner of the game is

the player who gathered an even number of objects

(since the total number of objects is odd, only one of the

two players may gather an even number of objects). In

this case, the Sprague-Grundy theory cannot be used,

because the winner is not the player who performs the

last move. Instead, we can use dynamic programming.

We will compute two sets of values: win[0,i] and

win[1,i]. win[0,i] is 1, if the pile contains i objects, the

winner must gather an even number of objects and the

player whose turn is next has a winning strategy (and 0,

otherwise); win[1,i] is defined in a similar manner,

except that the winner must gather an odd number of

objects. We have win[0,0]=1 and win[1,0]=0. For

1≤i≤N, we have:








=++

≤≤∃

=

otherwise 0,

0c]-i2, mod 2)) mod c)-((i12) mod win[((c

such that K})min{i,c1(if1,

i]win[0,
 (1)








=+

≤≤∃

=

otherwise 0,

0c]-i2, mod 2)) mod c)-((i2) mod win[((c

such that K})min{i,c1(if1,

i]win[1,
 (2)

If win[0,N]=1, then the first player has a winning

strategy; otherwise, the second player has one. The time

complexity of an algorithm implementing the equations

above directly is O(N·K). This algorithm can be

improved to O(N), in the following way. We will

compute the same sets of values as before, but we will

maintain a structure last[x,y,z] (0≤x,y,z≤1), with the

following meaning: the last value of i (number of objects

in the pile) such that: the parity of the number of objects

gathered by the winner is x (0 for even, 1 for odd),

y=((the number i of objects in the pile) mod 2) and

z=win[x,i]. The new equations for win[0,i] and win[1,i]

(1≤i≤N) and the algorithm are given below:









≤

≤+

=

otherwise 0,

K0]) 2), mod 1)-((i 2), mod 1)-last[((i-(i if 1,

K0]) 2), mod (i 2), mod (ilast[1-(i if 1,

i]win[0,
 (3)









≤+

≤

=

otherwise 0,

K0]) 2), mod 1)-((i 2), mod 1)-((ilast[1-(i if 1,

K0]) 2), mod (i 2), mod last[(i-(i if 1,

i]win[1,
 (4)

GatherAnEvenNumberOfObjects:
last[x,y,z]=-∞, for all tuples (x,y,z)

win[0,0]=1; win[1,0]=0

last[0,0,win[0,0]]=0; last[1,0,win[1,0]]=0

for i=1 to N do

compute win[0,i] and win[1,i] using the equations above

 last[0, (i mod 2), win[0,i]]=i

 last[1, (i mod 2), win[1,i]]=i

The values win[0,N] and win[1,N] (with odd N)

present some unexpected patterns. For even K, we have

win[0,N]=0, only if (N mod (K+2)=1). For odd K, we

have win[0,N]=0, only if (N mod (2·K+2)=1). With

these observations, we can determine in O(1) time which

of the two players has a winning strategy. We should

notice that, by computing the win[0,i] and win[1,i]

values, we also solved the version of the game in which

the winner has to gather an odd number of objects. The

values of win[1,N] exhibit similar patterns. For odd K,

we have win[1,N]=0, only if (N mod (2·K+2)=(K+2)).

For even K, win[1,N]=0, only if (N mod (K+2)=(K+1)).

Similar rules can be developed for win[0,N] and

win[1,N] when N is even, but in this case both players

may win the game: for even N and odd K, win[0,N]=0

only if (N mod (2·K+2)=(K+1)), and win[1,N]=0 only if

(N mod (2·K+2)=0); for even N and even K, win[0,N] is

always 1, and win[1,N]=0 only if (N mod (K+2)=0). A

short version of the presented solution was given in [7].

3.3. GATHERING OBJECTS FROM A BOARD

We consider a linear board, on which n objects are

placed, numbered from 1 to n (from left to right). Every

object i has a value v(i)≥0. Two players perform moves

alternately. At each turn, the current player gathers one

of the two objects from the left or right end of the board.

The game ends when all the objects were gathered. At

the end, every player p computes its score score(p) as the

sum of the values of the objects he/she gathered. Both

players want to maximize the difference between their

score and the opponent’s score. Optimal strategies

(considering that both players play optimally) can be

computed using dynamic programming. First, we

compute the prefix sums SP(i)=v(1)+…+v(i) (SP(0)=0

and SP(1≤i≤n)=SP(i-1)+v(i)). With the prefix sums we

can compute the sum Sum(a,b) of all the values of the

objects in an interval [a,b] in O(1) time: Sum(a,b)=

SP(b)-SP(a-1). Then, we compute smax(i,j)=the

maximum score that the current player may obtain if the

board consists only of the objects from i to j (and we

ignore the other objects). We have smax(i,i)=v(i). For

i<j, we will consider the pairs (i,j) in increasing order of

l=j-i. Thus, we have: for l=1 to n-1 do: for i=1 to n-l do:

j=i+l; smax(i,j) = max{v(i)+Sum(i+1,j)-smax(i+1,j),

v(j)+Sum(i,j-1)-smax(i,j-1)}. When the number of

objects is even and the purpose of the game is for one of

the players to obtain a larger score than the other one,

the first player always has a strategy which guarantees

him/her a victory or a draw. Let SumOdd (SumEven) be

the sum of the values of the objects numbered with odd

(even) numbers. The first player can always play in such

a way that it gathers all the odd (even) numbered objects:

at every move it chooses the object with odd (even)

number, leaving the opponent to choose between two

objects with even (odd) numbers. Thus, it can play in

order to obtain a score equal to the larger of the two

sums (SumOdd or SumEven).

3.4. GATHERING CHARACTERS FROM A BOARD

We consider a linear board, on which n characters of

an alphabet A are placed, numbered from 1 to n (from

left to right). The character on position i is c(i). Two

players move alternately. Initially, they have an empty

string S. At each turn, the current player can remove the

character at the left or right end of the board and add it to

the end of S. The purpose of the first player is to obtain

the string S which is lexicographically minimum, while

that of the second player is to obtain a string S which is

lexicographically maximum. The outcome of the game

can be computed by using dynamic programming. We

compute Sres(i,j)=the resulting string, if the board

consisted only of the characters on the positions from i to

j. Obviously, Sres(i,i)=c(i). Like in the previous sub-

section, we consider the pairs (i,j) (with i<j) in

increasing order of the value j-i. For a pair (i,j) we need

to determine which player p will perform the move: p=1

if (i-1+n-j) is even, and p=2 if (i-1+n-j) is odd. If p=1,

then Sres(i,j)=min{c(i)+Sres(i+1,j), c(j)+Sres(i,j-1)},

where we denoted by A+B the concatenation of the

strings A and B (c(i) can also be considered as a one-

character string). If p=2 then Sres(i,j)=max{

c(i)+Sres(i+1,j), c(j)+Sres(i,j-1)}.

3.5. GATHERING MANY OBJECTS

Two players play the following game. Initially, they

have N objects in a pile. The two players perform moves

alternately and the game proceeds in rounds. At every

move, each player p may take from the pile any number

of objects x which belongs to a given set S(p) (S(p)

always contains the number 1), where p=1 or 2 is the

index of the player. Every player puts the taken objects

aside. The player taking the last object gets to keep all of

his objects, while the other player must put all the

objects he/she took back into the pile. After a player

takes the last object, a round finishes. At the next round,

the player performing the first move is: (case 1) the one

who took the last object in the previous round; (case 2)

the one who did not take the last object in the previous

round. The game ends when no more objects are put

back into the pile. The winner of the game is the player

who gathered the largest number of objects overall. The

first move of the game is performed by player 1 and we

want to know which of the two players will win (in

either of the two cases), considering that both will play

optimally. We will compute the values Gmax(i,j,q,p)=the

maximum total number of objects which can be gathered

by the player p (whose turn to move is next), knowing

that this player has i objects put aside in this round, the

opponent has j objects put aside in this round, and the

pile contains q objects. Gmax(0, 0, N, 1) will be the

answer to our problem (i.e. the largest number of objects

that player 1 can gather; if this number is larger than N/2,

then player 1 will win, if it is equal to N/2 then the game

ends as a draw; otherwise, player 1 will lose the game).

If q=0 then the previous player emptied the pile. Thus,

the opponent gets to keep its j objects. We have

Gmax(i,j,0,p) equal to Gmax(0,0,i,p) (for case 2), or to

(i-Gmax(0,0,i,3-p)) (for case 1). For q≥1 we will

consider every value k from S(p), such that k≤q. If the

current player p took k objects from the pile at its next

move, then it would have i+k objects put aside, the

opponent would have j objects put aside and there would

be q-k objects left in the pile. At the next move, the

opponent would move and would be able to gather,

overall, Gmax(j, i+k, q-k, 3-p) objects. Thus, the current

player p will be able to gather at most (i+j+q)-Gmax(j,

i+k, q-k, 3-p) objects. Thus, Gmax(i,j,q,p)=

max{(i+j+q)-Gmax(j, i+k, q-k, 3-p) | k∈S(p) and k≤q}.

We will compute the values Gmax(i,j,q,p) in increasing

order of the sum (i+j+q), starting from i=j=q=0

(Gmax(0,0,0,*)=0). The tuples (i,j,q) with the same sum

(i+j+q) will be considered in increasing order of q. The

time complexity of the algorithm is O(N
3
·max{|S(1)|,

|S(2)|}), which, in the worst case, is O(N
4
). When

S(1)=S(2) we can drop the index p (and the reference 3-

p) from the states of the table Gmax, maintaining only

the 3 indices i, j, and q.

3.6. PARALLEL TREBLECROSS

We consider a combined game, consisting of K types of

simple games. We have x(i)≥0 identical instances of every

type of game i (1≤i≤K). An instance of a game i consists of

a linear board containing N(i)≥3 positions (numbered from

1 to N(i)). Some of these positions are unmarked, while the

others are marked. During a simple game, the two players

make moves alternately. At every move, the current player

chooses one of the unmarked positions and marks it. When,

as a result of a player’s move, there are 3 consecutive

marked positions, then that player wins the game. In the

initial state of a simple game, there will not be any two

consecutive marked positions and neither two marked

positions separated by an unmarked position between them

(because, in this game, the first player would win

immediately). In a combined game, the next player to move

can choose an unmarked position from any of the K games.

The winner is the one obtaining three consecutive marked

positions in any of the K games. We want to decide which

of the two players (the first player, performing the first

move, or the second player) has a winning strategy.

Let’s consider a linear board in which some positions

are marked and the others are unmarked and in which the

current player cannot win at its next move. At its next move,

no player will choose an unmarked position which is

adjacent to a marked position (because then the other player

would win at its next move) or which is located two

positions away from it (i.e. if position i is marked, then the

player will not choose the positions i-1, i-2, i+1, or i+2 for

its next move, if they are unmarked, unless it is forced to do

so). Thus, we can consider all the unmarked positions which

are at distance 1 or 2 from a marked position as being

lightly marked. Then, the unmarked positions which are not

lightly marked form a set of R≥0 maximal disjoint intervals

(composed of consecutive unmarked positions which are

not lightly marked), separated by marked or lightly marked

positions. The lengths of these intervals are L(1), …, L(R)

(L(i)≥1; 1≤i≤R). We will compute G(Q)=the Grundy

number for a linear board consisting of Q unmarked

positions. G(0)=0. For Q≥1, we will consider all the Q

positions i which the player can select: G(Q)=

mex({G(max{i-3, 0}) xor G(max{Q-i-2,0})) | 1≤i≤Q}). The

Grundy number of the initial board is G(L(1)) xor … xor

G(L(R)). This way, we can compute a Grundy number for

every instance of a game i. If (x(i) mod 2=0) then GG(i)=0;

otherwise, GG(i)=the Grundy number of an instance of

game i. The Grundy number of the entire combined game is

GG(1) xor … xor GG(K). If this number is 0, then the

second player has a winning strategy; otherwise, the first

player has a winning strategy.

4. 2 AGENTS WITH DIFFERENT ROLES

4.1. GUESSING A SECRET STRING

We consider a secret string S, composed of symbols

from the set {0, 1, ..., K-1}, and having an unknown

length L. The player must ask questions in order to

identify the string S. A question has the following form:

Ask(S’), and the answer is true, if S’ is a (not necessarily

contiguous) subsequence of S (i.e. if S’ can be obtained

from S by deleting zero or more symbols), or false,

otherwise. We want to determine the string S by asking

as few questions as possible. I will present a strategy

which asks at most (K+1)·(L+1) questions.

We will identify the string S one step at a time. We

will maintain a representation SR of S, having the

following structure. SR will be a sequence of zones,

where each zone is of one of the following three types:

uncertain zone (type 1), empty zone (type 2), and certain

zone (type 3). Before and after every uncertain or empty

zone there is a certain zone (except, possibly, for the first

and last zone of SR). A certain zone is composed of just

one symbol. Let’s assume that SR consists of Q zones

(numbered, in order, from 1 to Q). The type of zone i is

denoted by ztype(i) (1≤i≤Q). Initially, SR consists of only

one uncertain zone. We will adjust the representation SR

one step at a time, in rounds, until it will contain no more

uncertain zones. When that happens, the concatenation

of the symbols of the certain zones (from the first one to

the last) will be the secret string S. At every round we

will choose the first uncertain zone i from SR (the one

with the lowest index). Let i-1 and i+1 be the certain

zones before and after the uncertain zone i (if they exist).

Let cs(i-1) and cs(i+1) be the symbols corresponding to

these two zones (if i-1=0 then cs(i-1)=0; if i+1>Q then

cs(i+1)=0). Let cstart=max{cs(i-1), cs(i+1)}. We will

consider, one at a time, every character c (cstart≤c≤K-1)

and we will construct the string S’(c), as follows: we

concatenate all the symbols of the certain zones j’<i

(from the lowest index to the largest one), then we add

the symbol c, and then we add at the end the

concatenation of all the symbols of the certain zones

j’’>i (from the lowest index to the largest one). Then, we

ask the question Ask(S’(c)). When we get an affirmative

answer, we break the loop (i.e. we do not construct the

strings S’(c’) with c<c’≤K-1) and then we modify the

representation SR. The uncertain zone i will be replaced

by an uncertain zone, followed by a certain zone

containing the symbol c, and then followed by another

uncertain zone. These 3 zones are inserted in SR in the

place of the former uncertain zone i. If the answer is

negative for every question, then we transform the

uncertain zone i into an empty zone. The round ends

either by replacing the uncertain zone i by three other

zones, or by turning it into an empty zone. Then, we will

move to the next round. The algorithm ends when SR

contains no more uncertain zones. We notice that we ask

at most K questions at every round. The total number of

rounds is at most 2·L+1, because: (1) there may be at

most L rounds in which a new certain zone is created; (2)

there will never be more than L+1 uncertain zones which

are turned into empty zones, during the execution of the

algorithm. So, apparently, we may get to ask at most

2·K·(L+1) questions. However, because at every round

we do not consider the symbol c in the range [0,K-1],

but in the range [cstart,K-1], the total number of

questions is at most (K+1)·(L+1).

4.2. HOTTER OR COLDER

In this section we consider the following resource

discovery problem, modelled as a guessing game. An

agent thinks of a secret natural number S from the

interval [1,N] (the value of the resource amount). At the

first question, a second agent (the player) asks an integer

number x and expects no answer. At each of the next

questions, whenever the player asks an integer number y

(and at the previous question he/she asked a number x),

it will receive the answer Hotter (Colder), depending on

whether the secret number S is closer to (farther from) y

than to (from) x. If |S-x|=|S-y|, any of the two answers

may be received. The game ends when the player is

absolutely sure which the secret number S is. We want to

find a strategy which asks a minimum number of

questions in the worst case (i.e. no matter what the secret

number is). We consider two versions of this problem,

one in which the number asked at every question must be

a valid number (i.e. it must be one of the potential values

for S, considering all the previous answers), and one in

which it doesn’t need to be a valid number. Both

solutions are similar. We will compute a table T(a,b,x)=

the minimum number of questions required to find S in

the worst case, if S is within the interval [a,b] and the

player asked x at the previous question. The answer will

be min{T(1,N,x)|1≤x≤N} (at the first question, it makes

no sense to ask for an invalid number). If a=b, then

T(a,b,x)=0. For a<b, we will consider all the

possibilities for the number y to be asked at the next

question. In the first version, we will consider that y is

between a and b; in the second version, y’s range is

computed such that either (x+y)/2 belongs to the interval

[a,b], or y is closer to [a,b] than x (we define distance(z,

[a,b])=if a≤z≤b then 0 else min{|z-a|, |z-b|}). We now

need to evaluate the maximum number of questions that

the strategy will need to ask in the future, in case it asks

y at the next question. If the answer is Hotter, then the

secret number belongs to the intersection of [a,b] with

closerPart(y,x); if the answer is Colder, the secret

number belongs to the intersection of [a,b] with

closerPart(x,y). closerPart(u,v) is defined as follows: if

(u≤v) then [u, floor((u+v)/2)] else [ceil((u+v)/2), u]. Let

[c’,d’] be the new (reduced) interval to which the secret

number belongs if the answer is Hotter, and [c’’,d’’] the

interval to which it belongs if the answer is Colder. The

maximum number of questions which may need to be

asked after asking y at the next question is

Q(a,b,x,y)=max{T(c’,d’,y), T(c’’,d’’,y)}. Thus, for a<b,

T(a,b,x)=1+min{Q(a,b,x,y)| y obeys the conditions

mentioned above}. The time complexity of this solution

is roughly O(N
4
), but can be reduced to O(N

3
), by using

the following observation: T(a,b,x)=T(1, b-a+1, x-a+1).

This observation says that the actual interval [a,b] is not

important for computing the number of required

questions, only its length is. Thus, we will compute

T’(L,x)=the minimum number of questions required to

find S in the worst case, if S is within the interval

[a,b]=[1,L] and the player asked x at the previous

question (whenever the interval [a,b] is mapped to the

interval [1,L], x is also decreased by (a-1), in order to

maintain its position relative to a and b). With this

definition, we have Q’(L,x,y)=max{T’(d’-c’+1, y-c’+1),

T’(d’’-c’’+1, y-c’’+1)} (instead of Q(a,b,x,y)) and

T’(L,x)=1+min{Q’(L,x,y)| y obeys the given conditions}.

The problem can be extended as follows. Let’s

assume that before getting the first answer, the player

must ask D≥1 questions. Then, at the (D+1)
th

 question,

the (D+1)
th

 value is compared against the first value and

we get the answer Hotter or Colder as before. Then, at

every question qu≥D+1, the value asked at that question

is compared against the value asked at the question qu-D

and the answer Hotter or Colder is given. The case

described so far is equivalent to the extended problem

for D=1. The strategy can be adapted as follows. The

index x of the values T(a,b,x) and Q(a,b,x,y) is replaced

by a tuple of D values, representing the previous D

values asked: x, x2, …, xD (we denoted the first value by

x, instead of x1, on purpose). Then, Q(a, b, x, x1, …, xD,

y)=max{T(c’, d’, x2, …, xD, y), T(c’’, d’’, x2, …, xD, y)}

and T(a, b, x, x1, …, xD)=1+min{Q(a, b, x, x1, …, xD, y)|y

obeys the specified conditions}. For the case in which the

indices a and b are replaced by the length b-a+1 of the

interval [a,b], we perform the same substitutions. Then,

we have Q’(L,x,x2,…,xD,y)=max{T’(d’-c’+1,x2-c’+1, …,

xD-c’+1, y-c’+1), T’(d’’-c’’+1, x2-c’’+1, …, xD-c’’+1, y-

c’’+1)} and T’(L,x,x2,…,xD)=1+min{Q’(L,x,x2,…,xD,y) |

y obeys the specified conditions}. The time complexity

now becomes O(N
D+3

) (for the first solution), or O(N
D+2

)

(for the second solution).

4.3. FINDING A COUNTERFEIT COIN

We are given a set of n≥3 coins, out of which one is

different (heavier or lighter) than the others. We have a

balance with 2 pans. We can place any equal number of

coins k (1≤k≤n/2) on each pan and compare the total

weight of the coins on the left pan to the total weight of

the coins on the right pan (i.e. ask a question). There are

3 possible outcomes: the coins on the left pan are lighter

than, heavier than, or of the same weight as those on the

right pan. We assign to each coin i a set C(i) which

consists of all the possible types coin i may have (e.g.

normal, lighter, or heavier). Initially, all the sets C(i) are

equal to {lighter, heavier, normal}. The current state S of

the game consists of all the sets C(i). After every

comparison performed, some of the sets C(i) will be

reduced. We define the uncertainty U(S) of a state S to

be equal to -1, plus the sum of the values (|C(i)|-1)

(1≤i≤n); |C(i)| denotes the cardinality of the set C(i). At

each moment during the game (when the uncertainty is

not zero), every set C(i) (coin i) can be of 4 types: (1)

{normal, lighter, heavier}; (2) {normal, lighter}; (3)

{normal, heavier}; (4) {normal}. We denote by num(i)

the number of sets (coins) of type i (1≤i≤4). Obviously,

num(1)+num(2)+num(3)+num(4)=n. When asking a

question, we can place any combination of coins of each

type on each pan, with the condition that coins of type 4

are placed on at most one of the pans. If the result of a

question Q is that the coins on the left (right) pan are

lighter than those on the right (left) pan, then we remove

the element heavier from the sets C(i) of the coins i on

the left (right) pan and the element lighter from the sets

C(j) of the coins j on the right (left) pan. Moreover, the

sets C(k) of all the coins k which were not placed on any

pan are set to {normal}. If the sets of coins on the two

pans have equal weights, then we set the sets C(i) of the

coins i placed on any of the two pans to {normal}. If, at

some point, only one set C(i) is different than {normal}

and contains only two elements, then coin i is the

different coin: if (lighter∈C(i)), then coin i is lighter

than the other n-1 coins; otherwise, coin i is heavier.

Notice that before receiving the first answer in

which the coins on one of the pans are lighter or heavier

than those on the other pans, we only have sets of two

types: 1 and 4. After receiving the first answer where the

coins on the two pans have different weights, then we

have no more sets of type 1. As long as we only have

sets of types 1 and 4, we have O(n
2
) possible questions

(at each step). A question is uniquely defined by the total

number of coins k on each of the two pans and by the

number x≤min{num(1), k} of coins of type 1 which are

placed on the left pan. The right pan will contain k coins

of type 1 and the left pan will contain k-x extra coins of

type 4 (we must have x+k≤num(1)). If the weight of the

two pans is equal, then the total uncertainty decreases by

2·(k+x). If one of the pans is lighter (heavier) than the

other, then the total uncertainty decrease by

k+x+2·(num(1)-k-x)=2·num(1)-k-x. If we denote by

S(k,x)=k+x, we notice that in the first case the total

uncertainty decreases by 2·S(k,x), and in the second case,

by 2·num(1)-S(k,x). The best case is when the minimum

value of the two uncertainty decrements is as large as

possible. This occurs when 2·S(k,x)=2·num(1)-S(k,x)

and, thus, S(k,x) is equal either to floor(2/3·num(1)) or to

ceil(2/3·num(1)). Thus, we have only 2=O(1)

possibilities for choosing the next question. Once S(k,x)

is fixed, we can choose k=ceil(S(k,x)/2) and x=S(k,x)-k.

When we have only coins of types 2, 3 and 4, there

are O(n
4
) possible questions for the next step. A question

is defined by the number of coins k placed on each pan,

the number x of coins of type 2 (x≤num(2)) and the

number y of coins of type 3 placed on the left pan

(y≤num(3) and x+y≤k), and the number z of coins of type

2 placed on the right pan. The left pan will also contain

k-(x+y) coins of type 4 and the right pan will also

contain k-z coins of type 3. We must have num(2)-x≥z

and num(3)-y≥k-z, i.e. num(2)-x≥z≥k+y-num(3)

(x+y+k≤num(2)+num(3)). If the result of such a

question is that the coins on both pans have equal

weights, then the total uncertainty decreases by

(x+y+z+k-z)=(x+y+k). If the coins on the left pan are

lighter, then the uncertainty decreases by (y+z+num(2)-

x-z+num(3)-y-(k-z)) = (num(2)+num(3)-x+z-k). If the

coins on the right pan are lighter, then the uncertainty

decreases by (k-z+x+num(2)-x-z+num(3)-y-(k-

z))=(num(2)+num(3)-z-y). Let’s assume that x+y=S(x,y),

y+z=S(y,z) and D(x,z)=x-z. Obviously, the uncertainty

depends on the values S(x,y), S(y,z) and D(x,z), rather

than on the actual x, y and z values. Let’s consider a

different value z’, such that z-z’=dz. Then we have

y’=y+dz, x’=x-dz and x’-z’=x-dz-(z-dz)=x-z. Thus, for

any value of z, we can find a pair (x,y) which maintains

the same values of S(x,y), S(y,z) and D(x,z). The

maximum possible difference dzmax (by which a chosen

value of z can be reduced) has the following properties:

z-dzmax≥0, x-dzmax≥0, y+dzmax≤num(3) and y’+k-

z’≤num(3) � y+dzmax+k-(z-dzmax)≤num(3). From

these constraints it is trivial to compute the largest

possible value of dzmax, given the values of x, y and z.

The key observation here is that if x, y and k are fixed,

then z can be chosen to be as small as possible (but

without violating the constraints). Choosing z can be

done in O(1) time, leaving us with only O(n
3
)

possibilities, for the parameters x, y and k.

A better approach is the following. We would like to

maximize the minimum value of the uncertainty

decrements of each of the three situations. We can do

this by binary searching this minimum (integer) value W.

Then, we have the following constraints: x+y+k≥W,

num(2)+num(3)-x+z-k≥W, num(2)+num(3)-z-y≥W, x≥0,

y≥0, z≥0, x+z≤num(2), y+k-z≤num(3), x+y≤k, z≤k.

These equations define half-hyperspaces in the hyper-

space with four dimensions, in which every dimension

corresponds to one of the parameters x, y, z, and k. W is a

feasible value (i.e. all the constraints can be satisfied), if

the intersection of all these half-hyperspaces is non-

empty and contains at least one point with integer

coordinates (inside of it, or on one of its sides). If W is

feasible, then we will test a larger value of W in the

binary search; otherwise, we will test a smaller value.

Since we have O(1) half-hyperspaces, we can compute

their intersection in O(1) time, obtaining a convex 4-

dimensional polyhedron. However, we are not aware of

any efficient method of checking if the polyhedron

contains any point with integer coordinates. If we

consider every possible value of k, then, for every such

fixed value of k, the only free parameters will be x, y,

and z. In this case, the specified constraints define half-

spaces in a 3D space (with the dimensions corresponding

to the parameters x, y and z). The intersection of the half-

spaces is now a 3D convex polyhedron, but we still don’t

know how to find a point with integer coordinates inside

of it. If we fix the values of two parameters, e.g. k and x

(i.e. we consider every possible value of k and x and then

find some suitable values for the parameters y and z),

then the specified constraints become half-planes

delimited by lines in the plane (the 2 dimensions of the

plane correspond to the two free parameters, e.g. y and

z). These lines have only 4 different orientations: parallel

to the horizontal or vertical axes, or parallel to the two

axes rotated by 45 degrees counter-clockwise. If the

intersection of the half-planes is non-empty, then the

resulting polygon is a convex polygon with O(1) (at most

6) sides. The polygon’s vertex coordinates are either

integers or are of the form (p+q)/2, where p and q are

integer numbers. However, a simple analysis shows us

that, if the intersection is non-empty, then at least one of

the vertices of the polygon must have integer

coordinates. Thus, it is sufficient to check if the

intersection is non-empty and, afterwards, look at the

vertices of the intersection. This way, we only need to

test O(n
2
) possibilities (e.g. for the values of the

parameters k and x). The intersection of the original 4D

half-hyperplanes is non-empty and contains a point with

integer coordinates if there exists at least one pair of

values (k,x) for which we can find a point with integer

coordinates in the corresponding intersection polygon

(or if there exists at least a value of k for which the

intersection of the obtained 3D half-spaces is non-empty

and contains at least a point with integer coordinates).

We conjecture that a property similar to the one for

the 2D case also holds for the 4D case. Thus, we only

need to check if the intersection of the half-hyperspaces

is non-empty and then only look at the contour of the

intersection polyhedron (e.g. its vertices, edges, or faces)

in order to find a point with all of its coordinates integer

numbers. With this conjecture, we are able to decide the

next question in O(log(n)) time (for the second case),

instead of O(n
2
·log(n)), and in O(1) time for the first

case. In both cases, at each step, we set the values of all

the relevant parameters for each of the considered

possibilities and we choose that possibility for which the

worst case uncertainty decrement (i.e. the minimum

possible uncertainty decrement) is as large as possible;

the chosen possibility will be the question asked next.

4.4. MAXIMIZING WORST-CASE BET REVENUES

Let’s consider the following game. A player has X

monetary units initially. A box contains N+R objects: N

black objects and R red objects. The player cannot see the

objects inside the box. The game is played for N+R rounds.

At every round, the player bets any percent p between 0 and

100% of its current sum on one of the two colors: black or

red. Then, an object from the box is extracted (and never

placed back). If the color of the extracted object is the same

as the color on which the player bet, then the player gains

an amount of monetary units equal to its bet; otherwise, the

player loses the sum it bet at the current round. We would

like to maximize the final amount of monetary units in the

worst-case. In order to do this, we need to compute a

strategy which tells the player what percent p to bet at every

round and on which color. We will compute pmax(i,j)=the

maximum multiplication factor by which the player’s initial

amount can be multiplied in the end, if the box initially

contains i black objects and j red objects. To be more

precise, if the player initially has X monetary units, then

there is a strategy which guarantees him/her at least

pmax(i,j)·X monetary units in the end, and no other strategy

can guarantee more than that. We notice that

pmax(0,j)=pmax(j,0)=2
j
 (because, at every round, the

player can bet its entire amount of monetary units). For i≥1

and j≥1, let’s assume that the player bets a percent p. on the

color black. If it is right, then its sum will increase

(1+p)·pmax(i-1, j) times; if it is wrong, then its sum

increases (1-p)·pmax(i, j-1) times. The percent p must be

chosen such that, in the worst case, its final sum is as large

as possible. This occurs when (1+p)·pmax(i-1, j)=(1-

p)·pmax(i, j-1) => p=(pmax(i,j-1) - pmax(i-1,j)) / (pmax(i-1,

j) + pmax(i, j-1)). If p≥0, then pmax(i,j)=(1+p)·pmax(i-1, j).

If p<0, then the player should not bet on the black color,

but on the red color instead. By using the same argument

we obtain (1+p)·pmax(i, j-1)=(1-p)·pmax(i-1, j) =>

p=(pmax(i-1,j) – pmax(i,j-1)) / (pmax(i-1, j) + pmax(i, j-1))

and pmax(i,j)=(1+p)·pmax(i, j-1). The maximum final

amount of monetary units which can be guaranteed by the

best strategy is X·pmax(N,R). The time complexity of the

described algorithm is O(N·R).

4.5. ALGEBRAIC COMPUTATIONS

We consider M triples of numbers: P, Q and N and we

know that P=a+b and Q=a·b (for some numbers a and

b). We need an efficient algorithm which computes, for

every triple, the values a
N
+b

N
. A first solution, with

O(N) time complexity, is the following. We define

SP(pow)=a
pow

+b
pow

. SP(0)=2 and SP(1)=P. For

2≤pow≤N, we have SP(pow)=SP(pow-1)·P-SP(pow-

2)·Q. More precisely, we have (a
pow-1

+b
pow-1

)·(a+b)-

(a
pow-2

+b
pow-2

)·a·b = a
pow

+b
pow

+b·apow-1
+a·b

pow-1
-b·a

pow-1
-

a·b
pow-1

=a
pow

+b
pow

. A faster solution is based on using

the characteristic polynomial of the recurrence relation

mentioned above. We compute delta=sqrt(P
2
-4·Q);

c1=(P+delta)/2; c2=(P-delta)/2 (sqrt(x) denotes the

square root of x). Let V=(P-2·c1)/(c2-c1) and U=2-V. We

will then determine the binary representation of the

number N: b(BMAX), b(BMAX-1), ..., b(0) (N=the sum

of the values b(j)·2
j
 for 0≤j≤BMAX); we have

b(BMAX)=1 (the most significant bit of 1 in the binary

representation of N). We will compute d1=c1
N
 and

d2=c2
N
 in O(log(N)) steps, by using this binary

representation: we initialize d1=d2=1 and then we

traverse the bits j from j=BMAX down to j=0; for every

bit j, we set d1=d1
2
 and d2=d2

2
; then, if b(j)=1, we set

d1=d1·c1 and d2=d2·c2. The final answer is U·d1+V·d2.

Note, however, that V=1 and, thus, U=1, too.

5. AGENT PURSUING GAMES ON GRAPHS

5.1. PURSUING A SET OF ROBBERS

In a directed graph with n vertices and m edges there

are A cop agents (cops) and B robber agents (robbers):

every cop i is initially located at vertex P(i) (1≤i≤A) and

every robber j is initially located at vertex S(j) (1≤j≤B).

We are also given a sequence of K pairs (type(0), idx(0)),

..., (type(K-1), idx(K-1)), meaning that at time moment T

(T≥0) the agent that will perform the move is of type

type(T mod K) (i.e. cop or robber) and its index is idx(T

mod K) (between 1 and A for cops, and between 1 and B

for robbers). A move consists of moving the agent from

its current vertex i to an adjacent vertex j such that the

directed edge i->j exists in the graph (the graph is

allowed to have loops, i.e. j=i). The cops win if at least

B’≤B robbers are captured (a robber is captured

whenever a cop moves to the same vertex as the robber).

The robbers win if at least B’’≤B robbers reach their safe

vertices: every robber j has a set of vertices H(j)

representing its safe vertices – if it reaches one of these

vertices, it cannot be captured by any cop anymore. If the

game continues indefinitely, then it ends as a draw. A

state of the game consists of a tuple with A+B+1 values:

(pozc(1), ..., pozc(A), pozr(1), ..., pozr(B), p); p is the

index of the current move (0≤p≤K-1). pozc(i) is the

vertex where the i
th

 cop is located (1≤i≤A) and pozr(j) is

the vertex where the j
th

 robber is located (1≤j≤B). We

also consider two special extra positions for the robbers,

which indicate if the robber was captured, or if it already

arrived to one of its safe places. Thus, based on this

representation, we can decide for some of the states if

they lead to the victory or defeat of the cops (robbers) :

for instance, those states where at least B’ robbers are

captured are winning states for the cops, while those

with at least B’’ robbers in their safe places are winning

states for the robbers. More generally, some states of the

game are known to lead to the victory or defeat of the

cops (robbers) or to a draw.

We will construct the state graph GS, by adding

directed edges from every state (pozc(1), …, pozc(A),

pozr(1), …, pozr(B), q) to every state (pozc’(1), …,

pozc’(A), pozr’(1), …, pozr’(B), (q+1) mod K), where

only the position of the agent (cop or robber) whose turn

is to move next is changed, and all the other positions

remain the same. If GS is acyclic, then we can easily use

any of the algorithms described in Section 2 for deciding

the outcome. Otherwise, we can use the other techniques

presented in Section 2: we can either introduce an extra

parameter T≥0, indicating the index of the current move,

which is bounded from above by V(GS)+1 (in which

case we drop the index q from the game state ; q can be

easily computed as q=T mod K), or we can use the

iterative solution. Since V(GS)=O(K·N
A+B

), the time

complexity of any of the presented approaches is high.

5.2. THE CASE WITH 1 COP AND 1 ROBBER

We now consider the same game as in the previous

subsection, with the following restrictions. There is only

one cop and one robber and they move alternately. The

game starts when the cop chooses an initial vertex, after

which the robber chooses an initial vertex. Only after the

initial choices, the cop and the robber start moving

alternately. Moreover, the graph where all the action

takes place is undirected. The robber has no safe place.

Thus, the cop wins if it moves to the same vertex as the

robber, while the game ends as a draw (or, equivalently,

the robber wins) if the robber can escape the cop

indefinitely. At first, we should notice that we can use

the methods presented in the previous subsection.

However, this problem was considered in [13] and the

following generic algorithm was given for deciding if the

cop has a winning strategy. We say that a vertex X

dominates another vertex Y if the edge (X,Y) exists in the

graph and for every other vertex Z, such that Z is a

neighbor of Y, Z is also a neighbor of X (vertex X may

also have other neighbors except Y and Y’s neighbors).

A vertex Y is dominated if there exists at least one vertex

X such that X dominates Y. It should be obvious that, if

the cop has a winning strategy, before the last move of

the robber the cop is located at a vertex X and the robber

is located at a vertex Y, such that X dominates Y. If the

graph contains no dominated vertex Y, then the cop has

no winning strategy (the robber will be able to escape the

cop indefinitely). The following observation is

paramount. If a graph G contains a dominated vertex Y,

then the cop has a winning strategy in G if and only if it

has a winning strategy in G’=G\Y (i.e. the graph G from

which we remove the vertex Y, together with all of its

adjacent edges). With this observation, we have the

following algorithm:

1. while the graph has at least 2 vertices and contains at

least one dominated vertex, then find any dominated

vertex Y and remove it from the graph

2. if the graph has only one vertex left, then the cop has a

winning strategy; otherwise, the robber will be able to

escape the cop indefinitely.

Step 1 is executed O(n) times. Thus, the essential part

of the algorithm is finding a dominated vertex Y

efficiently. The naive solution is to consider every vertex

Y at every iteration of Step 1. Then, for every such

vertex Y, we consider every vertex X which is a neighbor

of Y, and then we check if every other neighbor Z of Y

(Z≠X) is also a neighbor of X (the check can easily be

performed if we represent the graph by using its

adjacency matrix). If all the conditions hold, we found a

dominated vertex Y and we do not consider any other

vertex until the next iteration of Step 1. Afterwards, we

remove Y from the graph (e.g. by marking it as removed,

and by removing the edges between Y and its neighbors

from the adjacency matrix). This approach has O(n
3
)

time complexity per iteration and, thus, O(n
4
) overall.

However, in practical settings, this naive solution is quite

good, because: (1) in dense graphs (i.e. with many

edges), a dominated vertex Y is found quickly (if one

exists); (2) in sparse graphs, the time complexity is lower

than O(n
3
) per iteration.

Nevertheless, a smarter solution exists. Initially, we

will compute all the values NVC(X,Y)=the number of

common neighbors between the vertices X and Y. We do

this in O(n
3
) time by initializing NVC(*,*)=0 and then

considering every vertex Z: for every vertex Z we

consider every pair of neighbors X and Y of the vertex Z

and we increment NVC(X,Y) and NVC(Y,X) by 1.

Moreover, we will also compute the values NV(X)=the

number of neighbors of the vertex X, for every vertex X

of the graph. Then, at every iteration of Step 1, we will

consider every vertex Y and check if it is dominated. We

do this in O(n) time, by considering every neighbor X of

Y and checking if NVC(X,Y)=NV(Y)-1. If the condition

holds, then vertex Y is dominated by vertex X. In order to

remove vertex Y from the graph we first consider every

neighbor Z of Y and decrease NV(Z) by 1 (and also

remove Y from the list of neighbors of vertex Z). Then,

we consider every pair (Z,X) of neighbors of vertex Y,

and we decrement NVC(Z,X) and NVC(X,Z) by 1. As we

can see, the time complexity per iteration is O(n
2
). Thus,

the overall time complexity is O(n
3
).

6. EQUITABLE RESOURCE ALLOCATION

6.1. UNCONSTRAINED REALLOCATIONS

We consider the following problem. We have n

resource containers, numbered from 1 to n. Each

container i contains an amount of resources r(i)≥0. We

want to perform reallocations such that, in the end, every

container contains the same amount of resources

q=(r(1)+…+r(n))/n. A reallocation consists of taking

any amount x of resources from a container i and moving

them to any other container j. We do not care about

minimizing the total number of reallocations, but this

number should be of the order O(n). We will sort the

containers in increasing order of their resource amounts:

r(p(1))≤…≤r(p(n)). We initialize a variable left=1 and a

variable right=N. While left<right we perform the

following actions: if r(p(left))=q, then left=left+1; else,

if r(p(right))=q, then right=right-1; otherwise: (1)

x=min{q-r(p(left)), r(p(right))-q}; (2) we move x

resource units from the container p(right) to the

container p(left), i.e. we set r(p(right))=r(p(right))-x and

r(p(left))=r(p(left))+x. In the end, all the containers will

contain q resource units. The time complexity of the

algorithm is O(n·log(n)), or O(n) if the containers are

given sorted according to their resource amounts.

6.2. MAXIMIZING THE AMOUNT OF RESOURCES

Along a line there are n containers, numbered from 1

to n (form left to right). Every container i contains an

amount r(i) of resources. We want to redistribute these

resources in such a way that the minimum amount of

resources in any container is maximized. In order to

perform the redistribution, the resources can be

transported along the line. If we transport resources on

the line segment between the containers i and i+1

(1≤i≤n-1), q(i) resources are consumed because of the

transportation. We will binary search the maximum

value Xopt such that there is a redistribution strategy

which leaves in every container at least Xopt resource

units. Let’s assume that we selected a value X during the

binary search. We will now perform a feasibility test. If

X is feasible, then we can obtain at least X resource units

in every container and, thus, we will consider larger

values of X in the binary search next; if X is not feasible,

then we will consider smaller values during the binary

search next. The feasibility test has a linear (i.e. O(n))

time complexity. We will traverse the containers from 1

to n (in increasing order) and we will maintain a variable

E, representing the surplus (if E≥0) or the uncovered

required amount (if E<0) of resources. We start with

E=0. Let’s assume that we reached the container i. If

r(i)≥X, then we increment E by (r(i)-X); otherwise, if

r(i)<X, then we decrement E by (X-r(i)) (thus, in both

cases, we can increment E by (r(i)-X)). If i<n then,

before going to the next container i+1, we perform the

following actions: (1) if E≥0 then we set E=max{E-q(i),

0} ; (2) if E<0 then we set E=E-q(i). After traversing all

the containers, if E≥0 then X is a feasible value;

otherwise, X is not feasible. The problem can be

generalized by associating to every container i a non-

decreasing function fi(X) and we want to find the largest

value of X such that every container i contains at least

fi(X) resources. The feasibility test is modified slightly:

when we reach a container i during their traversal, we

increment E by (r(i)-fi(X)) instead of (r(i)-X).

6.3. RESOURCE REALLOCATIONS IN A TREE

We consider a tree with n vertices (numbered from 1

to n). Every vertex i contains an integer number b(i)≥0 of

resource units. We can perform reallocations which

consist of moving one resource unit from a vertex i to a

neighboring vertex j; the cost of such a move is c(i,j)

monetary units (c(i,j) may be different than c(j,i)) We

want to compute a strategy with minimum total cost such

that, in the end, every vertex i contains exactly q(i)

resource units (the sum of the b(i) values is equal to the

sum of the q(i) values; 1≤i≤n). We will root the tree at a

vertex r and we will establish parent-son relationships,

based on the chosen root. Then, we will traverse the tree

from the leaves towards the root. For every node i we

will compute S(i)=the surplus of resources from vertex

i’s subtree (S(i) may be negative). We will maintain a

variable C, representing the total cost of the moves

which we need to execute (C is zero, initially). Let’s

assume that we have to handle a leaf i of the tree. If

b(i)<q(i), then S(i)=(b(i)-q(i)) and we increment C by

|S(i)|·c(parent(i),i) (q(i)-b(i) resource units will have to

be moved from leaf i’s parent to leaf i); if b(i)≥q(i) then

S(i)=b(i)-q(i) and we increment C by S(i)·c(i,parent(i))

(we will have to move b(i)-q(i) resource units from the

leaf i to its parent). Let’s assume that we reached an

internal node i. We initialize S(i) to the sum of the values

S(j) of the sons j of the vertex i. If b(i)<q(i), we will

decrement S(i) by (q(i)-b(i)) (q(i)-b(i) resource units

must be brought to vertex i); if b(i)≥q(i), we will

increment S(i) by (b(i)-q(i)) (b(i)-q(i) resource units will

have to be moved from vertex i towards other vertices,

either in vertex i’s subtree, or towards vertex i’s parent if

i≠r). If S(i)<0, then |S(i)| resource units will have to be

moved from vertex i’s parent to vertex i; thus, we

increment C by |S(i)|·c(parent(i),i). If S(i)≥0 then we will

have to move S(i) resource units from vertex i towards

vertex i’s parent; thus, we increment C by

S(i)·c(i,parent(i)). Every time, we only performed those

moves which were strictly required; some moves were

performed before having enough resources in the vertex

from which the resources had to be moved (for the cases

with negative S(*)), but these resources will be brought

later by the algorithm. C will be the minimum total cost

of the moves which need to be performed such that, in

the end, every node i contains exactly q(i) resource units.

7. RELATED WORK

Two-player games with identical player roles have

been studied extensively in the literature and many

techniques for computing optimal strategies were

developed. We refer the reader, for instance, to [7] and

[9]. Two-player games with different roles have also

been studied from multiple perspectives; see [2] for a

problem similar to the one discussed in subsection 4.2.

An excellent survey of single- and two-player games

which can be solved by dynamic programming is

presented in [15]. An interesting hidden evader pursuit

problem was brought to my attention by C. Negruseri. A

hidden evader is located at an unknown vertex of a graph

G. At each time step, the searcher performs a move and

then the evader performs a move. When the searcher

peforms a move, it selects a vertex of the graph and

checks if the evader is located at that vertex. If the

evader is there, then the evader is captured; otherwise,

the searcher gathers the knowledge that the evader is not

located at that vertex. The evader’s move consists of

moving from its current vertex v to a vertex u which is

adjacent to v (i.e. it is connected to v by an edge); the

evader cannot remain in the same vertex for two

consecutive time steps. We want to know if the searcher

has a strategy according to which it will eventually find

the evader, no matter where the evader was located

initially. The problem actually asks to characterize the

graphs on which such a strategy exists. It turns out that

such a strategy exists only on graphs in which every

connected component is an extended caterpillar. An

extended caterpillar is a tree graph, in which we can

identify a central path of vertices. Then, every vertex v

on that path may have as neighbors any number of leaves

(vertices of degree 1) and any number of leaf-neighbors

(vertices whose neighbors are only leaves, plus the

vertex v), except for the (at most) two neighbors on the

central path. Verifying if a connected component is an

extended caterpillar is easy. First, we check if it is a tree.

Then, we mark all the leaves. Afterwards, we mark all

the leaf-neighbors (i.e. all the vertices having only one

neighbor which is not a leaf). The remaining unmarked

vertices must be located on the central path, i.e. every

such vertex must have at most 2 neighbors which are not

leaves or leaf-neighbors. Checking if a tree is a

caterpillar is performed similarly: every vertex with

degree greater than 1 is allowed to have at most 2

neighbors with degrees greater than 1. Thus, linear time

recognitions algorithms for caterpillars and extended

caterpillars exist. We should note that a caterpillar is also

equivalent to a tree interval graph (i.e. the class of

interval graphs which are also trees is equal to the class

of caterpillar graphs).

Resource (re)allocation methods and strategies were

discussed, for instance, in [3], [4], [6] and [8]. Assigning

and computing resource costs is also an important issue,

which was partly discussed in [11]. The counterfeit coin

problem and variations of it have been studied

extensively, for instance, in [1], [12] and [14]. Some

cops-and-robbers games were discussed in [10] and [13].

8. CONCLUSIONS AND FUTURE WORK

In this paper we considered several types of rules for

modelling the interaction between pairs of agents with

contrasting interests, having identical or different roles.

We expressed these rules in the context of several two-

player games, for which we presented algorithmic

techniques for optimizing the decision process of the

involved agents. As future work, we intend to consider

other types of rules for modelling the interactions

between agents, like, for instance, rules based on

resource negotiations, auctions, and several others.

REFERENCES

[1] Aigner, M., and Anping, L., “Searching for

Counterfeit Coins”, Graphs and Combinatorics, vol. 13,

1997, pp. 9-20.

[2] Ambainis, A., Bloch, S. A., and Schweizer, D. L.,

“Delayed Binary Search, or Playing Twenty Questions

with a Procrastinator”, Algorithmica, vol. 32, 2002, pp.

641-651.

[3] Andreica, M. E., Dobre, I., Andreica, M., Nitu, B.,

and Andreica, R., “A New Approach of the Risk Project

from Managerial Perspective”, Economic Computation

and Economic Cybernetics Studies and Research, vol.

42, 2008, pp. 121-129.

[4] Andreica, M. I., Andreica, M. E., and Visan, C.,

“Optimal Constrained Resource Allocation Strategies

under Low Risk Circumstances”, Metalurgia

International, vol. 14, sp. issue no. 8, 2009, pp. 143-154.

[5] Andreica, M. I., and Tapus, N., “Central Placement

of Storage Servers in Tree-Like Content Delivery

Networks”, Proceedings of the IEEE International

Conference on "Computer as a Tool" (EUROCON),

2009, pp. 1901-1908.

[6] Andreica, M. I., and Tapus, N., “Efficient Data

Structures for Online QoS-Constrained Data Transfer

Scheduling”, Proceedings of the 7
th

 IEEE International

Symposium on Parallel and Distributed Computing,

2008, pp. 285-292.

[7] Andreica, M. I., and Tapus, N., “Intelligent Strategies

for Several Zero-, One- and Two-Player Games”, Proc.

of the 4
th

 IEEE Intl. Conf. on Intelligent Computer

Communication and Processing, 2008, pp. 253-256.

[8] Basso, A., and Peccati, L. A., “Optimal Resource

Allocation with Minimum Activation Levels and Fixed

Costs”, European Journal of Operational Research, vol.

131 (3), 2001, pp. 536-549.

[9] Grundy, P. M., “Mathematics and Games”, Eureka,

vol. 2, 1939, pp. 6-8.

[10] Hahn, G., and MacGillivray, G., “A Note on k-cop,

l-robber Games on Graphs”, Discrete Mathematics, vol.

306, 2006, pp. 2492-2497.

[11] Lepadatu, G. V., “The Financial Administration

Accountancy Method and the Cost Calculation Method,

based on Orders”, Metalurgia International, vol. 13 (2),

2008, pp. 29-32.

[12] Manvel, B., “Counterfeit Coin Problems”,

Mathematics Magazine, vol. 50 (2), 1977, pp. 90-92.

[13] Nowakowski, R., and Winkler, P., „Vertex-to-

Vertex Pursuit in a Graph”, Discrete Mathematics, vol.

43, 1983, pp. 235-239.

[14] Pyber, L., “How to Find Many Counterfeit Coins?”,

Graphs and Combinatorics, vol. 2, 1986, pp. 173-177.

[15] Smith, D. K., “Dynamic Programming and Board

Games: A Survey”, European Journal of Operational

Research, vol. 176, 2007, pp. 1299-1318.

