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Abstract In this paper, we present some new smoothing techniques to solve general nonlin-

ear complementarity problems. Under a weaker condition than monotonicity on the original

problems, we prove convergence of our methods. We also present an error estimate under a

general monotonicity condition. Some numerical tests confirm the efficiency of the proposed

methods.
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1 Introduction

The class of nonlinear complementarity problems (NCP) is a simple and popular tool for ad-

dressing practical problems arising in mathematical programming, economics, engineering,

and the sciences (see for instance [1] and [2]). For example, general equilibrium modeling,

trajectory problems, traffic network design, mechanical contact problems, obstacle prob-
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lems, bimatrix games, etc., lead naturally to the solution of NCP. Over the last years, the

numerical optimization community has devoted considerable energies toward developing

efficient algorithms and methods for solving these problems and there exists a considerable

body of literature presenting algorithms for NCP.

Although the effectiveness of complementarity algorithms has improved substantially in

recent years, the fact remains that increasingly more difficult problems are being proposed

that are exceeding the capabilities of these algorithms. As a result, there is a real need to

propose new methods and algorithms to address complicated and difficult situations.

In particular, a large part of existing algorithms concerns linear complementarity prob-

lems and NCP satisfying particular conditions (monotonicity, . . . ). Our purpose, in this pa-

per, is to propose a class of simple and efficient methods for solving nonlinear complemen-

tarity problems even in the complicated cases, when a weaker condition than monotonicity

is used.

The paper is organized as follows. In Section 2, we present the considered problems and

precise the assumptions. In Section 3, we define the smoothing functions and the approxi-

mation technique to solve general nonlinear complementarity problem. We also propose a

generic way to construct such functions. In Section 4, we discuss in details the properties of

the smoothing functions and the approximation scheme. This section is also devoted to the

proof of convergence and error estimates. A generic algorithm and numerical examples and

experiments are presented in Section 5 and a conclusion and some perspectives are presented

at the end of the paper.

2 Preliminaries and Problem Setting

Consider the nonlinear complementarity problem NCP, which is to find a solution of the

system :

x ≥ 0, F(x)≥ 0 and x�F(x) = 0, (1)



Smoothing Methods for Nonlinear Complementarity Problems 3

where F : Rn −→Rn is a continuous function satisfying some additional assumptions to be

precised later. NCP is equivalent to find x̄ ≥ 0 satisfying the following variational inequality

�F(x̄),x− x̄� ≥ 0, ∀x ≥ 0.

To solve NCP, there are essentially three different classes of methods: equation-based meth-

ods (smoothing), merit functions and projection-type methods.

Our goal in this paper is to present new and very simple smoothing and approximation

schemes to solve NCP and to produce efficient numerical methods; see Theorem 3.3 and

Theorem 4.1.

First, let us introduce usual assumptions on F and the ones that will be used in this

paper. A well known and studied situation corresponds to monotone functions F and several

methods and algorithms have been developed in this case. We recall that F is said to be

monotone iff F : Rn → Rn satisfies for any x �= y ∈ Rn,

(x− y)�(F(x)−F(y))≥ 0. (2)

In our work, we will consider P0-functions, this will include a larger class of functions. A

function F : Rn → Rn is said to be a P0-function iff

max
i:xi �=yi

(x− y)i(Fi(x)−Fi(y))≥ 0, ∀ x �= y ∈ Rn,

and, when this inequality is strict, F is said to be a P-function.

The P0-assumption is obviously weaker than monotonicity. The notion of P0-function is a

generalization of the notion of P0-matrices that are matrices M ∈ Rn×n with non-negative

principal minors. This concept is extensively used in linear complementary problem, i.e.

when F and M are related by an equation of the form F(x) = Mx+q for some q ∈ Rn; see

[3, p.153]. This notion is also well-known and used in nonlinear complementary problem;

see for instance [4].

Note that, when F is monotone, the set of solutions of NCP is convex (possibly empty).

When F is a P-function, the set of solutions (if non empty) is a singleton. Neither of these
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two properties are true under the condition P0. Indeed, for instance,

F(x,y) = (1−x,y−1),(x,y) ∈R2 is a P0-function and the solution set of the corresponding

NCP is SF = {(0,1),(1,1)} which is nonconvex and nonconnected.

We assume throughout that the solution set Z := {x ≥ 0,F(x)≥ 0, x�F(x) = 0} of (NCP)

is nonempty and bounded.

An example of sufficient condition on the mapping F that insures the boundedness of Z is

provided by the following lemma.

Lemma 2.1 Let F be a continuous and monotone function defined from Rn into itself. As-

sume that there exist y ∈ Rn and two positive constants M,c such that

(i) F(y)> 0 and c ||y||< mini Fi(y), and

(ii) for any x, ||x||1 ≥ M =⇒ ||F(x)|| ≤ c ||x||1.

Then Zε := {x ∈ Rn : x ≥ 0,F(x)≥ 0, x�F(x)≤ ε} is bounded for any ε ≥ 0.

Proof For convenience, set m(F(y)) := mini Fi(y). Since F is continuous, the set Zε is

closed. The monotonicity property of F implies for any x ∈ Zε :

x�F(y)≤ x�F(x)− y�F(x)+ y�F(y)≤ ||y||.||F(x)||+ ||y||.||F(y)||+ ε.

Let x ∈ Zε and ||x||1 ≥ M. Then

m(F(y)).||x||1 ≤
n

∑
i=1

xiFi(y)≤ c||y||.||x||1 + ||y||.||F(y)||+ ε.

Thus, (m(F(y))− c ||y||).||x||1 ≤ ||y||.||F(y)||+ ε.

Since κ := m(F(y))− c ||y||> 0, we get ||x||1 ≤ (||y||.||F(y)||+ ε)/κ.

Hence ||x||1 ≤ max(M,(||y||.||F(y)||+ ε)/κ). So, Zε is bounded. �

All bounded continuous monotone functions F satisfying the first part of condition (i), i.e.

(F(y)> 0) also satisfy part 2 of condition (i) and condition (ii) of Lemma 2.1. Indeed there

exists R > 0 such that for any M > 0 and any x with ||x||1 ≥ M,

||F(x)|| ≤ R ≤ R
M
||x||1.
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For M large enough and c := R
M , we obtain c ||y||< m(F(y)) .

The condition (ii) allows us to consider functions F with sublinear growth at infinity.

A necessary and sufficient condition for boundedness and non emptiness of the set of solu-

tions is known in the more general case of pseudomonotone variational inequality problems

[5, Theorem 2 and Corollary 3]. There are also several other existence results when F is

a P-function (a classical one is the existence of a strictly interior point i.e. y > 0 such that

F(y)> 0).

We define componentwise the function Fmin by Fmin(x) := (Fmin,i(x))i:1...n with

Fmin,i(x) = min(xi,Fi(x)) for any i : 1...n. This function will play an important role in our

study. Indeed, any solution of the equation Fmin(x) = 0 is a also a solution of the (NCP) and

conversely. Furthermore, Fmin preserves some of the properties of F .

Lemma 2.2 Assume that F is a P0 (respectively P)-function then Fmin is also P0 (respectively

P)-function.

Proof Assume that F is a P0-function. For any x �= y ∈ Rn, there exists i such that xi �= yi

and (xi − yi)(Fi(x)−Fi(y)) ≥ 0. Without loss of generality, we can assume xi > yi. So, we

get Fi(x) ≥ Fi(y). Now since Fi(x) ≥ min(yi,Fi(y)) and xi ≥ min(yi,Fi(y)), it follows that

min(xi,Fi(x))≥ min(yi,Fi(y)).

Finally (xi − yi)(Fmin,i(x)−Fmin,i(y))≥ 0 i.e. Fmin is a P0-function. The proof is analogue if

F is a P-function. �

3 The Smoothing Functions

In the first part of this section, we introduce the smoothing functions and establish different

properties that will be useful for the presentation and the convergence of the algorithm. The

second part of this section proposes a generic way to construct such smoothing functions.

3.1 Definition and properties of the smoothing functions

We start our discussion by introducing the function θ with the following properties (These

functions were used in [6,7]). Let θ : R→]−∞,1[ be a non-decreasing continuous function
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such that

θ(t)< 0 if t < 0, θ(0) = 0 and lim
t→+∞

θ(t) = 1.

For instance, θ (1)(t) = t
t+1 , t ≥ 0 and θ (1)(t) = t if t < 0, θ (2)(t) = 1− e−t , t ∈ R. We will

often return to these two examples very different from each other. We will also use these

two functions in the numerical section.

In order to ”detect” if t = 0 or t > 0 in a ”continuous way”, we introduce

θr(t) := θ(t/r) for r > 0. Indeed, θr(0) = 0 for all r > 0 and lim
r�0

θr(t) = 1 for all t > 0.

Now, let us discuss the following equation in the one-dimensional case. Let s, t ∈ R+, be

such that

θr(s)+θr(t) = 1. (3)

For instance, let us take θ (1). The equality (3) is then equivalent to st = r2.

So, when r goes to 0, we simply get st = 0. The equation (3) applied with s = x ∈ R+ and

t = F(x) ∈ R+ is then an approximation of the relation xF(x) = 0.

Our aim is to propose a large class of θ ’s for which the problems

x(r) ≥ 0, F(x(r))≥ 0 and θr(x(r))+θr(F(x(r))) = 1 (4)

are well posed and any limit point of (x(r)) when, r goes to 0, is a solution of (NCP).

In the multidimensional case, the equation just above has to be interpreted as a system

of n equations,

θr(x
(r)
i )+θr(Fi(x(r))) = 1, i : 1...n.

Note that the relation (4) is symmetric in x and F(x). Thus, our problem can be seen as a

fixed point problem for the function Fr,θ (x) defined just below. Indeed, the equation (4) is

equivalent to

x = θ−1
r (1−θr(F(x))) = rθ−1 (1−θ(F(x)/r)) =: Fr,θ (x).
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By symmetry of the equation (3), we also have the relations:

F(x) = θ−1
r (1−θr(x)) = rθ−1 (1−θ(x/r)) .

But we shall not go that direction. We propose another way to approximate a solution of the

(NCP) problem as follows. Let ψr(t) = 1−θr(t); the relation (4) is equivalent to the three

following equalities

ψr(x)+ψr (F(x)) = 1 = ψr(0),

ψ−1
r [ψr(x)+ψr(F(x))] = 0 and

rψ−1
�
ψ
� x

r
�
+ψ

�
F(x)

r

��
= 0.

(with ψ = ψ1 = 1−θ1). For the sequel, we set for any x,y ∈ Rn and any r > 0

Gr(x,y) := rψ−1
�
ψ
�x

r

�
+ψ

�y
r

��
. (5)

First, we characterize the solutions (x,y) of Gr(x,y) = 0 when ψ satisfies some conditions

independent of F .

Let 0 < a < 1. We say that ψ satisfies (Ha) if there exists sa > 0 such that, for all s ≥ sa,

ψ(s)≤ 1
2

ψ(as) or equivalently
1
2
+

1
2

θ(as)≤ θ(s). (Ha)

The condition (Ha) imposes that the decay of ψ(s) is under some uniform control for large

s or in terms of θ that θ(s) should grow enough quickly with some uniformity for large s.

Since ψ and θ are monotone, it is interesting to take a as large as possible in the condition

(Ha) since (Ha) =⇒ (Hb) for b < a.

Note that we can never take a = 1 because θ ≤ 1 unless θ is constant and equal to one for

large s. But in some cases, a can be chosen as close to 1, see for instance θ (2) and Theorem

3.2 below.

Note that this condition is satisfied for both ”extreme” examples and many other examples.

1. For θ (1), we have ψ(1)(t) = 1
t+1 if t ≥ 0 and ψ(1)(t) = 1− t if t < 0 and the condition

(Ha) is only satisfied for 0 < a < 1/2 with sa ≥ 1
1−2a .



8 Mounir Haddou, Patrick Maheux

2. For θ (2), we have ψ(2)(t) = e−t and the condition (Ha) is satisfied for any 0 < a < 1

with sa =
ln2
1−a .

Note that these functions ψ do not satisfy the condition (Ha) in the same range for a. This

has some consequence for the limit of Gr(s, t) as r goes to zero (see Theorem 3.2).

Remark 3.1 The condition (Ha) is not so restrictive. In fact there are plenty of functions

satisfying this condition. For instance, if ψ satisfies (Ha) for a given a ∈]0,1[ then ψβ

also satisfies this condition for any β ≥ 1. More generically, a large family can be built

on ψ by composition. Let G :]0,+∞[−→]0,+∞[ be a nondecreasing function satisfying the

conditions below,

(i) G(1) = 1, lim
u→0+

G(u) = 0,

(ii) lim
u→+∞

G(u) = +∞,

(iii) G(u/2)≤ 1
2 G(u),

where 0 < u < u0 for some u0 > 0. Then G ◦ψ satisfies (Ha) for the same a. For instance

G1(u) = uβ ec(uα−1) and G2(u) = uβ (log(euα))γ satisfy (i)− (ii) for any β ≥ 1 and any

c,α,γ ≥ 0 with u0 =+∞.

Other functions as θ(t) = 1− e−tα
, t > 0 with α > 0 and as θ(t) = et−1

et+1 , t > 0 satisfy

(Ha) for any a ∈]0,1[.

From now on, all the results use the function ψ . Obviously, everything can be easily trans-

posed on θ . We shall need the following lemma in Theorem 3.1 and Theorem 3.3

Lemma 3.1 If ψ :R−→]0,+∞[ is an invertible non-increasing function, then for any s, t,r >

0, we have Gr(s, t)≤ min(s, t). (Where Gr defined by (5))

Proof Let s, t ∈ R be fixed. By symmetry, we can assume that s = min(s, t).

Since ψ ≥ 0, we obviously have ψ(s/r)≤ ψ(s/r)+ψ(t/r).

By the fact that ψ is invertible and non-increasing, we get

ψ−1 (ψ(s/r)+ψ(t/r))≤ s/r.
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Thus, from the definition of Gr we conclude that

Gr(s, t) = rψ−1 [ψ (s/r)+ψ (t/r)]≤ s = min(s, t). �

The next theorem shows how the condition (Ha) gives information about the behavior of Gr.

Theorem 3.1 Let ψ : R−→]0,+∞[ be an invertible non-increasing function such that

lim
t→−∞

ψ(t) = +∞, ψ(0) = 1, and lim
t→+∞

ψ(t) = 0.

If ψ satisfies the condition (Ha) for some a ∈]0,1[, then for all s, t ∈ R,

lim
r�0

Gr(s, t) = 0 ⇔ min(s, t) = 0.

Proof We prove the direct implication (⇒):

Let s, t ∈ R be fixed. By Lemma 3.1, for any r > 0 we have Gr(s, t) ≤ min(s, t) and, then

min(s, t)≥ 0. We finish the proof by contradiction as follows. Assume that s = min(s, t)> 0.

Since ψ is nonincreasing and s ≤ t, we have

ψ(s/r)+ψ(t/r)≤ 2ψ(s/r).

By assumption (Ha) and for r small enough, 2ψ(s/r)≤ ψ(as/r). Indeed, the ratio s/r goes

to infinity as r goes to 0 because s > 0. Hence ψ(s/r)+ψ(t/r)≤ ψ(as/r).

Now since ψ−1 is nonincreasing,

as/r ≤ ψ−1 (ψ(s/r)+ψ(t/r))

or equivalently, with r small enough, s ≤ a−1Gr(s, t).

Passing to the limit, limr�0 Gr(s, t) = 0 and, then s ≤ 0 in contradiction with s > 0.

Now, we prove the converse (⇐):

Assume s = min(s, t) and (2) thus s = 0. Since ψ(0) = 1, we have

Gr(s, t) = rψ−1 (1+ψ(t/r)) .
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If t = 0 then lim
r�0

Gr(s, t) = lim
r�0

rψ−1(2) = 0.

If t > 0 then lim
r�0

ψ(t/r) = 0. Thus lim
r�0

Gr(s, t) = 0 by continuity of ψ−1.

In both cases, we have lim
r�0

Gr(s, t) = 0. �

For both ”extreme” examples, the assertion of Theorem 3.1 is clearly satisfied. Indeed, direct

computations lead to

1. For s > 0 and t > 0 such that 1
s +

1
t ≤

1
r , we have the following explicit expression

G(1)
r (s, t) =

st − r2

s+ t +2r
.

Note that the denominator is not zero when s, t are non-negative even when

s = t = 0. In addition, when min(s, t)> 0 we have lim
r�0

G(1)
r (s, t) =

st
s+ t

< min(s, t).

2. For any s, t ∈ R, we have the following explicit expresssion

G(2)
r (s, t) =−r log(e−s/r + e−t/r).

Assume s = min(s, t). Then we have s− r log2 ≤ G(2)
r (s, t) because

e−s/r + e−t/r ≤ 2e−s/r.

Thus, min(s, t)− r log2 ≤ G(2)
r (s, t)≤ min(s, t).

Passing to the limit as r goes to 0, we conclude that lim
r�0

G(2)
r (s, t) = min(s, t).

Now, we focus on the case where ψ satisfies (Ha) for all a∈]0,1[ and prove a stronger result.

Theorem 3.2 Let ψ : R−→]0,+∞[ be an invertible non-increasing function such that

lim
t→−∞

ψ(t) = +∞, ψ(0) = 1 and lim
t→+∞

ψ(t) = 0.

If ψ satisfies (Ha) for all a ∈]0,1[, then for any s, t > 0,

lim
r�0

Gr(s, t) = min(s, t).
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Proof By Lemma 3.1, we have

∀r > 0, ∀s, t ∈ R, Gr(s, t)≤ min(s, t).

Thus, we have to concentrate on the lower bound of Gr.

Let s, t > 0 such that s = min(s, t)> 0. For each a ∈]0,1[ and when r is sufficiently small

(i.e. s/r ≥ sa > 0) we can apply the assumption (Ha) to get

ψ(s/r)+ψ(t/r)≤ 2ψ(s/r)≤ ψ(as/r).

Since ψ−1 is nonincreasing, we deduce

as/r ≤ ψ−1 (ψ(s/r)+ψ(t/r)) .

Thus, for any a ∈]0,1[ and any 0 < r < s/sa, we have as ≤ Gr(s, t).

Hence,

amin(s, t) = as ≤ liminf
r�0

Gr(s, t)≤ limsup
r�0

Gr(s, t)≤ min(s, t).

By taking a � 1, we obtain the desired result . �

Unfortunately, some functions (for instance θ (1)) don’t satisfy the condition (Ha) for all

a ∈]0,1[. We have seen above that lim
r�0

G(1)
r (s, t) =

st
s+ t

, (s, t > 0) which is strictly less than

min(s, t).

Now our aim is to prove that G0(s, t) := lim
r�0

Gr(s, t) exists under some natural condition

on ψ for fixed s, t > 0. For instance, the existence of such a limit is insured if the function

r → Gr(s, t) is nonincreasing on some interval ]0,ε[ (that is ∂
∂ r Gr(s, t) ≤ 0 for r ∈]0,ε[ ).

We provide a sufficient and much more easier condition on ψ to fulfill this last technical

condition.

Let V be a function defined in a positive neighborhood of 0. We say that V is locally

subadditive at 0+ if there exists η > 0 such that, for all 0 < α, β , α +β < η , we have

V (α +β )≤V (α)+V (β ).
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Theorem 3.3 Let ψ : R−→]0,+∞[ be a C1 decreasing function such that

lim
t→−∞

ψ(t) = +∞,ψ(0) = 1 and lim
t→+∞

ψ(t) = 0.

(i) Let s, t > 0 be fixed. If there exists ε > 0 such that ∂
∂ r Gr(s, t)≤ 0, r ∈]0,ε[, then

G0(s, t) := lim
r�0

Gr(s, t) exists and G0(s, t)≤ min(s, t).

(ii) Suppose that V := (−ψ � ◦ ψ−1)×ψ−1 is locally subadditive at 0+ then the conclusion

of (i)holds true for any s, t > 0.

(iii) Let s, t > 0 be fixed. Assume that there exists r0 > 0 such that for any r ∈]0,r0],

∂
∂ r

Gr(s, t)≤ 0 and r
∂
∂ r

Gr(s, t)≤ Gr(s, t)−G0(s, t),

then for any r ∈]0,r0[,

−r
�
G0(s, t)−Gr0(s, t)

�

r0
+G0(s, t)≤ Gr(s, t)≤ G0(s, t). (6)

Proof To simplify the presentation of the proof, we use the notation f (r) := Gr(s, t) as a

function of r when s > 0 and t > 0 are fixed.

(i) By Lemma 3.1, we always have f (r)≤ min(s, t). The assumption f �(r)≤ 0 implies that

f (r) is decreasing. Since f is bounded above by min(s, t),

f (0+) := lim
r�0

f (r) exists and satisfies f (0+)≤ min(s, t).

(ii) We check the condition ∂
∂ r Gr(s, t) = f �(r)≤ 0 for any s, t > 0 of statement (i).

Step 1. We assume that V := (−ψ � ◦ψ−1)×ψ−1 is locally subadditive at 0+ that is that,

there exists η > 0 such that for all 0 < α,β ,α +β < η , we have V (α +β )≤V (α)+V (β ).

Fix s, t > 0; since lim
x→+∞

ψ(x) = 0 and ψ > 0, there exists ε > 0 such that

0 < max(ψ(s/ε),ψ(t/ε))≤ η .

Thus for r ∈]0,ε[, we have 0 < α := ψ(s/r) < η and 0 < β := ψ(t/r) < η because ψ is

decreasing.
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By local subadditivity of V , we deduce V (α+β )≤V (α)+V (β ) with α and β given above.

Step 2. A simple computation gives us

r f �(r) = f (r)− sψ �(s/r)+ tψ �(t/r)
(ψ � ◦ψ−1)(ψ(s/r)+ψ(t/r))

.

Thus the condition f �(r)≤ 0 is equivalent to

ψ−1(ψ(s/r)+ψ(t/r))≤
s
r ψ �( s

r )+
t
r ψ �( t

r )

(ψ � ◦ψ−1)(ψ(s/r)+ψ(t/r))
.

Let α and β as in step 1). We get

ψ−1(α +β )≤ (ψ � ◦ψ−1)(α)ψ−1(α)+(ψ � ◦ψ−1)(β )ψ−1(β )
(ψ � ◦ψ−1)(α +β )

.

Because ψ � < 0, this condition is exactly the subadditivity property of V i.e.

V (α +β )≤V (α)+V (β ). (7)

Since the inequality (7) is satisfied, by Step 1 it implies that f �(r)≤ 0 for any r ∈ (0,ε).

We apply (i) and conclude the proof of statement (ii) .

(iii) Now we prove (6). We have assumed that

r f �(r)≤ f (r)− f (0+), 0 < r ≤ r0.

So, �
f (r)

r

��
=

r f �(r)− f (r)
r2 ≤ −1

r2 f (0+).

Let 0 < t < r0. By integration over the interval [t,r0] of the inequality just above, we get

f (r0)

r0
− f (t)

t
≤ f (0+)

�
1
r0

− 1
t

�
,

and so, the desired result −t
�

f (0+)− f (r0)
r0

�
+ f (0+)≤ f (t), 0 < t ≤ r0. �

Remark 3.2 - The assumption of subadditivity is a priori stronger than condition in 1.

- For fixed s, t > 0, the bounds on Gr(s, t) in (6) give useful information for numerical
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simulation, since we have

0 ≤ G0(s, t)−Gr(s, t)≤
r
r0

�
G0(s, t)−Gr0(s, t)

�
≤ r

r0

�
min(s, t)−Gr0(s, t)

�
.

Back to both ”extreme” examples, we see much more easily that:

1. For ψ(1)(x) = 1
x+1 ,x ≥ 0, V (1)(y) = y− y2, 0 < y < 1 or V (1)(y) = 1− y, y > 1.

2. For ψ(2)(x) = e−x,x ∈ R, V (2)(y) =−y lny, 0 < y < ∞.

The function V (1) and V (2) are clearly subadditive. A generic way to construct new functions

ψ from old ϕ’s such that the associated Vψ is subadditive if Vϕ is subadditive is as follows.

Consider ψ(x) = ϕ(µxλ ), x ≥ 0 with nonnegative µ and ,λ , then we obtain Vψ = λVϕ . If Vϕ

is subadditive then Vψ is subadditive. This applies to x �→ (1+µxλ )−1 and x �→ e−µxλ , x ≥ 0,

built on ψ(1) and ψ(2). Unfortunately V cannot be linear. Indeed, by solving the differential

equation relating ψ and V it leads to ψ(y) = c
yγ . But ψ(0) = 1 cannot be satisfied.

The condition 3) namely r f �(r)≤ f (r)− f (0) with 0 < r small enough is also satisfied

for these two examples. Let K =−ψ � ◦ψ−1. With the notations above, we have for α,β > 0:

r f �(r) = f (r)− sK(α)+ tK(β )
K(α +β )

.

1. For ψ(1). We obtain

sK(α)+tK(β )
K(α+β )

=s
�

α
α +β

�2
+t

�
β

α +β

�2
≥ inf

0≤λ≤1
{sλ 2 + t(1−λ )2}= st

s+ t
= f (0).

Thus, we have r f �(r)≤ f (r)− f (0).

2. For ψ(2). We obtain (K = Id),

sK(α)+ tK(β )
K(α +β )

=
sα + tβ
α +β

≥ min(s, t) = f (0).

Thus r f �(r)≤ f (r)− f (0).

We remark that the two functions G(1)
r and G(2)

r and their limit function G(1)
0 ,G(2)

0 are con-

cave on (R2)+. This property is very important and can be used to obtain convergence results

based on the smoothing technique discussed in [8]. The following theorem presents a sim-
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ple and general necessary and sufficient condition on the smoothing functions to insure this

property of concavity. First note that G(s, t) = ψ−1 (ψ(s)+ψ(t)) is a concave function of

(s, t) with s, t > 0 if and only if Gr(s, t) = r G(s/r, t/r) is a concave function for any r > 0

(G = G1 with this notation).

Theorem 3.4 Let ψ : R −→]0,+∞[ be a C2 non-increasing and strictly convex function

(ψ � < 0, ψ �� > 0) and

L(α) :=− (ψ � ◦ψ−1)2

ψ �� ◦ψ−1 (α), α ∈ ψ(R).

The following statements are equivalent:

(i) G is concave in the argument (s, t).

(ii) L is nonincreasing and subadditive i.e. L(α +β )≤ L(α)+L(β ), α,β ∈ ψ(R).

Moreover, if 1. or 2. holds true and if G0 = lim
r�0

Gr exists then G0 is concave.

Proof To simplify the presentation of the proof, we denote α := ψ(s), β := ψ(t),

W :=W (α +β ) = (ψ � ◦ψ−1)(α +β )< 0 (when α +β ∈ ψ(R) and

U :=U(α +β ) = (ψ �� ◦ψ−1)(α +β )> 0 (when α +β ∈ ψ(R).

A rather tedious computation leads to R := ∂s,sG(s, t) =
�
ψ ��(s)W 2 − (ψ �(s))2U

�
/W 3,

T := ∂t,tG(s, t) =
�
ψ ��(t)W 2 − (ψ �(t))2U

�
/W 3 and S := ∂s,tG(s, t) =−ψ �(s)ψ �(t) U

W 3 .

It is well-known that G is concave if and only if R ≤ 0,T ≤ 0 and RT − S2 ≥ 0. For the

condition R ≤ 0 (similarily for T ≤ 0) and due to the fact that W 3 < 0, we get

ψ ��(s)W 2 ≥ (ψ �(s))2U. or equivalently − (ψ �(s))2

ψ ��(s)
≥−W 2

U
.

That is, with s = ψ−1(α) and t = ψ−1(β ), , that L(α) ≥ L(α + β ), so that L is nonin-

creasing.

Now from the condition RT −S2 ≥ 0, we obtain after simplifications

W 6(RT −S2) = ψ ��(s)ψ ��(t)W 4 −
�
ψ ��(s)(ψ �)2(t)+ψ ��(t)(ψ �)2(s)

�
W 2U.

By similar manipulations, as in the case of R ≤ 0, we can express the condition

RT −S2 ≥ 0 as the subadditivity of L. �
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3.2 Construction of generic smoothing functions

The assumptions of Theorem 3.4 suggest a simple way to generate new smoothing functions.

Indeed, an examination of both examples above leads us to the following important remark.

For the examples ψ(1) and ψ(2), we obtain respectively the following additive functions

L1(α) = − 1
2 α and L2(α) = −α . Then it suggests to construct a larger family of functions

ψλ ,c including as particular cases our functions ψ(1) and ψ(2). This is done as follows. Since

additivity property of L corresponds exactly to the equation RT − S2 = 0. We can produce

new functions ψ by solving this equation. It is easily seen that we can rewrite the equation

RT − S2 = 0 as L(α) = − 1
λ α for some λ > 0 (L is nonincreasing). Equivalently, we have

(ψ �)2 = 1
λ ψ ψ ��.

First case: λ > 1. We obtain as solutions of this equation ψλ ,c(x) = 1

(cx+1)
1

λ−1
, x >−c−1,

for some constant c > 0.

Second case: λ = 1. The equation leads us to a different kind of family of solutions. Indeed,

we get ψ1,c(x) = e−cx, x ∈ R, for some constant c > 0.

In some sense, this instance is a limit case for the family of solutions of the first case

when λ � 1. Clearly both families of functions (ψ1,c)c>0 and (ψλ ,c)c>0,λ>1 have different

behaviors. The first one has a polynomial decay and the second one has an exponential one.

We note that ψ2,1 = ψ(1) and ψ1,1 = ψ(2). We also remark that all the smoothing functions

generated this way satisfy (Ha). More precisely, the functions ψλ ,1, when λ > 1 satisfy (Ha)

with a ∈]0,( 1
2 )

λ−1[. The functions ψ1,c,c > 0 satisfy (Ha) with a ∈]0,1[.

All the smoothing functions generated this way satisfy the assumptions of Theorem 3.3 and

satisfy ψλ ,c(x)≤ ψ(1) when 1 < λ ≤ 2 and c = 1.

4 Convergence and Error Estimate

In this section, we propose a generic algorithm to solve (NCP) and prove some convergence

results and error estimates. In what follows, when r > 0, we consider the function Hr defined

by

Hr(x) := Gr(x,F(x)) = (Gr(xi,Fi(x)))n
i=1
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where Gr defined by (5) and define H0(x) := lim
r�0

Hr(x) = lim
r�0

Gr(x,F(x)) when the limit

exists, for instance under the assumptions of Theorem 3.3.

The algorithm consists in finding the solution of a sequence of well-posed equations:




Let {rk}k∈N / r0 > 0 and lim

k→∞
rk = 0,

Find xk / Hrk(xk) = 0.

The next lemma measures the ”additional coercivity” effect of the smoothing.

Lemma 4.1 Assume F is a P0-function. then

(i) For any r > 0, Hr is a P-function.

(ii) If H0 exists then it is a P0-function.

Proof (i) Let x,y be two distinct vectors of Rn. Since F is a P0-function there exits an index

i ∈ {1, ...,n} such that xi �= yi and (xi −yi)(Fi(x)−Fi(y))≥ 0. Without loss of generality, we

can suppose that xi > yi and Fi(x)≥ Fi(y).

Since ψ and ψ−1 are decreasing functions we obtain consecutively that for any r > 0,

ψ(xi/r)+ψ(Fi(x)/r)< ψ(yi/r)+ψ(Fi(y)/r),

Gr(xi,Fi(x))> Gr(yi,Fi(y)).
(8)

Hence, Hr is a P-function.

(ii) If H0 exists, passing to the limit in (8) as r � 0, we obtain that H0 is a (P0)-function. �

Using Theorem 3.3 and Lemma 4.1, we are now able to present a convergence result.

Theorem 4.1 Assume that F is a P0-function. Under the hypotheses of Theorem 3.3 on Gr,

we have

(i) There exists an r̂ > 0 such that for any 0 < r < r̂, Hr(x) = 0 has a unique solution

x(r) and the mapping r �→ x(r) is continuous on (0, r̂).

(ii) lim
r�0

dist(x(r),Z ) = 0.

Proof Using Theorem 3.3, the function G0 exists so H0 does. By Lemma 4.1, the function

H0 is a P0-function and all functions Hr with r > 0 are P-functions. The functions Hr are
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continuous perturbations of H0. This corresponds exactly to the assumptions of Theorem 4

(2) of [4]. So that (i) and (ii) are directly obtained by this theorem. �

Remark 4.1 Using the concavity results of Theorem 3.4, we can prove another

convergence result based on the smoothing technique discussed in [8].

When using ψ ≤ ψ(1) (this is the case of ψ(2) and of some functions ψλ ,c), we can prove an

estimate for the error term ||x∗ − x(r)|| between the solution x∗ and the approximation x(r)

under a monotonicity assumption on F .

Proposition 4.1 Assume that ψ ≤ ψ(1), x∗ is a solution of (NCP) and x(r),0 < r < r1 is a

sequence of non-negative solutions of Hr(x) = 0 for some r1 > 0. Then

(i) x(r)i Fi(x(r))≤ r2, ∀i = 1 . . .n.

(ii) Furthermore, if F satisfies the condition

h(||x− y||)≤ (x− y,F(x)−F(y)) (9)

with h : [0,+∞[−→ [0,+∞[ such that h(0) = 0, h(t)> 0 when t > 0 and there exist ε,η > 0

such that h :]0,ε[−→]0,η [ is an increasing bijection. Then (NCP) has a unique solution

namely x∗ and there exists r0 > 0 such that for any r ∈]0,r0[,

||x∗ − x(r)|| ≤ h−1(nr2). (10)

Proof (i) Recall that x(r) satisfies Hr(x(r)) = 0, i.e.

ψ

�
x(r)i
r

�
+ψ

�
Fi(x(r))

r

�
= 1, i : 1...n.

Since ψ ≤ ψ(1), we obtain

ψ(1)

�
x(r)i
r

�
+ψ(1)

�
Fi(x(r))

r

�
≥ 1, i : 1...n.

Then, a simple computation leads to x(r)i Fi(x(r))≤ r2, i : 1...n.
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(ii) The uniqueness of x∗ is a direct consequence of (9), and we have

(x∗ − x(r),F(x∗)−F(x(r))) = (x∗,F(x∗)−F(x(r)))− (x(r),F(x∗)−F(x(r)))

≤ (x(r),F(x(r)))≤ nr2.

Indeed, (x∗,F(x∗)) = 0 and −(x∗,F(x(r)))− (x(r),F(x∗)) ≤ 0. By assumption (9), we im-

mediately get

h(||x∗ − x(r)||)≤ nr2.

Let r0 such that nr2
0 < η . Since h is a bijection from [0,ε[ onto [0,η [ and h−1 is increasing,

we conclude (10) �

5 Numerical Results

In this section, we present some numerical experiments for the two smoothing functions θ (1)

and θ (2). Our aim is just to verify the theoretical assertions for these two ”extreme” cases.

We consider ten test problems (that can be found in [9–14]) with various sizes and char-

acteristics. Some of them are linear, the others nonlinear. In some cases, F is monotone or

strongly monotone whereas others can have a non connected solution set; in this case F is

at most a P0-function.

A precise description of each test problem is given in the appendix. Since our method is

fundamentally different from the existing methods, it is difficult to present any comparison.

Nevertheless, we present in the appendix the numerical results obtained by the well-known

projection iterative method (see [15, Section 12.1]) when it is used exactly in the same con-

ditions. We used the following algorithm and heuristic updating strategy.

Algorithm.

Step 1. Let x0 > 0, ε > 0 and set r0 = max
�

1,
�

max1≤i≤n |x0
i Fi(x0)|

�
.

Step 2. If max
1≤i≤n

|xk
i Fi(xk)| ≤ ε then stop.

Step 3. Compute xk (an approximate solution of) Hrk(xk) = 0

(by using any Newton-type method).

Step 4. Update the parameter as follows rk+1 = min

�
0.1rk,(rk)2,

�
max

1≤i≤n
|xk

i Fi(xk)|
�
,
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and go back to Step 2.

We implemented this algorithm on a standard laptop (2.5 Ghz, 2Go M) in Matlab R� and

using the f solve function at Step 2. The stopping ε parameter is fixed to 10−8.

We list in Table 1, the worst obtained results with respect to starting points. Indeed, for

each test problem, we used 11 different starting points: a vector of ones, and 10 uniformly

generated vectors with entries in ]0,20[.

Pb size OutIter InIter Opt. Feas. cpu time (s)
(θ1,θ2) (θ1,θ2) (θ1,θ2) (θ1,θ2) (θ1,θ2)

P1 10 (6,4) (65,15) (5.6e−15,2.5e−18) (1.1e−11,1.3e−10) (0.22,0.09)
100 (6,4) (68,19) (1.6e−14,7.1e−22) (5.1e−13,1.4e−14) (3.73,1.19)
500 (6,4) (83,21) (5.4e−12,1.6e−16) (1.9e−16,1.4e−14) (31.15,89.26,)
1000 (6,5) (77,40) (3.0e−14,3.1e−14) (5.1e−18,1.8e−17) (388.59,201.43)

P2 10 (6,4) (79,23) (2.1e−15,2.7e−15) (7.6e−11,9.6e−19) (0.31,0.11)
100 (6,4) (88,33) (1.84e−12,1.0e−23) (7.1e−10,3.1e−14) (4.83,1.80)
500 (6,4) (96,41) (6.5e−10,1.9e−16) (6.6e−09,1.2e−12) (112.14,49.59)
1000 (6,5) (114,67) (1.0e−17,1.4e−23) (2.4e−08,7.5e−18) (530.42,328.15)

P3 10 (5,4) (63,15) (2.2e−12,2.7e−21) (4.9e−08,1.4e−11) (0.22,0.09)
100 (5,4) (71,18) (7.9e−13,2.6e−15) (9.5e−08,4.5e−08) (3.10,1.02)
500 (5,4) (73,21) (1.1e−14,2.6e−16) (1.5e−07,5.9e−09) (78.11,26.15)
1000 (5,4) (81,26) (6.1e−13,1.2e−15) (8.2e−10,2.4e−16) (335.37,138.23)

P4 4 (6,4) (63,20) (5.4e−12,3.2e−17) (6.1e−09,2.8e−12) (0.15,0.08)
P5 4 (6,4) (141,23) (9.8e−14,2.1e−23) (3.4e−07,3.2e−12) (0.28,0.06)
P6 5 (5,3) (47,17) (1.3e−14,4.3e−27) (4.9e−12,8.1e−17) (0.16,0.07)
P7 10 (6,4) (110,33) (1.2e−16,6.1e−19) (1.1e−12,4.5e−14) (0.37,0.14)
P8 20 (6,5) (145,66) (2.9e−13,3.7e−21) (0,4.4e−12) (1.33,0.46)
P9 30 (6,6) (106,77) (3.7e−14,9.6e−21) (4.4e−08,6.4e−11) (2.24,0.85)
P10 100 (6,6) (209,113) (8.5e−11,2.1e−23) (2.1e−07,1.8e−12) (42.09,19.12)

Table 1 Results for θ (1) and θ (2)

In this table, Size stands for the number of variables, OutIter is the number of changes of

the smoothing parameter, InIter corresponds to the total number of jacobian evaluations,

Opt. and Feas. correspond to the following optimality and feasibility measures

Opt. := max1≤i≤n |xiFi(x)| and Feas. := �min(x,0)�1 +�min(F(x),0)�1.

The results clearly show that our methods are efficient, competitive and superior to the
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projection one (The results of the projection method are given in the appendix). We also

remark that the second smoothing function is much more efficient and powerful than the first

one. This was foreseeable since 1− δ0(x) ≥ θ (2)(x) ≥ θ (1)(x), with δ0(x) = 1 if x = 0 and

δ0(x) = 0 elsewhere. Of course other experiments with different θ ’s should be undertaken

to assert the qualities of the whole approach.

6 Conclusions

We proposed simple methods to the solution of NCP and proved some convergence and

error estimate results. We think that these methods can be much more improved in some

special situations (Linear Complementarity Problems (LCP) for instance). We are going in

this direction and our aim is to propose a polynomial algorithm for LCP with P-matrices.

Further, for general NCP, additional work is needed to understand how best to choose among

smoothing functions and control the decrease of the approximation parameter. Finally, ad-

ditional computational testing and experimentation are needed to develop these algorithmic

techniques into mature codes, which will thoroughly exploit the inherent characteristics of

the smoothing strategy.
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7 Appendix

We give in this appendix a brief description of each test example and report some numerics

obtained by using the following projection method; see [15, Sect. 12.1].

xk+1 = max(0,xk −D−1F(xk)), k = 0,1, . . .

We choose D = λ I, where λ > 0 is a constant and I is the n× n identity matrix. Table 2

presents the best obtained results when varying the value of λ (λ = 0.1,1,10,20,50,100).
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-The two first examples P1 and P2 [9] correspond to strongly monotone function

F(x) = (F1(x), . . . ,Fn(x))T with Fi(x) =−xi+1 +2xi − xi−1 +
1
3 x3

i −bi, i = 1, . . . ,n,

(x0 = xn+1 = 0) and bi = (−1)i (resp. bi =
(−1)i
√

i
), i = 1, . . . ,n for P1 (resp. P2).

- P3 is another strongly monotone test problem from [10] where F(x) = (F1(x), . . . ,Fn(x))T

with Fi(x) =−xi+1 +2xi − xi−1 + arctan(xi)+(i− n
2 ), i = 1, . . . ,n, (x0 = xn+1 = 0).

-P4 and P5 are known as the degenerate and the non-degenerate examples of Kojima-Shindo

[12]. P4 and P5 are respectively defined by

F4(x)=





3x2
1 +2x1x2 +2x2

2 + x3 +3x4 −6

2x2
1 + x1 + x2

2 +10x3 +2x4 −2

3x2
1 + x1x2 +2x2

2 +2x3 +9x4 −9

x2
1 +3x2

2 +2x3 +3x4 −3





,F5(x)=





3x2
1 +2x1x2 +2x2

2 + x3 +3x4 −6

2x2
1 + x1 + x2

2 +10x3 +2x4 −2

3x2
1 + x1x2 +2x2

2 +2x3 +3x4 −1

x2
1 +3x2

2 +2x3 +3x4 −3





.

P5 has a unique solution x∗ = (
√

6
2 ,0,0, 1

2 ) with F(x∗) = (0,2+
√

6
2 ,3,0) while P4 has two

optimal solutions x∗ = (
√

6
2 ,0,0, 1

2 ) with F(x∗) = (0,2+
√

6
2 ,0,0) and x∗∗ = (1,0,3,0) with

F(x∗∗) = (0,31,0,4). The first optimal solution of P4 is degenerate since x∗3 = F3(x∗) = 0.

-A complete description of P6 and P7 can be found in [14,13]. These two examples corre-

spond to the Nash-Cournot test problem with N = 5 and N = 10.

Let x ∈ RN, Q = ∑xi and define the functions Ci(xi) and p(Q) as follows:

p(Q) = 5000
1
γ Q

−1
γ , Ci(xi) = cixi +

bi

1+bi
L

1
bi
i x

bi+1
bi

i .

The NCP-function is given by Fi(x) =Ci
�(xi)− p(Q)− xi p�(Q), i = 1, . . . ,N,

or in a vectorial form F(x) =
�
c+L

1
b x

1
b − p(Q)(e− x

γQ )
�

with ci, Li, bi, γ > 0 and γ ≥ 1.

For our numerics, we used - N = 5, c = [10,8,6,4,2]T , b = [1.2,1.10,1,0.9,0.8]T ,

L = [5,5,5,5,5]T , e = [1,1,1,1,1]T and γ = 1.1.

- N = 10, c = [5,3,8,5,1,3,7,4,6,3]T , b = [1.2,1,0;9,0.6,1.5,1,0.7,1.1,0.95,0.75]T ,

L = [10,10,10,10,10,10,10,10,10,10]T , e = [1,1,1,1,1,1,1,1,1,1]T and γ = 1.2.

-P8, P9 and P10 are also described in [14,13]. They correspond respectively to the HpHard

test problem with n = 20, n = 30 and n = 100.
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The corresponding function F(x) is of the form: F(x) = (AAT +B+D)x+q;

where the matrices A,B and D are randomly generated as: any entry of the square n× n

matrix A and of the n× n skew-symmetric matrix B is uniformly generated from ]− 5,5[,

and any entry of the diagonal matrix D is uniformly generated from ]0,3[. The vector q is

uniformly generated from ]−500;0[.

The matrix AAT +B+D is positive definite and the function F is strongly monotone. We

used the M-files proposed in [13] to generate A,B,D and q. We implemented the projection

method for solving the previous test problems in the same conditions and using the same

material as for our methods. The following table gives the best obtained results when vary-

ing the value of λ (λ = 0.1,1,10,20,50,100). In each computation we used a vector of ones

as starting point. The column Iter corresponds to the number of iterations of the projec-

tion method and can not be compared to Initer or Outiter in Table 1. The other columns

correspond to the same things in Table 1 and can be used for comparison.

Pb size Iter cpu time (s) Opt.
P1 10 71 0.63 2.5e−9

100 72 5.48 9.1e−11
500 89 96.37 4.7e−10
1000 83 224.04 8.8e−11

P2 10 72 1.19 2.2e−10
100 80 5.76 7.1e−12
500 91 112.41 5.3e−12
1000 102 336.20 2.9e−11

P3 10 41 1.03 6.4e−11
100 73 5.19 1.8e−12
500 82 90.22 5.8e−13
1000 84 350.06 2.4e−11

P4 4 66 0.19 3.1e−12
P5 4 163 0.34 1.4e−12
P6 5 52 0.22 6.5e−11
P7 10 105 0.46 2.7e−12
P8 20 162 1.48 9.3e−13
P9 30 111 2.66 1.6e−12
P10 100 217 52.08 8.7e−13

Table 2 Results for the projection method
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