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SYMBOLIC EXTENSIONS FOR NONUNIFORMLY ENTROPY

EXPANDING MAPS

DAVID BURGUET

Abstract. We call nonuniformly entropy expanding map any C1 map defined
on a compact manifold whose ergodic measures with positive entropy have only
nonnegative Lyapunov exponents. We prove that a Cr nonuniformly entropy
expanding map T with r > 1 has a symbolic extension and we give an explicit
upper bound of the symbolic extension entropy in terms of the positive Lyapunov
exponents by following the approach of T.Downarowicz and A.Maass[14].

1. Introduction

Given a continuous map T : X → X on a compact metrizable space X one
can wonder if this topological dynamical system admits a symbolic extension, i.e.
a topological extension, which is a subshift over a finite alphabet. The topolog-
ical symbolic extension entropy hsex(T ) = inf{htop(Y, S) : (Y, S) is a symbolic
extension of (X, T )} estimates how the dynamical system (X, T ) differs from a
symbolic extension from the point of view of entropy. The question of the exis-
tence of symbolic extensions leads to a deep theory which was developped mainly
by M.Boyle and T.Downarowicz, who related the entropy of symbolic extenions
with the convergence of the entropy of (X, T ) computed at finer and finer scales
[4].

Dynamical systems with symbolic extensions have necessarily finite topological
entropy, because the topological entropy of a factor is less than or equal to the
topological entropy of the extension and the topological entropy of a subshift over a
finite alphabet is finite. Joe Auslander asked if the opposite was true : does every
finite entropy system have a symbolic extension? M.Boyle answered this ques-
tion negatively by constructing a zero dimensional dynamical system with finite
topological entropy but without symbolic extension. Nonetheless it was proved by
M.Boyle, D.Fiebif, U.Fiebig [6] that asymptotically h-expansive dynamical systems
with finite topological entropy admit principal symbolic extensions, i.e. which pre-
serve the entropy of invariant measures. Following Y.Yomdin [23], J.Buzzi showed
that C∞ maps on a compact manifold are asymptotically h-expansive [10]. In
particular such maps admit principal symbolic extensions. Recall that uniformly
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hyperbolic dynamical systems are expansive. It is also known that partially hy-
perbolic dynamical systems with a central bundle splitting into one dimension
subbundles [19] [12] are h-expansive. Therefore all these dynamical systems are
asymptotically h-expansive and then admit principal symbolic extensions. On the
other hand C1 maps without symbolic extensions have been built in several works
by using generic arguments [17] [1] or with an explicit construction [8].

We say that a map T :M →M defined on a compact manifold is Cr with r > 1
when T is [r] times differentiable 1 and the [r] derivative of T is r − [r] Hölder.
T.Downarowicz and A.Maass [14] have recently proved that Cr maps of the interval
f : [0, 1] → [0, 1] with 1 < r < +∞ have symbolic extensions. More precisely

they showed that hsex(f) ≤ r log ‖f ′‖∞
r−1

. The author of this paper built explicit
examples [8] proving this upper bound to be sharp. Similar Cr examples with
large symbolic extension entropy have been previously built by T.Downarowicz
and S.Newhouse for diffeomorphisms in higher dimensions [17] by using generic
arguments on homoclinic tangencies. The author of this paper proved newly that
C2 surface local diffeomorphisms have symbolic extensions [7]. The existence of
symbolic extensions for general Cr maps with 1 < r < +∞ is still an open question.
It was conjectured in [17] that :

Conjecture 1. Let T :M → M be a Cr map, with r > 1, on a compact manifold
M of dimension d. Then

hsex(T ) ≤ htop(T ) +
dR(T )

r − 1

where R(T ) is the dynamical Lipschitz 2 constant of T , that is R(T ) := limn→+∞
log+ ‖DTn‖

n
.

A C1 map T :M → M on a compact manifoldM will be called nonuniformly en-
tropy expanding if any ergodic measure with nonzero entropy has only nonnegative
Lyapunov exponents 3. In this paper we prove the conjecture for Cr nonuniformly

entropy expanding maps with r > 1 up to a factor d, i.e. hsex(T ) ≤ htop(T )+
d2R(T )
r−1

(See Corollary 1).

It follows from Ruelle’s inequality that C1 maps of the interval are nonuni-
formly entropy expanding maps. Therefore Theorem 4 generalizes the result of
T.Downaraowicz and A.Maass [14]. We do not know how large the class of nonuni-
formly entropy expanding map in higher dimensions is. Does it contain a Cr open
set for some r ∈ Z

+? Do ”Alves-Viana like maps” belong to this class [21]? Any-
way, we think the results presented in this paper can be considered as a first step

1Throughout this paper [x] denotes the integer part of x for all real numbers x.
2R(T ) does not depend on the riemannian metric ‖‖ on M .
3For usual nonuniformly expanding maps [2] which are well adapted to the study of SRB mea-

sures it is required that Lebesgue almost all points have only nonnegative Lyapunov exponents.



SYMBOLIC EXTENSIONS FOR NONUNIFORMLY ENTROPY EXPANDING MAPS 3

in the proof of Conjecture 1 (especially the Main Theorem which applies to general
Cr maps).

We give now a class of nontrivial examples of a nonuniformly entropy expanding
map. Let T : N → N be a Cr isometry on a compact Riemannian manifold N
of dimension d. Then any Cr skew product on N × [0, 1] of the form Tg(x, y) =
(Tx, g(x, y)) with positive entropy is nonuniformly entropy expanding : any ergodic
measure ν has d zero Lyapunov exponents and by Ruelle’s inequality the first
exponent must be positive when the entropy of ν is positive. Finally observe that
the set of g ∈ Cr(N × [0, 1]) such that Tg has positive entropy contains a C0 open
subset of Cr(N × [0, 1]). Indeed if f : [0, 1] → [0, 1] is a Cr map of the interval
with positive entropy then it admits a horseshoe which is persistent under small
C0 perturbations [16]. Therefore there exists a C0 neighborhood V of f in C([0, 1])
such that if g(x, .) ∈ V for all x ∈ N then htop(Tg) > 0.

2. Preliminaries

In the following we denote by M(X, T ) the set of invariant Borel probability
measures of the dynamical system (X, T ) and by Me(X, T ) the subset of ergodic
measures. We endow M(X, T ) with the weak star topology. Since X is a compact
metric space, this topology is metrizable. We denote by dist a metric on M(X, T ).
It is well known that M(X, T ) is a compact convex metric space whose extreme
points are exaclty the ergodic measures. Moreover if µ ∈ M(X, T ) there exists an
unique Borel probability measure Mµ on M(X, T ) supported on Me(X, T ) such
that for all Borel sets B we have µ(B) =

∫
ν(B)dMµ(ν). This is the so called

ergodic decomposition of µ. A Borel function f : M(X, T ) → R is said to be
harmonic if f(µ) =

∫
Me(X,T )

f(ν)dMµ(ν) for all µ ∈ M(X, T ). It is a well known

fact that affine upper semicontinuous functions are harmonic.
If f is a Borel function defined on Me(X, T ), the harmonic extension of f is the

function defined on M(X, T ) by :

f(µ) :=

∫

Me(X,T )

f(ν)dMµ(ν)

It is easily seen that f is harmonic.

2.1. Symbolic extension entropy function and entropy structures. A sym-
bolic extension of (X, T ) is a subshift (Y, S) of a full shift on a finite number of
symbols, along with a continuous surjection π : Y → X such that Tπ = πS.
Given a symbolic extension π : (Y, S) → (X, T ) we consider the extension entropy
hπext : M(X, T ) → R

+ defined for all µ ∈ M(X, T ) by :

hπext(µ) = sup
π∗ν=µ

h(ν)

where π∗ is the map induced on measures by π.
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Then the symbolic extension entropy function, hsex : M(X, T ) → R
+, is :

hsex = inf hπext

where the infimum is taken over all the symbolic extensions of (X, T ). By con-
vention, if (X, T ) does not admit any symbolic extension we simply put hsex ≡ +∞.
Recall that in the Introduction we have defined the topological symbolic extension
entropy hsex(T ) as the infimum of the topological entropies of the symbolic exten-
sions of (X, T ). We also put hsex(T ) = +∞ when there are no such extensions.

2.2. Newhouse local entropy. Let us first recall some usual notions related to
the entropy of dynamical systems (we refer to [22] for a general introduction to
entropy). Consider a continuous map T : X → X with (X, d) a compact metric
space. Let n ∈ Z

+ and δ > 0. A subset E of X is called a (n, δ) separated set
when for all x, y ∈ E there exists 0 ≤ k < n such that d(fkx, fky) > δ.

We recall now the ”Newhouse local entropy”. We fix some finite open cover V
of X , a point x ∈ X , a number δ > 0, an integer n, and a Borel set F ⊂ X .
By Vn we will denote the open cover consisting of all the open sets of the form
V0 ∩ T

−1V1 ∩ ... ∩ T
−n+1Vn−1, where Vi ∈ V for each i = 0, 1, ..., n− 1. We define :

H(n, δ|F,V) := logmax{♯E : E is a (n, δ) separated set in F∩V n with V n ∈ Vn}

h(δ|F,V) := lim sup
n→+∞

1

n
H(n, δ|F,V)

h(X|F,V) := lim
δ→0

h(δ|F,V)

Then for any ergodic measure ν we put :

hNew(X|ν,V) := lim
σ→1

inf
ν(F )>σ

h(X|F,V)

Finally we extend the function hNew(X|·,V) to M(X, T ) by the harmonic ex-
tension. Given a sequence of finite open covers (Vk)k∈Z+ whose diameter is con-
verging to 0 and with Vk+1 finer than Vk for all k ∈ Z

+, we consider the sequence
HNew = (hNew

k )k∈Z+ :=
(
h− hNew(X|·,Vk)

)
k∈Z+ . T.Downarowicz proved that this

sequence defines an entropy structure4 [13] for homeomorphisms and the author
of this paper extends the result to the noninvertible case [9].

4In particular hNew(X |·,Vk) converges pointwise to zero when k goes to infinity.
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2.3. Estimate theorem. One of the main tools introduced in [14] is the so-called
Estimate Theorem. We can roughly resume the statement as follows : in order
to estimate the symbolic extension entropy function one only needs to bound the
local entropy of an ergodic measure near an invariant one by the difference of the
values of some convex upper semicontinuous function on M(X, T ) at these two
measures.

Theorem 1. (Downarowicz-Maass)[14] Let (X, T ) be a dynamical system with
finite topological entropy and fix some r > 1. Let g be an upper semicontinuous
convex positive function on M(X, T ) such that for every γ > 0 and µ ∈ M(X, T )
there exist τµ > 0 and a finite open cover Vµ > 0 such that for every ergodic
measure ν with dist(ν, µ) < τµ it holds that :

(1) hNew(M |ν,Vµ) ≤ g(µ)− g(ν) + γ

Then there exists a symbolic extension π : (Y, S) → (X, T ) satisfying hπext = g.
In particular hsex ≤ h+ g.

We will apply this theorem to smooth dynamical systems where the map g is
related with the Lyapunov exponents of invariant measures.

2.4. Ruelle’s inequality. Given a compact riemannian manifold (M, ‖‖) of di-
mension d and an integer k ≤ d, we consider the vector bundle ΛkTM over M
whose fiber at x ∈ M is the space of k-forms wx on the cotangent space T ∗

xM .
It inherits a norm from the riemannian structure of M as follows : ‖wx‖ =
sup |wx(e1, ..., ek)| where the supremun is taken over all the orthonormal fami-
lies (e1, ..., ek) of (TxM)k. A C1 map T on M induces naturally a map DT∧k

on ΛkTM defined by DxT
∧k(wx)(v1, ..., vk) = wx(DxTv1, ..., DxTvk) for any wx ∈

ΛkTxM and any k-tuple (v1, ..., vk) of (TxM)k. The operator norm ‖DxT
∧k‖ =

sup‖wx‖≤1 ‖DxT
∧k(wx)‖ is simply the supremum of the k-volumes of the ellip-

soids DxT (Dk) over all the k-disks Dk of the tangent space with unit k-volume.
For k = n it coincides with the jacobian Jacx(T ) of T at x. Let ‖DxT

∧‖ =
maxk=1,...,d ‖DxT

∧k‖. For all k = 1, ..., d the cocycle (x, n) 7→ log ‖(DxT
n)∧k‖

is subadditive so that given an ergodic measure ν one can define ”the k-volume
growth” of the action of DT on TM for ν as the limit limn

1
n
log ‖(DxT

n)∧k‖ for
ν-generic points x. For k = d the cocycle is in fact additive and the d-volume
growth of DT coincides with

∫
log Jacx(T )dν(x). The k-volume growth of DT is

related to the Lyapunov exponents as follows :

Theorem 2. (Oseledets)[18][20] Let T :M →M be a C1 map defined on a compact
riemannian manifold (M, ‖‖) of dimension d. Let ν be an ergodic measure and
+∞ > χ1(ν) ≥ ... ≥ χd(ν) ≥ −∞ its Lyapunov exponents. Then for ν almost all
x :
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lim
n→+∞

1

n
log ‖(DxT

n)∧k‖ =

k∑

i=1

χi(ν) for every 0 ≤ k ≤ d

and thus

lim
n→+∞

1

n
log+ ‖(DxT

n)∧‖ =
d∑

i=1

χ+
i (ν).

Observe that we have in particular
∫
log Jacx(T )dν(x) =

∑d

i=1 χi(ν) for all er-
godic measures ν. The affine function g : M(M,T ) → [−∞,+∞[ defined by
g(µ) =

∫
log Jacx(T )dµ(x) for all invariant measures µ is upper semicontinuous.

Therefore5 g+ := max(g, 0) is an upper semicontinuous convex function.

In the following we are interested in the entropy of ergodic measures. We recall
the Ruelle’s inequality which states that the entropy is bounded from above by
”the maximal volume growth of DT” :

Theorem 3. (Ruelle’s inequality) Let T : M → M be a C1 map on a compact
manifold M of dimension d then for all ergodic measures ν :

h(ν) ≤
d∑

i=1

χ+
i (ν).

3. Statements

We first state our Main theorem which holds for general Cr maps with r > 1 :

Main Theorem . Let T : M → M be a Cr map, with r > 1, on a compact
manifold of dimension d. Let µ be an invariant measure and fix some γ > 0.
Then there exist τµ > 0 and a finite open cover Vµ > 0 such that for every ergodic
measure ν with dist(ν, µ) < τµ it holds that :

(2) hNew(M |ν,Vµ) ≤
d (g+(µ)− g+(ν))

r − 1
−

d∑

i=1

χ−
i (ν) + γ

where g+(ξ) = max
(∫

log Jacx(T )dξ(x), 0
)
for all invariant measures ξ.

If we assume moreover that T is a nonuniformly entropy expanding map then
the conclusion of the Main theorem can be rewritten as

hNew(M |ν,Vµ) ≤
d
(∑d

i=1 χ
+
i (µ)−

∑d
i=1 χ

+
i (ν)

)

r − 1
+ γ

5In the following we use the notations a+ = max(a, 0) and a− = min(a, 0).
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Indeed if ν is an ergodic measure with nonzero entropy then all its Lyapunov
exponents are by assumption nonnegative. Therefore g(ν) =

∫
log Jacx(T )dν(x) =∑d

i=1 χi(ν) =
∑d

i=1 χ
+
i (ν) = g+(ν). Moreover g+(µ) ≤

∑d

i=1 χ
+
i (µ) for all invariant

measures µ.
By the Estimate theorem (Theorem 1) we conclude that :

Theorem 4. Let T : M → M be a Cr nonuniformly entropy expanding map,
with r > 1, defined on a compact manifold M of dimension d. Then there exists

a symbolic extension π : (Y, S) → (X, T ) such that hπext = h + d
r−1

∑d
i=1 χ

+
i . In

particular,

hsex ≤ h+
d

r − 1

d∑

i=1

χ+
i .

Then it follows from the usual variational principle for the entropy and the
obvious inequality χ1(ν) ≤ R(T ) for all ergodic measures ν that6 :

Corollary 1. Let T : M → M be a Cr nonuniformly entropy expanding map,
with r > 1, defined on a compact manifold M of dimension d. Then there exists

a symbolic extension (Y, S) of (X, T ) such that htop(S) ≤ htop(T ) +
d2R(T )
r−1

. In
particular,

hsex(T ) ≤ htop(T ) +
d2R(T )

r − 1
.

Let T : M → M be a C1 map on a compact manifold M . We call n-invertible
branch any set An ⊂M such that for each 0 ≤ k < n the set T kAn is open and the
map T |T kAn

is a diffeomorphism onto T k+1An. Any connected component of the
set {x : Jacx(T

n) 6= 0} of noncritical points of T n is an n-invertible branch. Such
n-invertible branches will be called maximal n-invertible branches. In dimension
one n-invertible branches coincide with the branches of monotonicity of T n.

The proof of the Main Theorem goes as follows :

• we first prove a Ruelle’s inequality which bounds from above the entropy
in the invertible branches by the sum of the negative Lyapunov exponents;

• then, given a Cr map, we count the number of invertible branches with a
large jacobian;

• finally we bound the Newhouse local entropy of ergodic measures as in [14].

6In fact it is easily seen that the following variational principle holds : supν∈Me(M,T ) χ
+
1 (ν) =

R(T ).
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4. Inverse Ruelle’s inequality

To estimate the entropy of a C1 map in the invertible branches we introduce the
following quantity. We fix a number δ > 0, an integer n, a n-invertible branch An

and a Borel set F ⊂M . We define :

H inv(n, δ|F,An) := logmax{♯E : E is a (n, δ) separated in F ∩An}

H inv(n, δ|F ) := sup
An

H inv(n, δ|F,An)

hinv(δ|F ) := lim sup
n→+∞

1

n
H inv(n, δ|F )

hinv(M |F ) := lim
δ→0

hinv(δ|F )

Then for any ergodic measure ν we put :

hinv(ν) := lim
σ→1

inf
ν(F )>σ

hinv(M |F )

We prove in this section the following ”inverse Ruelle’s inequality” of indepen-
dent interest :

Theorem 5. Let T : M → M be a C1+η map with η > 0. Then for all ergodic
measures ν,

hinv(ν) ≤ −
d∑

i=1

χ−
i (ν).

Clearly hinv(ν) is less than or equal to the usual Kolmogorov-Sinai entropy
hT (ν). When T is a diffeomorphism hinv(ν) is equal to hT (ν). It is well known
that hT (ν) = hT−1(ν) and thus Theorem 5 follows in this case from the usual Ru-
elle’s inequality. When T is a local diffeomorphism hinv(ν) is bigger than or equal
to hNew

k (ν) for large k. In the one dimensional case it follows easily from the total
order on R that the cardinality of a (n, δ) separated set lying in a given monotone
branch of T n is bounded from above by n

δ
and then hinv(ν) is zero.

To prove the usual Ruelle’s inequality one relates the maximal volume growth of
DT which is equal to the sum of the positive Lyapunov exponents, to the maximal
volume growth of T , that is the maximal volume growth of disks of the riemannian
manifold (M, ‖‖). It is then convenient to work with the exponential map ofM to
make the connection between these two quantities. We recall the basic properties
of the exponential map which we use in the present paper. We refer to [15] for
a definition and further developments. We denote by ∂ the distance induced on
M by the riemannian structure and by expx : TxM → M the exponential map
at x ∈ M . The derivative of expx at the origin of TxM is the identity map so
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that by the Inverse function theorem the restriction of expx on the ball of the
tangent space at x centered at the origin with radius r is a diffeomorphism onto
its image for small r > 0. The radius of injectivity Rinj of the compact riema-
nian manifold M is the largest r > 0 such that the previous property holds for
all x ∈ M . Furthermore the exponential map expx maps bijectively the ball of
the tangent space at x centered at the origin with radius r < Rinj, denoted by
Bx(0, r) := {v ∈ TxM, ‖v‖x < r} onto the ball of M centered at x with radius
r > 0 denoted by B(x, r) := {y ∈ M, ∂(x, y) < r}. The global exponential map
exp : TM → M defined by exp(x, v) = expx(v) is C1. In particular there exists
R < Rinj such that ‖Dy expx ‖ < 2 and ‖Dz (exp

−1
x ) ‖ < 2 for all y ∈ Bx(0, R), for

all z ∈ B(x,R) and for all x ∈M .

We introduce now some geometrical tools which will be useful in the proof of
our Ruelle’s inequality. For each α > 0 let Mα be a subset of M which meets any
ball of radius α

16
. One can assume that αd♯Mα is bounded above by a constant

C(M) depending only onM . For example consider a finite atlas A = {Φ1, ...,ΦK}
such that the local charts Φi :]0, 1[

d→ M satisfy ‖DΦi‖ ≤ 1 for all i = 1, ..., K.
For all β > 0 let Lβ be the set defined by Lβ = {kβ ∈]0, 1[d, k ∈ Z

+}. Then
the set Mα =

⋃
i=1,...,K Φi(L α

16
√

d
) meets any ball of radius α

16
. For each subset

S of M let Cov(α, S) be a subset of Mα with minimal cardinality such that the
balls of radius α

2
centered at the points of Cov(α, S) cover S. Let x ∈ M and

E ⊂ TxM be an ellipsoid centered at the origin of TxM . We denote by ‖E‖∧k the
supremum of the k-volumes of E ∩ V over all the vector subspaces V of TxM of
dimension k. Let ‖E‖∧ = maxk=1,...,d ‖E‖

∧k. With these notations we have then
‖DyT (By(0, 1)) ‖

∧ = ‖DyT‖
∧ for all y ∈M .

Lemma 1. Let R > α1, α2 > 0. Let x ∈ M and let E ⊂ TxM be an ellipsoid
centered at the origin of TxM such that α1E ⊂ Bx(0,

R
2
), then

♯Cov (α2, expx(α1E)) ≤ P ([‖E‖∧] + 1)

(
max(α1, α2)

α2

)d

with a constant P depending only on d.

Proof : Since Mα2 meets any ball of radius less than α2

16
and ‖Dy(exp

−1
x )‖ < 2

for all y ∈ B(x,R) the set exp−1
x (Mα2) meets any ball of radius less than α2

8
which

is included in Bx(0, R). The ellipsoid α1E can be covered by at most [‖E‖∧] + 1

cubes of size α1 and therefore by at most ([‖E‖∧] + 1)
([

8max(α1,α2)
√
d

α2

]
+ 1
)d

cubes

of size α2

8
√
d
. Such a cube intersecting α1E is included in a subball of Bx(0, R) of

radius α2

8
and therefore in a subball of Bx(0, R) of radius

α2

4
centered at a point

of exp−1
x (Mα2). This last subball is mapped by expx in a ball of M of radius
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α2

2
centered at a point of Mα2 because ‖Dy expx ‖ < 2 for all y ∈ Bx(0, R). We

conclude that Cov (α2, expx(α1E)) ≤ ([‖E‖∧] + 1)
([

8max(α1,α2)
√
d

α2

]
+ 1
)d

. �

Lemma 2. Let ν be an ergodic measure with
∫
log Jacx Tdν(x) > −∞. Then(

1
n
log+ ‖ (DxT

n)−1 ‖∧
)
n∈Z+ converges to −

∑d

i=1 χ
−
i (ν) for ν almost all x and

1
n

∫
log+ ‖(DxT

n)−1‖∧dν(x) converges to −
∑d

i=1 χ
−
i (ν) when n goes to infinity.

Proof : It is well known that invertible d×d matrices, endowed with the operator
norm ‖‖ induced by the euclidean norm, satisfy the relations ‖A‖‖A−1‖ ≥ 1 and

|det(A)| ≤ ‖A‖d−1

‖A−1‖ . Therefore +∞ > (d− 1) log ‖DT‖∞ −
∫
log ‖(DxT )

−1‖dν(x) ≥∫
log Jacx(T )dν(x) > −∞ and then the map x 7→ log ‖(DxT )

−1‖ is ν integrable.

Let (M, ν) be the natural extension of (M, ν). The invertible cocycle x = (...x−1, x0, x1...) 7→
Dx0T over the natural extension is integrable because

∫
log+ ‖Dx0T‖dν(x) =∫

log+ ‖DxT‖dν(x) < +∞ and
∫
log+ ‖(Dx0T )

−1‖dν(x) =
∫
log+ ‖(DxT )

−1‖dν(x) <
+∞. This cocycle has the same Lyapunov exponents as T and the sequence
1
n

∫
log+ ‖(Dx−n

T n)−1‖∧dν(x) = 1
n

∫
log+ ‖(DxT

n)−1‖∧dν(x) converges to−
∑d

i=1 χ
−
i (ν)

when n goes to infinity according to the cocycle invertible version of Oseledet’s
Theorem [20]. Now by Kingman’s subadditive ergodic theorem applied to the
subadditive sequence of integrable functions x 7→ log+ ‖(DxT

n)−1‖∧ the limit
limn→+∞

1
n
log+ ‖ (DxT

n)−1 ‖∧ exists for ν-almost all x and coincides with the limit

of the integrals limn→+∞
1
n

∫
log+ ‖(DxT

n)−1‖∧dν(x). �

It is convenient in the next proofs to use the following vocabulary :

Definition 1. Let S ∈ Z
+ and n ∈ Z

+. We say that a sequence of n positive
integers Kn := (k1, ..., kn) misses the value S if 1

n

∑n

i=1 ki ≤ S.

The number of sequences of n positive integers missing the value S is exactly
the binomial coefficient

(
nS

n

)
. We denote H : [0, 1] → R the map defined by

H(t) = −t log t− (1− t) log(1− t). It is easily seen that

log

(
nS

n

)
≤ nSH(S−1) + 1(3)

For all γ > 0 we fix Sγ ∈ Z
+ so that H(S−1) < γ for all S ≥ Sγ .

We show now our Ruelle’s inequality. First let us explain shortly the outline of
the proof. We will consider some iterate TN of T such that the negative Lyapunov
exponents of ν are almost given by the average of the norm of (DTN)−1 along
the orbits of typical points. Then, given a nN -invertible branch AnN , we bound
the cardinality of any (n, δ) separated (for TN) set E in AnN by shadowing the
orbits of T nNE under the action of T−N . In the usual Ruelle inequality the orbits
under forwards iterates are shadowed. Our situation is more difficult because the
derivative of T−N is not bounded near the critical values of TN . However we
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show that the integrability assumption,
∫
log Jacx Tdν(x) > −∞, and the Hölder

property of the differential allows us to neglect the growth of orbits near the critical
values. The proof goes as follows :

• we first define N and exploit our integrability asumption;
• then we bound the volume T−N -growth of balls by distinguishing two cases
depending on whether we are far or close to the critical values of TN ;

• we prove a combinatorial estimate which allows us to consider (n, δ) sepa-
rated sets E such that the size of ‖DT−1‖ along the T -orbit of E is fixed;

• finally we detail our shadowing construction.

Proof of Theorem 5 : Fix an ergodic measure ν with
∫
log Jacx Tdν(x) > −∞.

Let γ > 0. By Lemma 2 there exists an integer N and a Borel set G with
ν(G) > 1− γ

max(−∑d
i=1 χ

−
i (ν),1)

such that for all x ∈ G :

(4) −
d∑

i=1

χ−
i (ν)− γ <

1

N
log+ ‖(DxT

N)−1‖∧ < −
d∑

i=1

χ−
i (ν) + γ

and

1

N

∫
log+ ‖(DxT

N)−1‖∧dν(x) < −
d∑

i=1

χ−
i (ν) + γ

From the above inequalities one deduces easily that

1

N

∫

M\G

(
log+ ‖(DxT

N)−1‖∧ + 1
)
dν(x) < 4γ

Observe also that the set Crit(T ) of critical points has zero ν-measure. Let
us denote by Crit(T )θ = {y ∈ M, ∂(y,Crit(T )) < θ} the θ-neighborhood of

the set of critical points. We also put Crit(T )θN =
⋃N−1

k=0 T
−k Crit(T )θ. Since

x 7→
∑

0≤j<N log+ ‖(DT jxT )
−1‖ is a ν-integrable function there exists θ > 0 such

that :

∫

Crit(T )θ
N

∑

0≤j<N

(
log+ ‖(DT jxT )

−1‖+ 1
)
dν(x) < γ

Let σ ∈]0, 1[. By Birkhoff’s ergodic theorem and the two previous equations
there exists a set F with ν(F ) > σ and an integer n0 such that for all x ∈ F and
for all n ≥ n0 :

(5)
1

nN

∑

0≤l<nN

1Crit(T )θ
N
(T lx)

∑

0≤j<N

(
log+ ‖(DT l+jxT )

−1‖+ 1
)
< γ

and
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1

nN2

∑

0≤l<nN

1M\G(T
lx)
(
log+ ‖(DT lxT

N)−1‖∧ + 1
)
< 4γ,

in particular there exists some 0 ≤ i(x) < N such that

(6)
1

nN

∑

0≤k<N

1M\G(T
i(x)+kNx)

(
log+ ‖(DT i(x)+kNxT

N)−1‖∧ + 1
)
< 4γ

Let n be an integer larger than n0 and let AnN be an nN -invertible branch.
We first control the growth of balls under T−1 for pieces of orbits far from the
set of critical values. As T is a C1 map there exists, by an easy argument of
continuity, a number 0 < δ < θ such that for all 0 < r < δ, for all y ∈ T i+kNAnN ∩(
M \ Crit(T )θN

)
with i+ (k + 1)N < nN and for all z ∈ B(TNy, r) :

(7)
(
TN |T i+kNAnN

)−1
B(z, r) ⊂ expy

(
(DyT

N)−1BTNy(0, 3r)
)

Observe that δ can be chosen regardless of the choice of the invertible branch AnN .
Now we give satisfactory estimates for pieces of orbits close to the set of critical

points. Choose R < R′ < Rinj such that T (B(x,R)) ⊂ B(Tx,R′) for all x ∈ M .
We consider the local dynamic Tx : Bx(0, R) → BTx(0, R

′) at x in the local charts
defined by the exponential map, i.e. Tx : exp−1

Tx ◦ T ◦ expx. Fix y ∈ T tAnN with
0 ≤ t < nN . Let 0 < Q < R be a constant depending only on T such that
‖(DTy)|By(0,Q)‖η ≤ 2‖DT‖η and let h ∈ TyM with ‖h‖ ≤ Q. First notice that :

Ty(h)−DyT (h) = Ty(h)−D0Ty(h)

=

∫ 1

0

(DthTy(h)−D0Ty(h)) dt

Then by using the Hölder property of the differential we have :

‖Ty(h)−DyT (h)‖ ≤ ‖(DTy)|By(0,Q)‖η‖h‖
1+η

≤ 2‖DT‖η‖h‖
1+η

By assuming r < amax(‖(DyT )
−1‖, 1)−

1+η
η with a constant a we have for all

h ∈ By (0, 2max(‖(DyT )
−1‖, 1)r) :

‖Ty(h)−DyT (h)‖ < 2‖DT‖η
(
2max(‖(DyT )

−1‖, 1)
)1+η

r1+η

< 2‖DT‖η
(
2max(‖(DyT )

−1‖, 1)
)1+η

aη max(‖(DyT )
−1‖, 1)−1−ηr

< r

where the last inequality follows from an appropriate choice of the constant a.
Moreover we have obviously thatBTy(0, 2r) ⊂ DyT (By (0, 2max(‖(DyT )

−1‖, 1)r)).
Therefore we get that BTy(0, r) ⊂ Ty (By (0, 2max(‖(DyT )

−1‖, 1)r)). Finally by
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taking the exponential map expTy we have for all 0 ≤ r < amax(‖(DyT )
−1‖, 1)−

η+1
η

:

(8) (T |T tAnN
)−1B(Ty, r) ⊂ B(y, 2max(‖(DyT )

−1‖, 1)r)

We are going to bound max{♯E : E ⊂ F∩AnN and E is a (nN, δ) separated set}.
There exists δ′ < δ such that ∂(y, z) < δ′ ⇒ ∂(T ky, T kz) < δ, ∀0 ≤ k ≤ N . We
also choose δ′ < a. Notice that δ′ (as δ) does not depend on the invertible branch
AnN .

In order to estimate the growth of orbits in F ∩AnN near the critical points, for
each z ∈M \ Crit(T ) we let

ψ(z) = [log+2 ‖(DzT )
−1‖] + 1

We also consider the following sequences for all y ∈ F ∩ AnN (we write 1E for
the characteristic function of a subset E of M) :

Jn(y) =
(
1Crit(T )θ

N
(T i(y)+kNy)

)
0≤k≤n−2

J̃n(y) =
(
1Crit(T )θ

N
(T i(y)+kNy)ψ(T i(y)+kN+ly)

)
0≤k≤n−2,
0≤l≤N−1

In order to control the dynamics far from the critical points, for each z ∈ M \
Crit(TN) we let

ξ(z) = [log+2 ‖(DzT
N)−1‖∧] + 1

and we consider the following sequences for all y ∈ F ∩ AnN :

Hn(y) =
(
1M\(G∪Crit(T )θ

N
)(T

i(y)+kNy)
)
0≤k≤n−2

H̃n(y) =
(
1M\(G∪Crit(T )θ

N
)(T

i(y)+kNy)ξ(T i(y)+kNy)
)
0≤k≤n−2

Now we estimate the cardinality of {(H̃n(y), J̃n(y)) : y ∈ F ∩ AnN and i(y) =
i, Hn(y) = H, Jn(y) = J} for some fixed n ≥ n0, i ∈ {0, ..., N − 1}, H =
(H0, ..., Hn−2) ∈ {0, 1}n−1 and J = (J0, ..., Jn−2) ∈ {0, 1}n−1. We consider the
sequences {h1, ..., hMH

} = {0 ≤ j ≤ n − 2, Hj = 1} and {j1, ..., jMJ
} = {0 ≤ j ≤

n− 2, J j = 1}. For all y ∈ F ∩AnN with i(y) = i, Hn(y) = H and Jn(y) = J we
put :

Hn(y) =
(
ξ(T i+hmNy)

)
1≤m≤MH

Jn(y) =
(
ψ(T i+jmN+ly)

)
1≤m≤MJ ,

0≤l≤N−1
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The above sequences Hn(y) and Jn(y) coincide respectively with H̃n(y) and

J̃n(y) once the zeros are taken off. Observe that these sequences Hn(y) and Jn(y)
miss respectively the values SH and SJ with

SH :=
1

MH

sup
y∈F

∑

1≤m≤MH

(
log+2 ‖(DT i+hmNyT

N)−1‖∧ + 1
)

SJ :=
1

MJN
sup
y∈F

∑

1≤m≤MJ

∑

0≤l<N

(
log+2 ‖(DT i+jmN+lyT )

−1‖+ 1
)

We have then by Equation (6) and Equation (5) :

MHSH = sup
y∈F

∑

1≤m≤MH

(
log+2 ‖(DT i+hmNyT

N)−1‖∧ + 1
)
<

4γnN

log 2

MJNSJ = sup
y∈F

∑

1≤m≤MJ

∑

0≤l<N

(
log+2 ‖(DT i+jmN+lyT )

−1‖+ 1
)
<
γnN

log 2

By Inequality (3) the logarithm of ♯{(H̃n(y), J̃n(y)), y ∈ F ∩ AnN and i(y) =
i, Hn(y) = H, Jn(y) = J} is bounded above by 5γnN +2 and thus we get finally :

(9) log ♯{(i(y), H̃n(y), J̃n(y)), y ∈ F ∩AnN} ≤ (2 log 2 + 5γN)n+ logN + 2

Fix 0 ≤ i < N , Ĥ = (Ĥ0, ..., Ĥn−2) ∈ Z
+n−1

and Ĵ = (Ĵ0, ..., Ĵ(n−1)N−1) ∈

Z
+(n−1)N

. By the combinatorial estimate (9) we only need to bound the cardinality

of (n, δ) separated set 7in F (i, Ĥ, Ĵ) := F∩AnN∩
{
y : i(y) = i, H̃n(y) = Ĥ, J̃n(y) = Ĵ

}
.

To this end we would like to δ′-shadow the orbits of T nNF (i, Ĥ, Ĵ) under the

action of T−N by sequences of points in Mδ′ , i.e. associate to each y ∈ F (i, Ĥ, Ĵ)
a sequence y1, ..., yN ∈Mδ′ such that d(yk, T

kNy) < δ′ for all k = 1, ..., N . But the
volume T−1-growth of balls near the critical values of T is not uniformly bounded
and is controled for balls with radius small compared to the inverse of the norm of
DT−1 according to Equation (7). Therefore we will also shadow the orbit under
the action of T−1 when we are close to the critical value of T and the shadowing
scales at this times will vary with respect to the norm of DT−1.

We define the sequence (δj)i≤j≤i+(n−1)N of shadowing scales by δi = δ′, δi+t =

min(δ′, a2−
η+1
η

Ĵt−1) for t = 1, ..., (n − 1)N − 1 and δi+(n−1)N = δ′ again. Observe

that max(δi+t,δi+t+1)
δi+t+1

≤ 2
η+1
η

Ĵt for all 0 ≤ t < (n− 1)N . We shadow the orbits of the

set F (i, Ĥ, Ĵ) by associating to any y in this set a point d(y) in Mδ′ ∩B(y, δ
′

2
) and

7We use the slightly different notation J̃n(x) :=
(
1Crit(T )θ

N

(T i(x)+[ s

N ]x)ψ(T i(x)+sx)
)
0≤s<(n−1)N

.
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a sequence Cn(y) =
(
c(T i+kNy)

)
0≤k≤n−1

where c(T i+kNy) is a point in Mδi+kN
∩

B
(
T i+kNy,

δi+kN

2

)
if k = n− 1 or T i+kNy /∈ Crit(T )θN and c(T i+kNy) is a N -tuple

c(T i+kNy) = (C0, ..., CN−1) with Cl ∈Mδi+kN+l
∩ B

(
T i+kN+ly, δi+kN+l

2

)
otherwise.

If d(y) = d(z) and Cn(y) = Cn(z) then z belongs to the Bowen ball B(y, nN, δ)
and therefore y and z are not (nN, δ) separated. Indeed we have firstly ∂(y, z) ≤
∂(y, d(y)) + ∂(d(z), z) < δ′ and then ∂(T ly, T lz) < δ for all 0 ≤ l < N . Secondly
if m is an integer with i < N ≤ m < nN there exist 0 ≤ k < n and 0 ≤ l < N
satisfying m = i+ kN + l. But c(T i+kNy) = c(T i+kNz) implies that

∂(T i+kNy, T i+kNz) ≤ ∂(T i+kNy, c(T i+kNy)) + ∂(c(T i+kNz), T i+kNz)

<
δi+kN + δi+kN

2
≤ δ′

and then ∂(Tmy, Tmz) < δ.

Now we build the sequences Cn(y) for y ∈ F (i, Ĥ, Ĵ) and we estimate their
cardinality. We will use the following claim which follows easily from Equations
(7) and (8) and Lemma 1 :

Claim . There exists a constant P depending only on d such that we have for all

0 ≤ k < n− 1 and 0 ≤ l < N and for all y ∈ F (i, Ĥ, Ĵ) :

• ♯Cov
(
δi+kN ,

(
TN |T i+kNAnN

)−1
B(z,

δi+(k+1)N

2
)
)
≤ P

(
δi+(k+1)N

δi+kN

)d
eN(−∑d

l=1 χ
−
l
(ν)+γ)

for all z ∈ B
(
T i+(k+1)Ny,

δi+(k+1)N

2

)
with T i+kNy ∈ G ∩

(
M \ Crit(T )θN

)
;

• ♯Cov
(
δi+kN ,

(
TN |T i+kNAnN

)−1
B(z,

δi+(k+1)N

2
)
)
≤ P

(
δi+(k+1)N

δi+kN

)d
2Ĥk for all

z ∈ B
(
T i+(k+1)Ny,

δi+(k+1)N

2

)
with T i+kNy ∈M \

(
G ∪ Crit(T )θN

)
;

• ♯Cov
(
δi+kN+l, (T |T i+kN+lAnN

)−1B
(
z, δi+kN+l+1

2

))
≤ P

(
max(δi+kN+l,δi+kN+l+1)

δi+kN+l
2ĴkN+l

)d

for all z ∈ B(T i+kN+l+1y,
δi+kN+l+1

2
) with T i+kNy ∈ Crit(T )θN .

Notice that we have δi+(k+1)N = δ′ ≥ δi+kN in the two first cases of the Claim

since Ĵ(k+1)N−1 = 0 when T i+kNy /∈ Crit(T )θN for some y ∈ F (i, Ĥ, Ĵ).

By the decreasing induction on k we define c(T i+kNy) for all y ∈ F (i, Ĥ, Ĵ) and
show that
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(10)

♯
{(
c(T i+lNy)

)
k≤l≤n−1

, y ∈ F (i, Ĥ, Ĵ)
}
≤
C(M)

δdi+kN

× P n−ke(n−k)N(−∑d
l=1 χ

−
l
(ν)+γ)

× 2
∑n−2

t=k
Ĥt × 2

(∑(n−1)N−1
t=kN

Ĵt

)
(d 2η+1

η
+log2 P )

First for all y ∈ F (i, Ĥ, Ĵ) we put c(T i+(n−1)Ny) = z where z is chosen in

Cov(δi+(n−1)N ,M) ∩B
(
T i+(n−1)Ny,

δi+(n−1)N

2

)
. Then inequality (10) for k = n− 1

follows from the Claim. Assume we have already defined c(T i+(k+1)Ny) and that
Inequality (10) holds for k + 1. We distinguish two cases :

• ĴkN = 0, i.e. T i+kNy is far from the critical set of TN , then we choose

c(T i+kNy) ∈ Cov

(
δi+kN ,

(
TN |T i+kNAnN

)−1
B(c(T i+(k+1)Ny),

δi+(k+1)N

2
)

)
∩B

(
T i+kNy,

δi+kN

2

)

• ĴkN 6= 0, i.e. T i+kNy is close to the critical set of TN , then we define
c(T i+kNy) = (C0, ..., CN−1) with for all 0 ≤ l ≤ N − 1

Cl ∈ Cov

(
δi+kN+l, (T |T i+kN+lAnN

)−1B

(
Cl+1,

δi+kN+l+1

2

))
∩B

(
T i+kN+ly,

δi+kN+l

2

)

and with the convention CN = c(T i+(k+1)Ny).

Notice that we have

1

δi+(k+1)N

×
N−1∏

l=0

max(δi+kN+l, δi+kN+l+1)

δi+kN+l

≤
1

δi+kN

×
N−1∏

l=0

max(δi+kN+l, δi+kN+l+1)

δi+kN+l+1

≤
2

η+1
η

∑N−1
l=0 ĴkN+l

δi+kN

(11)

By using the Claim and the above inequality (11) we easily check by the de-
creasing induction on k that the estimate (10) holds for all k = 0, ..., n− 1. Then
according to the inequalities (6) and (5) we get for all n ≥ n0

log ♯
{(
d(y),

(
c(T i+lNy)

)
k≤l≤n−1

)
, y ∈ F (i, Ĥ, Ĵ)

}
≤ −2d log δ′+2 logC(M)+n logP+

nN

(
−

d∑

l=1

χ−
l (ν) + γ

)
+ 4γnN + γnN

(
d
2η + 1

η
+ log2 P

)
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then by using the combinatorial estimate (9) we have

logmax{♯E : E ⊂ F ∩ AnN and E is a (nN, δ) separated set}

≤ log ♯{(i(y), H̃n(y), J̃n(y)), y ∈ F∩AnN}+ sup
i,Ĥ,Ĵ

with F (i,Ĥ,Ĵ)6=∅

log ♯
{
(d(y), Cn(y)) , y ∈ F (i, Ĥ, Ĵ)

}

≤ −2d log δ′ + 2 logC(M) + n(2 log 2 + logP ) + logN + 2

+ nN

(
−

d∑

l=1

χ−
l (ν)

)
+ γnN

(
d
2η + 1

η
+ log2 P + 10

)

By taking N and then n0 large enough, we get for n ≥ n0 :

logmax{♯E : E ⊂ F∩AnN andE is a (nN, δ) separated set} ≤ nN

(
−

d∑

l=1

χ−
l (ν)

)

+ γnN

(
d
2η + 1

η
+ log2 P + 11

)

Finally for general m ∈ Z
+ observe that if σ > ρ > 0 satisfies d(x, y) < ρ ⇒

d(T kx, T ky) < σ for all 0 ≤ k < N , then any (m, σ) separated set inAm is ([m
N
]N, ρ)

separated in A[m
N
]N . This last remark concludes easily the proof of Theorem 5. �

5. Counting Lemma

The following lemma is a generalization in any dimension of Lemma 4.1 of [14].
The provided proof is independent and based on a semi-algebraic approach.

Lemma 3. Let f :] − 1, 1[d→ R be a Cr map with r > 0. Then there exists a
constant c depending only on r and d such that for every 0 < s < 1 the number
of connected components of the open set {x : f(x) 6= 0} on which |f | reaches

or exceeds the value s is at most cmax(‖f‖r, 1)
d
r s−

d
r where ‖f‖r is the supremum

norm ‖Drf‖∞ of the r derivative if r ∈ Z
+ and the r−[r] Hölder norm ‖D[r]f‖r−[r]

of the [r] derivative8 if r /∈ Z
+.

Proof : We cover the unit square ] − 1, 1[d by

(
2[
(

as
max(‖f‖r ,1)

)− 1
r

] + 1

)d

sub-

squares of size <
(

as
max(‖f‖r ,1)

) 1
r

where a = a(r, d) is a constant depending only

on r and d which we specify later. Consider one such subsquare S and let PS the
Lagrange polynomial of order [r−1] at the center x0 of S. By the Taylor-Lagrange
formula we have for all x ∈ S :

f(x) = PS(x) +
1

[r − 1]!

∫ 1

0

(1− t)[r]−1D
[r]
x0+t(x−x0)

f(x− x0)
[r]dt

8By convention the 0 derivative of T is the map T itself.
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where (x− x0)
[r] denotes the vector (x− x0, ..., x− x0︸ ︷︷ ︸

[r] times

) ∈
(
R

d
)[r]

.

Therefore if r ∈ Z
+ :

|f(x)− PS(x)| ≤
‖Drf‖∞

r!
‖x− x0‖

r

and if r /∈ Z
+ we have :

f(x)− PS(x)−
D

[r]
x0f(x− x0)

[r]

[r]!
=

1

[r − 1]!

∫ 1

0

(1− t)[r]−1
(
D

[r]
x0+t(x−x0)

f −D[r]
x0
f
)
(x− x0)

[r]dt

and thus∣∣∣∣∣f(x)− PS(x)−
D

[r]
x0f(x− x0)

[r]

[r]!

∣∣∣∣∣ ≤
‖D[r]f‖r−[r]

[r]!
‖x− x0‖

r

Put QS = PS if r ∈ Z
+ and QS := PS + D[r]f(x0)(·−x0)[r]

[r]!
if r /∈ Z

+, then

‖f −QS‖∞ ≤
diam(S)r‖f‖r

[r]!

Then the constant a = a(r, d) can be chosen so that

‖f −QS‖∞ <
s

2
By the above inequality any connected component of {x : f(x) 6= 0} meeting

S and on which |f | reaches or exceeds the value s contains at least one connected
component of {|QS| >

s
2
}. In particular the number of such connected components

is bounded by the number of connected components of {|QS| >
s
2
}. But the set

{|QS| >
s
2
} is a semi-algebraic set of Rd and it is well known [11] that the number of

connected components of such sets is bounded by a constant b = b(r, d) depending
only on r and d and not on the coefficients of the polynomial QS and not on s (it
is obvious for d = 1 because this number is bounded from above by the number
of roots of the polynomial Q2

S − s2

4
which is less than 2r). We conclude that the

number of connected components of the open set {x : f(x) 6= 0} on which |f |

reaches or exceeds the value s is at most b

(
2[
(

as
max(‖f‖r ,1)

)− 1
r

] + 1

)d

.

�

6. Proof of the Main Theorem

Let γ > 0 and µ ∈ M(M,T ). If
∫
log Jacx(T )dµ(x) < 0 then by upper semicon-

tinuity of g : ξ 7→
∫
log Jacx(T )dξ(x) we have

∫
log Jacx(T )dν(x) =

∑d
i=1 χi(ν) < 0

for ergodic measures ν close to µ. The map T being nonuniformly entropy expand-
ing it implies that h(ν) = 0 and then Equation (2) is checked.
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We assume now that g(µ) =
∫
log Jacx(T )dµ(x) ≥ 0. In particular the set

Crit(T ) of critical points of T has zero µ-measure. Let U be an open neighborhood
of Crit(T ) satisfying the following properties :

• log Jacx(T ) < −Sγ for x ∈ U (recall Sγ ∈ Z
+ was fixed such that H(S−1) <

γ for all S ≥ Sγ);
• µ(∂U) = 0 and µ(U) < γ;
•
∫
log Jacx(T )dµ(x) ≤

∫
M\U log Jacx(T )dµ(x) ≤

∫
log Jacx(T )dµ(x) + γ.

We fix a riemanian structure ‖‖ on the manifold M . We denote by Rinj the
radius of injectivity and by expx : TxM → M the exponential map at x ∈ M .

There exist R < R′ < Rinj√
d

such that T (B(x,R)) ⊂ B(Tx,R′) for all x ∈ M . Let

Vµ = (W1, ...,Wp, U1, ..., Uq) be a finite open cover of M such that :

• diam(Wi) < R, diam(Ui) < R;
•
⋃

i=1,...,q Ui = U ;

• T |Wi
is a diffeomorphism onto its image.

It is a well-known fact that the function ξ 7→
∫
f(x)ξ(x) is upper semicon-

tinuous on M(M,T ) when f is an upper semicontinous function on M . In
particular ξ 7→ ξ(U) is upper semicontinuous on M(M,T ). The function ξ 7→∫
M\U log Jacx(T )dξ(x) is also upper semicontinuous onM(M,T ) since x 7→ 1M\U(x) log Jacx(T )

is upper semicontinuous on M : the function x 7→ log Jacx(T ) is continuous on
the closure of M \U and negative on its boundary. We choose a parameter τµ > 0
such that for all ergodic measures ν with dist(ν, µ) < τµ we have

ν(U) < γ(12)
∫

M\U
log Jacx(T )dν(x) <

∫

M\U
log Jacx(T )dµ(x) + γ

We fix an ergodic measure ν with dist(µ, ν) < τµ. One can assume g(ν) =∫
log Jacx(T )dν(x) =

∑d
i=1 χi(ν) ≥ 0 (if not then h(ν) = 0 as we have already

noticed it) and thus g+(ν) = g(ν).
We break the integral

∫
log Jacx(T )dν(x) as the sum of three integrals : over U ,

over M \ U and over ∂U . Since log Jacx(T ) is negative on ∂U , by dropping the
last term we can only increase the right hand side. Moving the terms around we
get :

−

∫

U

log Jacx(T )dν(x) ≤

∫

M\U
log Jacx(T )dν(x)−

∫
log Jacx(T )dν(x)

≤

∫

M\U
log Jacx(T )dµ(x)−

∫
log Jacx(T )dν(x) + γ

≤

∫
log Jacx(T )dµ(x)−

∫
log Jacx(T )dν(x) + 2γ(13)
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Let σ ∈]0, 1[. Let F be a Borel set of ν-measure larger that σ such that

hinv(M |F ) < −
d∑

i=1

χ−
i (ν) + γ(14)

One can also assume by Birkhoff’s ergodic theorem that the sequences
(
1
n

∑n−1
k=0 1U(T

kx)
)
n

and
(
1
n

∑n−1
k=0 1U(T

kx) log JacT kx T
)
n
converge uniformly in x ∈ F to ν(U) and∫

U
log Jacx(T )dν(x), respectively.

Let V n =
⋂

0≤k<n T
−kVk ∈ Vn

µ . Consider the sequence {i1, ..., iN} = {0 ≤ k <
n, ∃0 ≤ l ≤ q such that Vk = Ul}. To any maximal n-invertible branch An

intersecting V n we associate the sequence K(An) = (k1(An), ..., kN(An)) defined
by

∀j = 1, ..., N, kj(An) = [ inf
x∈An∩V n

− log Jac
T

ijx
(T )] + 1

With these notations note that the Cr−1 function defined on M by x 7→ Jacx(T )
reaches or exceeds the value e−kj(An) on T ijAn ∩ Vij . We consider a sequence
K = (k1, ..., kN) of N positive integers. By Lemma 3 applied for 1 ≤ j ≤ N
to the Jacobian of exp−1

Txj
◦ T ◦ expxj

(R·) :] − 1, 1[d⊂ Txj
M → TTxj

M with
some fixed xj ∈ Vij , the number of maximal n-invertible branches An meeting

V n with K(An) = K is bounded above by cNe
∑N

j=1

dkj
r−1 where c depends only on

r, d, M and maxs=1,...,[r],r ‖T‖s. If we assume moreover that An meets F ∩ V n

then K(An) misses the value S := supx∈F
1
N

∑N

j=1

(
− log Jac

T
ijx
T + 1

)
≥ Sγ, i.e.

1
N

∑N

j=1 kj(An) ≤ S. Since the number of sequences of N positive integers miss-

ing the value S is
(
NS

N

)
we get by inequality (3) and since we have arranged that

H(S−1) < γ, that the logarithm of the number of maximal n-invertible branches
meeting F ∩ V n is bounded above by N log c + NS

(
d

r−1
+ γ
)
+ 1. Observe now

that N ≤ supx∈F
∑n−1

k=0 1U(T
kx) and NS = supx∈F

∑N

j=1

(
− log Jac

T
ijx
T + 1

)
≤

supx∈F
∑n−1

k=0 1U(T
kx) (− log JacT kx T + 1). Therefore we get for each V n ∈ Vn

µ (by
An we will always denote a maximal n-invertible branch) :

(15) log ♯{An : An ∩ F ∩ V n 6= ∅}

≤ N log c+NS

(
d

r − 1
+ γ

)
+ 1

≤

(
sup
x∈F

n−1∑

k=0

1U(T
kx) (− log JacT kx T + 1)

)(
d

r − 1
+ γ

)

+

(
sup
x∈F

n−1∑

k=0

1U(T
kx)

)
log c + 1
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Fix δ > 0. Clearly E ∩ An is a (n, δ) separated set in F ∩ An for any maximal
n-invertible branch An when E is a (n, δ) separated set in F . It follows that

max{♯E : E is a (n, δ) separated set in F ∩ V n with V n ∈ Vn
µ}

≤ max
V n∈Vn

µ

♯{An : An ∩ F ∩ V n 6= ∅}

× sup
An

(max{♯E : E is a (n, δ) separated in F ∩ An})

By taking the logarithmic limit in n and then by letting δ go to zero, we get

h(M |F,Vµ) ≤ lim sup
n→+∞

1

n
log max

V n∈Vn
µ

♯{An : An ∩ F ∩ V n 6= ∅}+ hinv(M |F )

Finally we obtain by the inequalities (14) and (15) and by the uniform conver-
gence on F of the Birkhoff sums

h(M |F,Vµ) ≤ lim
n→+∞

(
sup
x∈F

−
1

n

n−1∑

k=0

1U(T
kx) log JacT kx T

)(
d

r − 1
+ γ

)

+ lim
n→+∞

(
sup
x∈F

1

n

n−1∑

k=0

1U(T
kx)

)(
d

r − 1
+ γ + log c

)
−

d∑

i=1

χ−
i (ν) + γ

≤ −

∫

U

log Jacx(T )dν(x)

(
d

r − 1
+ γ

)
+ ν(U)

(
d

r − 1
+ γ + log c

)

−
d∑

i=1

χ−
i (ν) + γ

Since ν has been chosen close to µ, according to the equations (12) and (13) we
have (denoting by C the constant d

r−1
+ γ + log c + 1) :

h(M |F,Vµ) ≤

(∫
log Jacx(T )dµ(x)−

∫
log Jacx(T )dν(x) + 2γ

)(
d

r − 1
+ γ

)

−
d∑

i=1

χ−
i (ν) + Cγ

≤
(
g+(µ)− g+(ν) + 2γ

)( d

r − 1
+ γ

)
−

d∑

i=1

χ−
i (ν) + Cγ
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Then by taking the infimum over the Borel sets F of ν-measure larger than σ
and by letting σ go to one we get

hNew(M |ν,Vµ) ≤
(
g+(µ)− g+(ν) + 2γ

)( d

r − 1
+ γ

)
−

d∑

i=1

χ−
i (ν) + Cγ

This concludes the proof since γ can be chosen arbitrarily small.
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