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Serguei BarannikovEcole Normale Superieure, 45, rue d�Ulm 75230, Paris France
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Abstract

I show that summation over ribbon graphs give the construction of the
solutions to the noncommutative Batalin-Vilkovisky equation, including
the equivariant version, introduced in my previous papers. This general-
izes the known construction of A1�algebra via summation over ribbon
trees. In particular, the quadratic Maurer-Cartan equation is replaced by
the linear equation �(	) = 0. Such solutions are naturally the matrix
action functionals giving the equivariantly closed di¤erential forms on the
matrix spaces, described in my previous paper.

I explain that the summation over ribbon graphs with legs produces solutions
to the noncommutative Batalin-Vilkovisky equation, introduced in [B06a]. This
generalizes the known construction of A1�structure via summation over trees,
see [M].
Notations.I work in the tensor category of super vector spaces, over an al-

gebraically closed �eld k, char(k) = 0. Let V = V0 � V1 be a super vector
space. I denote by � the parity of an element � and by �V the super vector
space with inversed parity. Element (a1 
 a2 
 : : : 
 an) of A
n is denoted by
(a1; a2; : : : ; an). I denote by V _ the dual vector space Hom(V; k).

1 Algebra with odd di¤erentiation.

I consider a Z=2Z�graded algebra A, dimk A <1 , with multiplication denoted
by m2 : A


2 ! A and an odd di¤erentiation I : A! �A

Im2(a; b) = m2(Ia; b) + (�1)am2(a; Ib);

in particular, if I2 = 0 then this is a d(Z=2Z)g-algebra. I assume, at the
beginning, that the algebra is cyclic with odd scalar product

� : A
2 ! �A;
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so that the three tensor

m 2 ((�A)
3)_

m(�a; �b; �c) = (�1)b�(m2(a; b); c)

is cyclically invariant

m(�a; �b; �c) = (�1)(c+1)(a+b)m(�c; �a; �b)

and that � is preserved by I:

�(Ia; b) + (�1)a�(a; Ib) = 0:

The modi�cation for the variant with an even scalar product are described
below.
Below I consider also the variant for general d(Z=2Z)g-algebra without scalar

product. It is reduced to the case with even/odd scalar product by puttingeA = A�A_, or eA = A��A_ with their natural scalar products.
I have

m(Ia; b; c) + (�1)am(a; Ib; c) + (�1)a+bm(a; b; Ic) = 0 (1)

which re�ect the Leibnitz rule for the di¤erentiation I. Denote by �_ 2 (�A)
2
the tensor of the scalar product on the dual vector space, then for any a; b; c; d 2
A,

hm(�a; �b; �)m(�; �c; �d); �_i = (�1)" hm(�d; �a; �)m(�; �b; �c); �_i (2)

which is the associativity of the multiplication m.

Let H be an odd selfadjoint operator

H : A! �A; H_ = H

such that
Id� [I;H] = P (3)

is an idempotent operator P : A! A;

P 2 = P:

I assume also that H commutes with I2, this is automatic if I2 = 0. I denote
by B the subspace which is the image of the idempotent P .
Let � be a tri-valent ribbon graph, i.e. the trivalent graph with �xed cyclic

orders on the sets of the three �ags attached to every vertex. Let �� be the
corresponding two-dimensional surface. Then I put:
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� the three-tensors
mv 2 ((�A)
Flag(v))_

on every vertex v and de�ne

�� =
N

v2V ert(�)m
v

� the two tensors

�_;eH 2 (�A)
ff;f
0g;

�_;eH = �_(H_uf ; vf 0) = (�1)uf vf0�_(H_vf 0 ; uf )

for any interieur edge e = (ff 0)

� element al 2 �B, for any exterier leg l; this gives a partition of the set of
elements falgl2Leg(�) to the subsets corresponding to the components of
the boundary @�� and cyclic orders on these subsets.

Notice that both mv and �_;eH are even elements, so that the productsN
v2V ert(�)m

v and
N

e2Edge(�)�
_;e
H are canonically de�ned.

De�nition 1 I de�ne the tensor W� as the contraction

W�(
N

l2Leg(�)al) =
DN

v2V ert(�)m
v;
�N

e2Edge(�)�
_;e
H

�N
l2Leg(�)al

E
(4)

Notice that W� is cyclically invariant on every subset of falgl2Leg(�) corre-
sponging to a component of the boundary of ��. Moreover the cyclic orders
on �ags at vertices induce the orientation on the ribbon graph �, whose more
detailed analysis, see e.g.[B09b], shows that W� lies in

W� 2 Symm(�1j=1(�B
j)Z=jZ)_

Let �(��) denotes the genus of ��,

�(��) = 2� 2g(��)� i(��);

where g(��), i(��) are the genus and the number of boundary components of
��. I put

S =
P

f�g~
��(��)W� (5)

where the sum is over isomorphism classes of connected trivalent graphs with
nonempty subsets of legs on every boundary component of ��. One can include
the graphs with empty subsets of legs on boundary components by adding the
constant extra term to the Batalin-Vilkovisky operator � below, I leave the
details to the interested reader.
I�ve described in [B06a],[B06b] the Batalin-Vilkovisky formalism associated

with a Z=2Z�graded vector space with odd scalar product and in particular I�ve
de�ned the second order Batalin-Vilkovisky operator � and the odd Poisson
bracket f�; �g on Symm(�1j=1(�B
j)Z=jZ)_.
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Theorem 2 The sum over graphs S de�ned in (5) satisfy the equivariant non-
commutative Batalin-Vilkovisky equation:

~�S +
1

2
fS; Sg+ I_S = 0;

in particular if IjB is zero then S is the solution of the non-commutative Batalin-
Vilkovisky equation from [B06a],[B06b]

~�S +
1

2
fS; Sg = 0

Remark 3 If IjB 6= 0, but I2jB = 0, then S + S0;2 is also a solution to the
non-commutative Batalin-Vilkovisky equation , where S0;2 = �(I�; �)jB is the
quadratic term corresponding to the di¤erential IjB.

Proof. The proof is straightforward, see e.g. [B09b]. For a trivalent graph �
and an internal edge e 2 Edge(�) consider the three tensors

W
[I;H]
�;e ;W Id

�;e;W
P
�;e 2 Symm(�1j=1((�B)
j)Z=jZ)_

which are de�ned by the same contraction as W� except that at the edge e 2
Edge(�) I put the tensors

�_([I_;H_]uf ; vf 0); �
_(uf ; vf 0); �

_(P_uf ; vf 0)

correspondingly instead of �_;eH . Then, from (3)

WP
�;e =W

Id
�;e �W

[I;H]
�;e :

By summing over v 2 V ert(�) of the Leibnitz rule (1) and noticing that

�_(H_I_uf ; vf 0) + �
_(uf ;H

_I_vf 0) = ��_([I_;H_]uf ; vf 0)

I get
I_W� �

P
eW

[I;H]
�;e = 0:

Next I use (2) to substitute in W Id
�;e the contraction

hm(�a; �b; �)m(�; �c; �d); �_i

corresponding to the internal edge e 2 Edge(�) by

(�1)" hm(�d; �a; �)m(�; �b; �c); �_i :

This corresponds to passing from the trivalent ribon graph � to the trivalent
ribbon graph �0 obtained by the standard transformation on the edge e, pre-
serving the overal cyclic order of the �ags corresponding to �a, �b, �c, �d.
This transformation preserves the surface �� and the distribution of elements
of Leg(�) over the boundary components of ��. Therefore the sum of W Id

�;e
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over all internal edges and over the set of trivalent graphs, having the same ��
with same distribution of Leg(�) over the boundary components, is zero:P

f�g;��=�;e2Edge(�)W
Id
�;e = 0:

Notice that P 2 = P implies that

�_(P_uf ; vf 0) = �
_(P_uf ; P

_vf 0):

Then, from the de�nition of the Batalin-Vilkovisky operator and the odd Poisson
bracket on B it follows that

P
f�g~

��(��)+1�W� +
1

2
f
P

f�g~
��(��)W�;

P
f�0g~

��(��0 )W�0g =

=
P

fe�g;e2Edge(e�)~��(��)WPe�;e
where each term on left hand side corresponds precisely to the right hand side
term ~��(��)WPe�;e, where e� is obtained by gluing two legs to form the edge e
from either the single surface or the two surfaces . Notice that the condition,
that � does not get contributions from the neighboring points on the same
circle, corresponds precisely to the fact that the resulting surface �e� has always
nonempty subsets of Legs(e�) on the boundary components.
Remark 4 In general, for in�nite dimensional cyclic Z=2Z�graded algebra A
the tensor �_(H_�; �) belongs to some completion of A
k A, and extra work is
needed in the in�nite dimensinal situation in order to verify that the tensors W�

are well-de�ned. One can either apply the technique of analysis and construct
the propagators as forms with singularity on the diagonal and then verify that the
resulting integrals de�ning W� converge, or the technique of algebraic geometry
by working in the Z� graded category and with dg- algebras whose resolution of
the diagonal is constructed from modules with �nite-dimensional graded pieces,
for example, for smooth dg-algebras, and this implies that the tensors W� are
well-de�ned, see ??.

Corollary 5 Given a Z=2Z�graded cyclic A1�algebra B, if B has a cyclic
d(Z=2Z)g associative model A, such that for A the contractions (4) over trivalent
ribbon graphs are well-de�ned, then the summation over such graphs gives an
extension of the cyclic A1�algebra on B to the quantum A1�algebra, i.e. to
the solution of the non-commutative Batalin-Vilkovisky equation.

1.1

1.2 Even scalar product.

Assume now that the scalar product on A is even:

� : A
2 ! A:
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Then given an odd di¤erentiation I : A! �A and an odd selfadjoint operator
H : A! �A; satisfying (3), I construct the tensorsW� for any ribbon trivalent
graph by the same contraction (4). The only di¤erence is that in this case, both
the three-tensors mv attached to the vertices and the two-tensors �_;eH are odd
and an analysis of the corresponding orientation on �, similar to [B09b], shows
that W� belongs to the exterieur power of the space of cyclic tensors

W� 2 Symm(�1j=1�(�B
j)Z=jZ)_

For the case of even scalar product on Z=2Z�graded vector space V I�ve also
described a variant of noncommutative Batalin-Vilkovisky formalism in [B06a].

Theorem 6 The sum over trivalent ribbon graphs S satisfy the equivariant non-
commutative Batalin-Vilkovisky equation:

~�S +
1

2
fS; Sg+ I_S = 0;

in particular if IjB = 0 then S is the solution of the non-commutative Batalin-
Vilkovisky equation from [B06a],[B06b]

~�S +
1

2
fS; Sg = 0

1.3 General algebras.

Let now A be an arbitrary Z=2Z�graded algebra, dimk A < 1 , with an odd
di¤erentiation I : A ! �A. This case is reduced to the two previous cases by
putting eA = A� (�A)_ with odd scalar product � given by natural odd pairing
between A and (�A)_, or by putting eA = A � A_ with even scalar product
� given by natural even pairing between A and A_. Then eA is naturally an
associative algebra with odd, respectively even, scalar product and the odd
di¤erentiation I, whose action extends naturally to eA.
Consider the case of odd scalar product. Suppose that H is an odd operator

H : A! �A;

such that
Id� [I;H] = P (6)

is an idempotent operator P : A! A;

P 2 = P:

Then both H and P act naturally on eA as self-adjoint operators and I apply to
this situation the construction of tensorsW� for ribbon graphs described above.
The tensors

WB
� 2 Symm(�1j=1((�B �B_)
j)Z=jZ)_

6



de�ned by the contraction (4) are given by the sum over markings

Flag(�)! f�A;A_g

such that for any edge, its two �ags are marked di¤erently, and for any vertex
there is exactly one �ag which is marked by �A, with no other extra restrictions.
In particular such marking gives an orientation for every edge, from A_ to �A,
and there must be exactly one edge exiting every vertex. There are no other
restrictions, in particular the edges can in principle form cycles. The legs of
�, which correspond to the points sitting on the boundary of the surface ��,
are also marked as either entries (B_) or exits (�B). And I de�ne SB by the
summation as above

SB =
P

f�g~
��(��)WB

�

where the sum is over isomorphism classes of connected trivalent graphs with
such markings and with nonempty subsets of legs on every boundary component
of ��.
Similarly I de�ne the tensorsW� in the case of eA = A�A_ with its even pair-

ing . These tensors are from the space of exterieur powers of linear functionals
on cyclic words consisting of elements of �B and �B_

W�B
� 2 Symm(�1j=1�((�B ��B_)
j)Z=jZ)_

and I de�ne S�Bas their sum over ribbon graphs as above.

Theorem 7 Let A an arbitrary Z=2Z�graded algebra, dimk A < 1 , with an
odd di¤erentiation I : A! �A and a homotopy H, such that the operator (6) is
idempotent. The sums over ribbon graphs SB and S�B give the solutions to the
two variants of the equivariant noncommutative Batalin-Vilkovisky equation in
the spaces of symmetric, respectfully exterieur powers, of cyclic words, consisting
of elements from �B_ and B, respectfully from �B_ and �B:

~�SB +
1

2
fSB ; SBg+ I_SB = 0

~�S�B +
1

2
fS�B ; S�Bg+ I_S�B = 0:

2 Graphs with the insertion of A1�tensors.
Assume now that A is a Z=2Z�graded A1�algebra, dimk A < 1 , as above
I relax the condition d2 = 0, and assume that it is simply an odd operator
I : A ! �A, which together with other structure maps mn 2 ((�A)
n)_ 
 A,
n � 2, satisfy the standard A1�constrains, except the very �rst, so that I2 is
in general nonzero: for any n � 2

Imn(v1; : : : ; vn)�
P

l(�1)
�mn(v1; : : : ; Ivl; : : : vn) =

=
P

i+j=n+1(�1)
�mi(v1; : : : ;mj(: : :); : : : vn)
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I assume �rst that A has also an invariant odd scalar product � so that all
tensors

mn 2 ((�A)
n+1)_; �( mn(v1; : : : ; vn); vn+1)

are cyclic invariant, the variant without scalar product is reduced as above to
this case by taking eA = A� (�A)_.
Let as above H be an odd selfadjoint operator

H : A! �A; H_ = H

such that
Id� [I;H] = P

is an idempotent operator P : A! A, whose image I denote by B.
Now I de�ne the tensorsW�, by inserting the cyclyc tensorsmn(v) 2 ((�A)
Flag(v))_

at vertices, as above, where � is now a ribbon graph, with valency n(v) for any
vertice at least three:

W�(
N

l2Leg(�)al) =
DN

v2V ert(�)mn(v);
�N

e2Edge(�)�
_;e
H

�N
l2Leg(�)al

E
and

W� 2 Symm(�1j=1(�B
j)Z=jZ)_

Next however, looking carefully at the proof of the equation for S above,
one sees that one immediately runs into a problem because of tadpoles, unless
the important condition

�mn = 0

is imposed, which I assume from now on.
I de�ne now, similarly to above,

S =
P

f�g~
��(��)W� (7)

where the sum is over isomorphism classes of connected ribbon graphs with ver-
tices of valency n(v) � 3, and with nonempty subsets of legs on every boundary
component of ��.

Theorem 8 Let the odd operator I and the cyclically invariant tensors mn 2
((�A)
n+1)_, n � 2, satisfy

I_m+ fm;mg = 0
�m = 0

Then the sum over ribbon graphs S satisfy the equivariant noncommutative
Batalin-Vilkovisky equation associated with (B; �jB):

~�S +
1

2
fS; Sg+ I_S = 0;

in particular if IjB = 0 then S is the solution of the non-commutative Batalin-
Vilkovisky equation from [B06a],[B06b]

~�S +
1

2
fS; Sg = 0
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Proof. The proof is parallel to the above.
The same result holds starting from the arbitrary solution to the non-

commutative Batalin-Vilkovisky equation and the tensors W� constructed sim-
ilarly for stable ribbon graphs. Details will appear elsewhere.
Analogous result holds for arbitrary modular operad.

References

[B06a] S.Barannikov,Modular operads and non-commutative Batalin-Vilkovisky
geometry. Preprint Max Planck Institute for Mathematics 2006-48
(04/2006), IMRN (2007), rnm075;

[B06b] S.Barannikov, Noncommutative Batalin-Vilkovisky geometry and ma-
trix integrals. Electronic preprint NI06043 (09/2006), Isaac New-
ton Institute, electronic CNRS preprint hal-00102085 (09/2006),
doi:10.1016/j.crma.2010.02.002, «Comptes Rendus Mathematique» ,
French Academy of Sciences, presented for publication on May,20,2009
by Academy member M.Kontsevich.

[B09b] S.Barannikov, Supersymmetry and cohomology of graph complexes. Elec-
tronic CNRS preprint hal-00429963 (11/2009).

[B10] S.Barannikov, The construction of closed matrix action functionals and
resolutions of the diagonal. To appear.

[M] S.Merkulov, Strong homotopy algebras of a Kahler manifold. Interna-
tional Mathematics Research Notices 1999:33, 153-164

9


