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On-axis Digital Holography is becoming widely used for its time-resolved

3D imaging capabilities. A 3D volume can be reconstructed from a single

hologram. Digital Holography (DH) is applied as a metrological tool in

experimental mechanics, biology, fluid dynamics and therefore the estimation

and the improvement of the resolution are current challenges. However

the resolution depends on experimental parameters such as the recording

distance, the sensor definition, the pixel size and also on the location of the

object in the field of view. This paper derives resolution bounds in DH by

using estimation theory. The single point resolution expresses the standard

deviations on the estimation of the spatial coordinates of a point source from

its hologram. Cramér-Rao lower bounds give a lower limit for resolution. The

closed-form expressions of the Cramér-Rao lower bounds are obtained for a

point-source located on and out of the optical axis. The influence of the 3D

location of the source, the numerical aperture and the signal-to-noise ratio

are studied. c© 2010 Optical Society of America

OCIS codes: 000.0000, 999.9999.

1. Introduction

On-axis digital holography is a metrological tool widely used in experimental mechanics,

biology or fluid dynamics [1] and therefore the estimation and the improvement of resolution

are key issues of this field [2–5]. As the resolution depends on several experimental parameters
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(e.g : sensor definition, fill factor, recording distance) and on the image processing algorithm

used to perform the 3D reconstruction, experimenters are in need of methodologies to tune

the experimental setup and to select the reconstruction that will provide the best achievable

resolution.

First of all, let us recall that two definitions of resolution can be distinguished [6] : (1)

two point resolution is defined as the system’s capability to determine the separation of two

point-sources (2) single point resolution is defined as the system’s capacity to determine the

location of a point-source. The first definition is used when the imaging goal is to separate

two objects or structures inside an object (for example in astronomy, in microscopy, ...). The

second definition, directly linked to accuracy of measurement, is more suited for metrological

applications.

Rayleigh criterion is the most cited resolution criterion in literature. It is based on a two

point resolution (definition (1)) for diffraction limited system . According to the Rayleigh cri-

terion, two point sources are just resolved if the central maximum of the intensity diffraction

pattern produced by one point source coincides with the first zero of the intensity diffraction

pattern produced by the other. For an imaging system with a square aperture and numerical

aperture Ω, classical Rayleigh resolution limits (lateral δx, δy and axial δz) are well known [7]:

δx = δy =
λ

Ω
, δz =

λ

Ω2
(1)

Rayleigh criterion is based on the assumption of a known PSF and negligible noise. It should

be pointed out [6] that, with numerical tools, if the PSF was to be known, the two-component

model of the PSF could be fitted numerically to the observations with respect to the compo-

nent locations and amplitudes. In a noiseless situation, a perfect fit would result, leading to a

virtually unlimited resolution in spite of diffraction. It is obvious that the study of the prac-

tically achievable resolution in imaging should take into account the noise level (whatever

definition of resolution is chosen).

Resolution limits in DH have been discussed by many authors [2,5,8]. The commonly used

approach for resolution estimation is to evaluate Rayleigh resolution by estimating the width

of the point spread function of the digital holographic system in the reconstructed planes.

The effects of diffraction are taken into account but also the sampling and pixel integration

effects.

In this paper, we choose to study single point resolution (more adapted to metrological

applications), taking into account the effect of the noise level in the image. We present a

methodology based on parameter estimation theory (see e.g., [9]) to estimate resolution. This

type of approach has already been applied to many application fields [10–15]. Here we apply

it to estimate the single point resolution in on-axis DH.

The resolution estimation problem can be formulated as the estimation of a point source
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location (x, y, z) from the analysis of its hologram (data). As the hologram of a point source

can be modeled by a parametric function (parameters x, y, z) and a model of noise, the

single point resolution is estimated by mean of the variance on the parameters. Cramér-Rao

lower bound (CRLB) [16, 17], gives a lower bound on the variance of the estimators. This

bound is reached asymptotically (for large data) by the maximum likelihood estimator. Let

us note that the maximum likelihood estimator has already been used with success in DH

to detect objects of simple geometrical form leading to enhanced accuracy [18–20], and a

widening of the field of view classically limited to the hologram borders.

The paper is organized as follows. In Section 2, we describe a parameter estimation ap-

proach to estimate a point source location (x, y, z). The single point resolution is then derived

from the CRLB. In section 3, we give the analytical expressions of the variance calculated

on the optical axis. In section 4, analytical expressions of single point resolution in the whole

field of view are given and illustrated by resolution maps. Finally, in section 5, the influence

of sampling and pixel integration are discussed.

2. Statistical estimation of single point resolution

In this section, we formulate single point resolution from the view point of statistical

parameter-estimation theory. We consider here the estimation problem of a point source

location (x, y, z) from the analysis of its hologram. The accuracy of the estimates can be

determined by calculating the standard deviation of the estimates. The CRLB gives a lower

bound for the variance of any unbiased estimator of the parameter to be reconstructed (e.g.,

x, y, z). CRLB can thus be used to calculate the theoretical resolution limit.

2.A. Single point hologram model

The (optical) system response to a point source can be described by a parametric model. We

will consider the case of a hologram of a single point source recorded on an idealized square

sensor of side L (sampling and quantization effects are neglected)(see Figure 1) . For a point

(xk, yk) located on the sensor, the intensity of the diffraction pattern (parametric model gθ)

under Fresnel approximation is a radial chirp function and depends on the axial point source

location z and lateral point source location (x, y):

gθ(xk, yk) = A sin

(
π

(x− xk)2 + (y − yk)2

λz

)
(2)

with θ = (x, y, z) the vector parameters, λ the wavelength of the light, omitting the propor-

tionality factor and the offset level. Due to noise, the measured image is a perturbed version

of the model. We consider in first approximation the noise as white Gaussian.
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Fig. 1: Illustration of the parametric model gθ(xk, yk) of an on-axis digital hologram of a

point source ( x = 0.2L, y = 0.4L, z = 100mm, λ = 0.532µm, Ω = 8.6.10−3)

2.B. Cramér-Rao lower bound

According to the Cramér-Rao inequality, the covariance matrix of any unbiased estimator

θ̂ =
{
θ̂i

}
i

of the unknown vector parameter θ∗ is bounded from below by the inverse of the

so-called Fisher information matrix:

var
(
θ̂i

)
≥
[
I−1 (θ∗)

]
i,i

(3)

where I (θ∗) is the n × n Fisher information matrix. It is connected with the curvature of

the log-likelihood function ln p(d;θ) [9]:

[I (θ)]i,j
def
= −E

[
∂2 ln p(d;θ)

∂θi∂θj

]
. (4)

The log-likelihood function in the case of additive Gaussian white noise (with variance σ2
b )

is given by:

ln p (d;θ) = − 1

2σ2
b

∑
xk

∑
yk

[d (xk, yk)− gθ(xk, yk)]
2 + C (5)

where d represents the data (pixel values), gθ the parametric model depending on the param-

eter vector θ and C a constant. Using (2), (4), (5) and neglecting sampling and quantization

effects, Fisher matrix becomes:

[I(θ)]i,j =
1

σ2
b

1

L2

∫∫
sensor

(
∂gθ(xk, yk)

∂θi

∂gθ(xk, yk)

∂θj

)
dxk dyk (6)
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The CRLB is asymptotically (for large samples) reached by maximum likelihood estima-

tors. In digital holography, where the signal is distributed on the whole sensor, estimation

is performed using a large set of independent identically distributed measurements (typi-

cally more than one million). The maximum likelihood estimator approaches the theoretical

resolution limit given by the CRLB. In practice the log-likelihood function is maximized

by numerical optimization. This amounts in this case to minimizing the squared difference

between measurements and model. Note that if the minimization technique fails to reach the

global minimum or if the noise level is too hight, the resulting estimation error will exceed

CRLB.

3. Single point resolution on the optical axis

This section aims to study the variance of the parameters (x, y, z) in the simple case of a

point source located on the optical axis (see Figure 1). This case is of interest because it

leads to an analytical expression of the resolution which will be compared to the classical

Rayleigh formula (1).

3.A. Analytical form of the Fisher information matrix

Neglecting the effect of sampling, the Fisher information matrix I can be calculated from

(6). For a square sensor of side L, I has the form:

[I(θ)]i,j =
1

σ2
b

1

L2

∫ L/2

−L/2

∫ L/2

−L/2

(
∂gθ(xk, yk)

∂θi

∂gθ(xk, yk)

∂θj

)∣∣∣∣x=0
y=0

dxk dyk (7)

Using a symbolic computation software, the integral (7) can be calculated with the expression

of the model (2). It gives an analytical expression composed of many terms that can be

significantly simplified assuming:

L2/λz � 1 (8)

The simple expressions obtained are:

Ixx = Iyy ≈ π2A
2

σ2
b

L2

6λ2 z2
, Izz ≈ π2A

2

σ2
b

7L4

360λ2 z4
(9)

Let us note that the assumption (8) is always verified in classical conditions. It means that

more than 2 oscillations of the chirp function are recorded on the sensor. Due to the parity

of
∣∣∣∂gθ(xk,yk)

∂θi

∣∣∣x=0
y=0

with respect to xk and yk, diagonal terms (Ixy, Ixz and Iyz) are null. This

simple case of a point source located on the optical axis and square sensor leads to a diagonal

Fisher information matrix.

5



3.B. Analytical form of the covariance matrix

As Fisher matrix is diagonal, the covariance matrix is also diagonal. Standard deviations on

lateral (̊σx, σ̊y) and axial (̊σz) measurements are given by:

σ̊x = σ̊y =
λ

Ω

c1

SNR
, σ̊z =

λ

Ω2

c2

SNR
(10)

with Ω the numerical aperture (Ω = L
2z

), c1 =
√

6
2π
≈ 0.4, c2 =

3
√

10/7

2π
≈ 0.6 and SNR = A

σb
.

Let us make some remarks about these expressions:

• Each error is inversely proportional to the signal to noise ratio.

• The covariance matrix is diagonal: the errors on the estimation of x, y and z are not

correlated.

• The resolutions on x and z are proportional to classical resolution formulas (1) with

proportionality constants depending on the SNR. However let us notice that the pro-

portionality factors are different. Whereas the Rayleigh criterion gives δz = δx/Ω our

study leads to σ̊z = (c2/c1) σ̊x/Ω with c2/c1 ≈ 1.5.

4. Single point resolution map

Many studies about resolution (using various approaches) are restricted to the optical axis

case. However as the truncation of the signal varies with the lateral location of the source

(x,y)(Figure 1.b) resolution should depend on x and y. The non uniformity of resolution on a

plane has been presented in [5]. The authors qualitatively analyze it considering the PSF (in

reconstructed planes) shift variant. We will go further in a quantitative study. In this section

we first neglect the sampling effect in order to derive analytical expressions of single point

resolution map. In the next section we discuss the limitations of these analytical expressions

and propose a numerical way to calculate the resolution maps taking into account sampling

effects and pixel integration.

4.A. Analytical form of the Fisher information matrix

In the more general case where the point source is not located on the optical axis but at

coordinates (x, y, z), analytical expressions of resolution can be obtained using the previous

approach. The model gθ is in this case translated, this can be interpreted as a shift in

integration limits:

[I(θ)]i,j =
1

σ2
b

1

L2

∫ L
2
−x

−L
2
−x

∫ L
2
−y

−L
2
−y

(
∂gθ(xk, yk)

∂θi

∂gθ(xk, yk)

∂θj

)∣∣∣∣x=0
y=0

dxk dyk (11)
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Using a symbolic computation software and the hypothesis (8), we obtain analytical form

for I:

Ixx ≈ π2A
2

σ2
b

L2

λ2 z2

(1 + 12x̄2)

6

Iyy ≈ π2A
2

σ2
b

L2

λ2 z2

(1 + 12ȳ2)

6

Ixy = Iyx ≈ π2A
2

σ2
b

L2

λ2 z2
2x̄ȳ

Izz ≈ π2A
2

σ2
b

L4

λ2 z4

(7 + 120(x̄2 + ȳ2) + 180 (x̄2 + ȳ2)2)

360

Ixz = Izx ≈ −π2A
2

σ2
b

L3

λ2 z3
x̄
(
1/3 + x̄2 + ȳ2

)
Iyz = Izx ≈ −π2A

2

σ2
b

L3

λ2 z3
ȳ
(
1/3 + x̄2 + ȳ2

)
(12)

with x̄ = x
L

and ȳ = y
L

the non-dimensional coordinates.

Let us note that I is no more diagonal and therefore the estimation errors on x, y and z

are correlated.

4.B. Analytical form of the covariance matrix

The covariance matrix is obtained by inverting the Fisher information matrix. By introducing

σ̊x, σ̊y et σ̊z obtained in the simple case of a point source located on the optical axis (10), and

a non-dimensional radial coordinate ρ̄ =
√
x̄2 + ȳ2, the covariance matrix can be written:

(
1 + 156 x̄

2

K

)
σ̊2
x 156 x̄ ȳ

K
σ̊xσ̊y 60

√
7
15
x̄ 1+3ρ̄2

K
σ̊x σ̊z

156 x̄ ȳ
K
σ̊xσ̊y

(
1 + 156 ȳ

2

K

)
σ̊2
y 60

√
7
15
ȳ 1+3ρ̄2

K
σ̊y σ̊z

60
√

7
15
x̄ 1+3ρ̄2

K
σ̊x σ̊z 60

√
7
15
ȳ 1+3ρ̄2

K
σ̊y σ̊z

(
1 + 60ρ̄2 2−3ρ̄2

K

)
σ̊2
z

 (13)

where K = 7− 36ρ̄2 + 180ρ̄4 depends only on the radial coordinate.

4.C. Standard deviation maps

Standard deviations are given by the square roots of the 3 diagonal terms of the covariance

matrix.
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σx = σ̊x

√
1 + 156

x̄2

7− 36ρ̄2 + 180ρ̄4
(14)

σy = σ̊y

√
1 + 156

ȳ2

7− 36ρ̄2 + 180ρ̄4
(15)

σz = σ̊z

√
1 + 60ρ̄2

2− 3ρ̄2

7− 36ρ̄2 + 180ρ̄4
(16)

(a) (b)

Fig. 2: Single point resolution maps in a transversal plane: (a) x-resolution; (b) z-resolution;

for z = 100mm, λ = 0.532µm, Ω = 8.6.10−3 and σb = 0.1. The squares in the center of the

figures represent the sensor boundaries.

Example of standard deviation maps calculated using (16) are presented on Figure 2. The

squares in the center of the figures represent the sensor boundaries. These maps illustrate

that the accuracy to estimate the location of a point source varies with the lateral location

(x̄, ȳ) of the point source. This variation is not negligible : on the x error map the maximum

is 2.0 times the minimum, while on the z error map the maximum is 3.7 times the minimum.

By using non-dimensional variables x̄ and ȳ, the obtained error maps are invariant up to

a multiplicative constant when z or L change.These analytical results have been compared

with numerical integrations of equation (11) (see section 5) to make sure that hypothesis (8)

is valid. The relative error on the error maps is negligible (lower than 0.3 %).

5. Influence of sampling and pixel integration

DH reconstruction are in practice transversally limited to the hologram support. Within an

inverse problems framework, field extrapolation can be performed to reconstruct fields with
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a transversal size up to four times the sensor size [20,21]. Field extrapolation is challenging

since the signal of out-of-field objects recorded on the sensor is weak due to pixel integration

and attenuation due to diffraction lobes.

The simplified model (2) used to derive the expressions of resolution (eq. 13-16) considers

that the amplitude of the signal is independant of the transversal location of the point

source, i.e., the signal is not attenuated even when the point source is located far away from

the sensor boundaries. The obtained expressions of resolution can not be used to assess the

asymptotical behavior of resolution in extrapolated fields. At the limit of an x or y location

at infinity, the formulas give a null variance due to the absence of signal attenuation and

sampling considerations.

We study now the impact of sampling and pixel integration in the resolution maps obtained

in the previous section. When taking into account pixel integration the model gpθ of the

diffraction pattern is a chirp function modulated by two sinc functions [1]:

gpθ(xk, yk) = gθ(xk, yk)sinc

(
πκx∆x(x− xk)

λz

)
sinc

(
πκy∆y(y − yk)

λz

)
(17)

with ∆x and ∆y the sampling periods and κx∆x and κy∆y the width and the height of active

area of the pixel. The integral of eq (6) cannot be computed in closed form for this model.

We therefore consider the definition of Fisher information matrix (4), using the sampling

given by the detector:

[I(θ)]i,j =
1

σ2
b

1

N2

N∑
i=1

M∑
j=1

(
∂gpθ(i∆x, j∆y)

∂θi

∂gpθ(i∆x, j∆y)

∂θj

)
(18)

where N is the number of rows and M number of columns of the sensor. Equation (18) can

be computed for all x̄ and ȳ using fast Fourier transforms by noting that it expresses the

correlation between a binary mask (defined as equal to one on the sensor and zero outside)

with a product of model gradients

(∣∣∣∂gp
θ

∂θi

∂gp
θ

∂θj

∣∣∣x=0
y=0

)
.

The error maps calculated numerically from (18) with the same experimental parameters

as in section 4.C are closed to that of Figure 2. The relative differences (expressed in percent)

between the two error maps are presented on Figure 3. It shows that the differences in the

classical field (limited by the sensor boundaries) are less than 6 % and reaches 16 % in an

extended field of two times the sensor size. When the pixel number increases (with constant

width L) these differences decrease: for N = 512 it is less than 1.5 % in the classical field

and less than 4 % in the extended field.

Let us note first that, in agreement with intuition, when the pixel integration is taken into

account, the errors tend to infinity when the point source move away from the optical axis

since the signal tends to zero. Second, when taking into account pixel integration, the shape
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(a) Relative differences on x resolution (b) Relative differences on z resolution

Fig. 3: Relative differences (%) between resolution maps (Figure 2) and resolution maps

taking into account pixel integration for z = 100mm, λ = 0.532µm, Ω = 8.6.10−3, σb = 0.1,

∆x = ∆y = 6.7µm, κx = κy = 1 and N = 256. The squares in the center of the figures

represent the sensor boundaries.

of the error maps depends on z and L contrary to the ideal sensor case of section 3 and 4

(where sampling is neglected).

6. Conclusion

On-axis digital holography is used in metrological applications, thus the resolution issues are

essential in this field. Although DH resolution has already been studied by many authors,

quantitative studies have been limited to the resolution on the optical axis. It is well known

that resolution varies with the transversal location, but it has never been precisely quantified

to our knowledge. In this paper we proposed a methodology to study resolution maps for

DH over the whole field of view. By using a statistical framework and a parametric model

of the image we calculate resolution maps from CRLB. These resolution limits give the best

resolutions achievable by any unbiased estimator. These bounds are reached asymptotically

(for large data) by a maximum likelihood estimator such as proposed in [18–20]. Note that

the errors that occur when global optimization fails should also be considered (i.e., inability

to numerically compute the maximum likelihood estimator) [18].

Without taking into account the effects of sampling, closed form expressions of resolutions

can be derived. These expressions, quickly computed, give a good approximation of resolution

in the classical field of view (limited by the sensor boundaries) with typical experimental

setup parameters. The simple model of image formation can be made more complex (e.g.

taking into account the sampling and the pixel integration), in that case numerical integration
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of the gradient of the model can be computed by FFT.

The methodology employed here to study resolution in DH can be applied to study many

important issues in DH by refining the noise model or changing the image formation model.

For example, it can be used to estimate accuracy lower bound of object location in DH.

The parametric model depends on the position parameters (x,y,z) of the object but also on

the size and shape of the object. All these parameters are correlated and a study of error

maps can be used to design an optimal setup (with respect to the accuracy of object location

estimation). An other example is to estimate the resolution improvement comparing different

setups/ optical techniques as off-axis DH, phase shifting DH or color DH.

Recently, maximum a posteriori (MAP) approaches have been shown to lead to recon-

structions with few artifacts [22–24]. The theoretical study of the resolution of the obtained

3D reconstructions is challenging, though. The methodology and results described in the

paper provide a lower bound on the resolution achievable with MAP techniques.
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