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EXPLICIT SOLUTIONS FOR THE EXIT PROBLEM FOR A
CLASS OF LEVY PROCESSES. APPLICATIONS TO THE
PRICING OF DOUBLE BARRIER OPTIONS

SONIA FOURATI

ABSTRACT. Lewis and Mordecki have computed the Wiener-Hopf factoriza-
tion of a Lévy process whose restriction on ]0,4oo[ of their Lévy measure
has a rational Laplace transform. That allows to compute the distribution of
(Xt¢, 0<irslf<t Xs). For the same class of Lévy processes, we compute the distribu-

tion of (X¢, inf Xs, sup Xs) and also the behavior of this triple at certain
0<s<t 0<s<t

stopping time, like the first exit time of an interval containing the origin. Some
applications to the pricing of double barrier options with or without rebate are
evocated.

1. INTRODUCTION

There are very few examples of Lévy process for which the so-called ”exit problem”
can be explicitly solved (see , [R9], [R7J]). We present here this explicit
solution for a class of Lévy processes which has been introduced by Lewis A.L.
and Mordecki E.[LMO]; that is the class of the Lévy processes whose restriction on
10, +-00[ of their Lévy measure has a rational Laplace transform. This happens when
this restriction is a finite linear combination of exponential or gamma distributions.
Lewis A.L and Mordecki E. [LMO0]] (see also Asmussen, S. Avram, F. and Pistorius
M.R. [[AAPO4]) have computed the so-called Wiener-Hopf factorization of these
Lévy process. That brings to closed forms for the distribution of the maximum of
the process before an independent exponential time and for the joint distribution
of (T%, Xr,) where T* is the first time where the Lévy process X crosses upward
a level z and X7= its position at that time.

As an application, when adopting the exponential Lévy model, Y; = Yj.eXt, for
a financial asset Y; with X; of the preceding form (see for example ), an
immediate consequence of the preceding results is the computation of the (temporal
Laplace transform) price of the double barrier option with this underlying asset.
That is, an european option which is activated (in) or desactivated (out) when the
asset (Yi)tepo,r) cross up (down) a barrier H before the time of maturity 7". This
application follows the computation of the price of the simple barrier option, by
the Wiener-Hopf factorization (see [AAP04]).

In this paper, for the same class of Lévy processes, we solve the exit problem.
More precisely, we give closed form of the joint distribution of the minimum and
maximum of the process before an independent exponential time and among other
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2 SONIA FOURATI

behaviors of the process at certain stopping times, we give the Laplace transform
of the joint distribution of (T2, X7+) where T? is the first time that the process
leaves a bounded interval [—a, b] containing the origin and Xrv 1s its position at
that time.

As an application, we mention how one can deduce the price of the double barrier
option, in or out, that means that the option is activated or desactived if the asset
crosses up a barrier b or down a barrier a in the exponential Lévy model.

The paper is organized as follow : In section 2, we recall the general results
on Wiener-Hopf factorization, we give a shortened proof of the results of Lewis-
Mordecki and settle few other preliminary results. For that, we use exclusively
elementary complex analysis arguments. After introducing few more notations in
section 3, we give in section 4, 5, 6, 7 and 8, all the results on the fluctuations of
our class of Lévy processes. In section 9, we recall the main result of which
is the main tool of this work. The proofs follow in section 10, 11, 12, 13.

These results, in the symmetric case, are related to what is called ”Bargmann
equations” in the litterature on inverse problems of the spectral theory (see for

example [[F6J]).

2. THE ASSUMPTION AND THE WIENER-HOPF FACTORIZATION

We suppose that X is a real Lévy process possibly killed at an independent expo-
nantial time and we denote ¢ the life time of X.
Let ¢ be the Lévy exponent of X, so that the identity

E(ef’iuxt 1t<<) _ eft(ﬁ(iu)

is fulfilled for every time t and every imaginary number iu € iR, ¢ is continuous
on iR and ¢(0) is the rate of the exponential distribution of the life time (,

#(0) =0 if and only if { = +00 a.s. ("X does not die”).

We now work under Lewis-Mordecki’s assumption. It is based on the following
rather obvious fact.

Proposition 2.1. The conditions below are equivalent
(i) The Lévy measure of X, 7, is of the following form

n;

n Y
dy) = —e Y 0
(dy) ;c] nj!e vy on 10,+o0[

n€N,n; € N,R(y;) >0,¢; € C (j=1,...,n)
(i) The exponent ¢ is of the form

u) = ¢ (tu Ezu
oliv) = ¢~ (i) + 7).

where ¢~ is the exponent of a Lévy process without positive jumps, P and Q are
polynomials and Q has all its roots on the complex half plane {\; R(\) < 0}.

Proof. Assume (7). Notice that the compound Poisson process with Lévy measure

n

[~
7(dy) = chﬁe Y1y s0dy
4!

Jj=1
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has Lévy exponent

ol 1 L Pe

¢ - =: ,

S )T QMY

The function ¢ — g is then the Lévy exponent of a Lévy process without positive
jumps. This establishes (i7).

Conservely, assume (ii). Since ¢ and ¢~ are exponents of Lévy processes, we
know that ¢(iu) = O(u?) and ¢~ (iu) = O(u?) (see proposition 2 chapter 1 of
[B9¢), thus g(iu), construed as a rational function of u, is O(u?). Consequently
deg P < deg@Q + 2.

Now, write g(zu) in its fractional expansion

p - k;

—(iu):au2+bu+c+ —

Q ; (i + )

Then g(w) is the Fourier transform of the Schwartz distribution (here, ¢ stands
for the Dirac mass at 0);

. Soxt
aé” —ibd + cd + Z kjn_j!e Vi1 psodx
j=1
On the other hand, one can deduce from the Lévy Kinchin formula applied to ¢
that ¢(iu) is the Fourier transform of a distribution whose restriction to ]0, 4+o00|
is —1,507(dz) (see chapter 5 of [V0J] for example) where 7 is the Lévy measure.

From this, we see that

3

™
lpsom(de) = — ijﬁe V%1 psodx
j=1 7
This finishes the proof.
O

The following is a famous result (see proposition 2, chapter I of ]) which applies
to any Lévy process and which will be of use later .

Lemma 2.2. There exists an exponent of a subordinator ¢ and an exponent of the
opposite of a subordinator v, such that

V= ¢ on iR

Such a couple (w,’LL) 18 unique up to a multiplicative constant.

The functions ¢ and 1) will be refered to as the "positive” (for 1) and ”negative”

(for v) Wiener -Hopf factors of the exponent ¢, unlike the ordinary uses which
affect these expressions to the functions % and 29

ASSUMPTION : In the rest of this paper, conditions (i) and (i7) of
proposition @ will be assumed to be satisfied and this assumption will
be call Assumption .

Property (i¢) of proposition @ and the fact that ¢~ has an holomorphic exten-
sion on the half plane {(\) < 0} (see chapter 7 of [B9€]) imply that ¢ has a
meromorphic extension on this half plane, and we we will still denote by ¢ this
extension.
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We will denote
V1, =2y -y —Un
the poles of ¢ repeated according to their multiplicity. In particular, deg@ = n

when the fraction g is irreductible, in the expression of condition (i¢) of proposition

(=0 + g) and we will denote

nj::ﬂ{k<j;’7k:’7j} j=1...,n
Notice that the n; are all zero if and only if all the poles of ¢ on the half plane
{Re(\) < 0} are simple, or equivalently, if and only if the Lévy measure is a (not
necessarily positive) combination of exponential distributions.

Theorem 2.3. ¥ is of the form :

P(A) = Voo

where Yo 1S a positive constant.

If limy_, _ o @ €]0, +o0] then m = n + 1. Otherwise, limy_, _ @ €] — 00, 0]
and m =n.

More over, {—p1,...,—Bn} is the set of the roots of ¢ lying on the half plane
{R(\) < 0} (repeated according to their multiplicity) together with 0 if $(0) = 0
and ¢'(0) > 0.

Proof. Notice first that, thanks to Lévy Kintchin formula, ¢()\) does not vanish for
A on the imaginary axis except possibly for A = 0, ¢ is a meromorphic funtion on
{R(N\) < 0} and ¢ is continuous by the left at each point of the imaginary axis iR.
On the other hand, the function v is an exponent of a subordinator, thus it is
analytic on the open half plane {R(\) > 0}and continuous on the closed half plane
{R(X) > 0} (see [B9q] chapter 3 for example). Also, the identity Y1) = ¢ on iR
implies that ¢ = 2 on iR. Thus, since ¢ is meromorphic and 1L holomorphic on
{R(\) < 0}, we see that ¢ has a meromorphic extension on {(\) < 0}.We denote
again ¢ this extension.

More over ¢ = % is continuous by the left on the axis iR, except possibly at A =0
when ¥(\) = 0.

Then v is meromorphic on C except possibly at 0. However, because ¢ is the
exponent of the opposite of a subordinator, we have (see page 73 of )

7 (A + Bi)
I3 (A +75)

lim < —>] — 00, 0],
A= 0R(N)<0 ()

then
im /\.@ = lim AP\ =0.

A=0R(N<0 P(A)  A=0R(N)<0
Also, 9 is continuous by the right at the point 0, then limy_,o.%(x)>0 AY(A) = 0 and
we deduce that v is again holomorphic at 0.
In conclusion, v is meromorphic on C and its poles, necessarily in the half plane
{X\;R(N\) < 0}, are the same as those of ¢ (because of the identity ¢ = ¢ and
because 1 is holomorphic on {\; R(\) < 0}). Therefore, these poles are the -
Now, write

__ ¥
S TPEE)
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where ¥ is an entire function. Notice the limit, valid for any exponent of a subor-
dinator ( see proposition 2 of Chapter 1 of [B9q])

,\ETOO @ € [0, +ool
Then
(2.1) T(\) = O\t (R(X) = +00)
And, since
5O = vR) ¢‘({) + 53
7 (A + ;) b
¢~ (\) and % are O(A\?) on {R(A\) < 0} (see proof of proposition P.1) and ﬁ

is bounded (by ﬁ) on {R(A\) < —1}, because it is the Laplace transform of a

measure supported by | — 00, 0] (see chapter 3 of [B9] for example) and deg P <
deg @ + 2 , we deduce that

(2.2) T(\) = O(\"13) (R(A) = —o0)

When joining property (.1) and (2.9), ¥ is a polynomial with degree at most n+1.
Moreover, since ﬁ is bounded for A — 400, then ¥ has a degree at least n.
Thus ¥ is a polynomial and its degree is n or n + 1.
If ¥ is a polynomial of degree n + 1 then
A .
lim ? €0, oo and lim_G(\) €)0, +oc]
——00

A——0o0
(this last limit is valid for any exponent of the opposite of a subordinator). Since
¢ = Y1), we obtain
o)
1 —— €]0 .
wm T el el
And, if ¥ is a polynomial of degree n, then

/\gril P(A\) €]0,400[ and  lim v €] — 00,0],

Ao —oco A

(this last limit is valid for any exponent of the opposite of a subordinator) and we

obtain N
. (A
1 —— €] — 0,0
T elmee
Finaly, 1) does not vanish on the left half plane {(\) < 0} because it is the exponent
of the opposite of a subordinator and so, the roots of 1, which are necessary on
the left half plane {Re(\) < 0}, except possibly 0 (because the exponent of a
subordinator doesn’t vanish in the half plane {Re(\) > 0}), are the one of ¢. Let
us study when 0 is a root of .
The function v has a left derivative at 0 (possibly equal to —o0) and the function
1) has a derivative at 0 because it is a rational function and 0 is not a pole. Then,

we can write (here, the symbol ’ has to be understood as a left derivative )

$(0) = 1(0)2(0)
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¢'(0) = ¢'(0).1(0) + ¥ (0)3'(0).
Since ¥(0) € [0,4+00[, ¥(0) € [0,+00[, ¥'(0) € [—o0,0[, ¢'(0) €]0,40c] (that
are obvious consequences of Lévy-Kinchin formula for exponent of subordinator or
opposite of a subordinator), we obtain :

$(0) =0 = (1/1(0) =0 and ¢'(0) > 0) or (&(0) =0 and ¢'(0) < o)
And the proof is finished. O

In the sequel we will normalize i) by setting ¥, = 1.
We will always denote

7515 7ﬂ25 ceey 7/8771

the (possibly equal) roots of 3 and

m; = §{k <i; Bk = Bi}
(' m; = 0 for all 4’s iff the roots —f1, ..., —B;, of ¥ are simple).
Remark If X is of bounded variations and has a non positive drift then m = n. In
all other cases, we have m = n + 1, ¥ is then the exponent of a subordinator with
positive drift and X ”creeps upwards” (see theorem 19 chapter 6 of [B9]).
Now, we introduce few notations which will be useful in the sequel, and which are

related to the negative Wiener-Hopf factor 1.
First, ¥ being the exponent of the opposite of a subordinator, the inverse of 9, %,

is the Laplace transform of a measure supported by | — 0o, 0]. We will denote this
measure by U(dy),

L —- —AYT]

o= /]0010] NT(dy) (RO < 0)

Also, for all x €]0,+o0[, we denote by U[—z,o] (dy) and U]_Oq_z[(dy) the mea-
sures 1;_, 0](y)U (dy) and 1)_ o _5((y)U (dy) and by Uj_, o)(A) and Uj_, () their
Laplace transform;

Oag (V) = /[ ) (€0
—z,0

O oo (V) = /]_OO _TMUE) R <0)

Using standard facts about the relation between negative Wiener-Hopf factor ¥ and
the fluctuations of the Lévy process (see chapter 6 of [B9f]), we obtain the next
proposition.

Proposition 2.4. 1) If $(0) > 0 or ¢/(0) > 0 then then the function % is the
Laplace transform of the measure ¥(0)U(dy) which is the distribution of m, the
minimum of X (m :=inf{X4;0 <t < (}).

2) Y(AN)U)—oo,—2[(A) is the Laplace transform of the distribution P(Xr, € dy; T, <
Q), (T :=inf{t; Xy < —x}).

Now, using the dual properties settled in this proposition which involves the positive

Wiener-Hopf factor i instead of the negative one v and using the explicit form of
¢ given in theorem .3, we obtain, (see also Mordecki [LMO0§] theorem 2.2),
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Corollary 2.5. 1) If ¢(0) > 0 or ¢'(0) < 0 then the distribution of the maximum,
M := {sup; X3t € [0,([} is

ﬂlydy,

P(M € dy) = apdo(dy) i
(M € dy) = aodo( y+zam

’L"

where the coefficients a; are given by the rational expansion :

H?:l(l + /) . a;
H;ll(l + )\/Bz) = a0+ ; ()\ + ﬁi)mﬁ-l

2) The distribution of the ”over shoot” Xr= —x on T* < ¢ (T% = inf{t; X; > x})
is the following

P(Xpe —xz € dy; T" < () = co(x)do(dy) + ch —e 7915 0dy,
where the coefficients ¢;(z) are given by the ramonal expension :

n

T

>\+7 "J+1 B H" (1+>\/% — m! ( aﬂ mi L\ + Blp=p;
Corollary E and Proposition @ give us a foretaste of the explicit results that we
obtain in the sequel : Most of the explicit distributions that we will obtain will be of
the preceding form or of convolution of measures of that form; that is, a combination
of exponential or gamma distributions with explicit coefficients, possibly restricted
to an interval, and convoluted with (a possible restriction of) the measure U(dy).
The next proposition introduces Laplace transforms of distributions that will be
involved in the sequel. The easy proof is left to the reader.

Proposition 2.6. 1)

m; ARy (=B) — Up—_p o1(A
e 3 = 0[P Tzl =) ~Urce)
(—0B)™i A+ 8 B=p:
is the Laplace transform of the measure
((1y6[07z]ymieﬁiydy) * (1y€[—m,O]U(dy>>> 1y€[—z,0]
2)
ani e7AIU—0O,—:E (A) B e’YIU—OO,—m (7’”
0 (@, \) = g |t il
(=0y)™s Aty Y=;

is the Laplace transform of the measure
(e 10) @ = 211200 1y
3)
omi 1
i;(A [ ]
b = (=07)m I+ ydy=r;
is the Laplace transform of the measure

y"e V15 ody
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3. SOME MATRICES OF COEFFICIENTS
Recall first all of the notations already introduced.

S PR R (7
are the poles of ¢ (and 1) located on the half plane {), R(\) < 0}, and

nj =k < g =}

7/317 SRR 7ﬂ’m
are the roots of ¢ (and 1) located on the half plane {\, R(A) < 0} together with 0
is ¢(0) =0 and ¢’(0) > 0. and

m; = §{k <'i; Bk = Bi}
We will denote by 1 and c the line and the column :

c=(lm,—0;1 <i<m).
The m;(z, \) and nj(z, \) and i;()\) being defined in the previous proposition .6,
we denote by m(z, A) the column

m(z,\) = (my(z,\);1 <i<m)
and by n(z, \) the line

and by i()) the line

Also, define the line v(x),

oni -
= _ v —
V((E) T ( [(*8'}’)"1 € UY]*OOy*I[( ’Y):| 'Y:'Yj7 1 S .7 S n)a
and w(z) be the column,
g . t
= Biw _ . ;
W(SC) = <|:(_66)m1 € U[—I,O]( ﬂ)} ﬂ:ﬂi’ 1<i< m)

Proposition 3.1. If m = n+ 1, then the limit
a(—x):= lim (7}\)67”0]_00 —2[(N)
A——00 ’

ezists in [0, +oo[ for all x €]0,+o0].

This proposition will be proved incidently here as a consequence of our computa-
tions. In fact, it can be shown that the function # is a density of the measure
1,<oU(dy) and we will see that this density is of bounded variations (see remark 4
after corollary [.9)

¢
If m =n+ 1, we will denote w'(z) the column (W;(z), 1<i< m) , with

Wi(a) o= o [ (8) 4 ()

(—op)m: B=Bi
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Notice that if @ is continuous, w}(z) is the left derivative of w;(x), hence the
notation.
Let now W (z) be the matrix (m,n) :

W(z) = (Wi ()1 <i<m,1<j<n)

where,

omigni [eﬁzU[fz,O] (_ﬁ) + 671()']7007730[(_7)}
(=0B)™i(=0y)m B—n B=Pi 7=
When m = n + 1, denote W (z) the square matrix

Wiﬁj(.fC) =

W(z) = [ w(z) W(z) ]

We will show later the next proposition

Let W be any matrix and let f be any line, the dimension of f being equal to the
number of columns of W, Wf will be the matrix obtained from W by replacing
the i-th line by f. And W, will denote the matrix obtained from W by just taking
it’s ¢-th line off.

Similarly, let e be a column whose dimension is equal to the number of lines of W,
W will refer to the matrix obtained from W by substituting e to it’s j-th column.

4. THE DISTRIBUTION OF (S¢, X¢, I¢)

Theorem 4.1. The potential kernel of the triple (Si, Xy, It) is characterized by the
following identities. For all A1, A2 € C, x €]0,400],

¢ ¢
E(/ e Mg, g, cpe 2K T at) = E(/ e 25 g, g M dt)
0 0

‘ U[—m,o]()\l) v(a:) ‘ 1 1 ‘
_ m(z, A1) W(z) e 2m(z, \o) Wi(x) if m=n
(W (z)| (W (z)|
‘ U pg(M) a(—z) v(z) ‘ N
_ m(z, \) ~W(Jc) W(z) ‘e m(ai,)\g) W(m)‘ i ment1
(W ()| (W ()|

Notations. Let, if m =n,
alz) = U_a0)(0)  v(x) alz) = 1 1 ) = W
And, if m=n+1,
a(x) := U[fx’o](o) (=) v(z) a(z) :=| m(z T r(z) = |W(z
@i | Tl W WO a0 w0 W | )= (W)

Corollary 4.2. If $(0) > 0, then the law of the triple (S¢, X¢, I;) is characterized
as follow :

1 B o) = a(x)a(x)
S e Tl ==y
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Given Sy — I < z, the random variable X — I is independent of I and has the
same distribution as S and

lyermwol [ = . . Y
P € dylSc—Ic < ) = =22 (a0l ()~ [LyeioaU )30 0 O™ 1 ef0.0d)

[

=

Lycio § s e B,
P(Sc € dylSc— I < o) = 252 ]<aoao<dy>[1ye[o,z]v<dyz>]*[zaz—<z>y ‘e f’lylye[o,m]dy])

o(a) 2

with, if m = n,
do = ag = 1

) = V@) [Wi()
ai(z) = —t——— ai(r) = —=>—, i=1...m
(W (z)] (W ()]
And, if m=n+1,
do =1 apg = 0
N () [@(=2):v(2)] _
ai(x) = |W(x)l- (z)] ai(z):—w i=1...m
(W ()| (W ()]
1
The identities are still true when ¢(0) = 0 and when W.P(Sg — 1. <z,

P(Sc e dy|Sc—Ic <z)  P(lg € dy|Sc — I < x)
“+oo
are replaced by / P(S; — I < z)dt,
0

[FoP(S ~ L <a,S edy)dt  [[TP(S,— L < a1, € dy)dt
JFOP(S, — I, < w)dt [P — I, <x)dt

Remark Let ¢y be a proper (not killed) Lévy exponent and apply the formula of
theorem to ¢ = ¢9 + ¢ when ¢ vary from 0 to +o0, let P, be the corresponding
distribution, that is the distribution of the Lévy process X, with Lévy exponent
¢o, killed at an independent exponential time of rate q. Clearly we have

¢ +oo
Eq(/ eiAllt 1St_1t§ze*/\2(Xt*It)dt) — EO(/ e*AlIt 1St—ItgzefAz(XﬁIt)efqtdt)
0 0

When taking the inverse Laplace transform over ¢, A\; and A2, we find the measure
Po(It € dy,Xt -1 € dZ, Sy — I < SC)dt

Then the previous theorem and corollary give a characterization of the distribution
of (St, X, Ir) at any time T'.

As an application, one can compute the price of a double barrier knock-out call
option under exponential Lévy model for the asset Y, Y; = YpeX*, when the under-
lying Lévy process X satisfy the assumption , that is, an european call option
with strike K which is desactivated if the asset Y goes down a barrier value a or
up a value b before the time of maturity 7. It is clear that the price is given by the
expression :

Xr
EO((YOe - K)lXT>10g%1IT>10gyL015T<10gyLO)

Then, this price can be deduced from the distribution of the triple (St, X, IT).
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5. BEHAVIOR OF THE PROCESS (X,S) AT TIME V, = inf{¢, X; — S; < —z}

Theorem 5.1.
‘ 0]—00,—1[(,”1) W( )
E<6Xp(u25VIM1(XVISVI))1VI<<)) = P(p) w(x)l i) (@) if m=n
’ w(z) W(x) ’
and
‘ MlU]—oyi—a)v[(Hl) U]—oo(—gc[(ﬂl) 6“”_”‘-;;Ezsul) ‘
=vim) ’ pe =1 i(pa) ’ Som=nd
w'(z) w(z) W(z)
Notations. Denote if m = n,
— 1 _1(0) % — 1 7, 0—00,—95 (/\) 7H(£L‘,/\)
b(z) '—’ wiz) W) | @)= ln (A)‘ N ‘
And, if m=n+1,
) = 0 -1 i(()) éx) = lim 7 )‘U]—oo,—z[(/\) 70]—00,—:3[(/\) n(:Cv)‘)
ble) - ‘ w(z) w(z) W) ’ (@) LOW)’ w(2) w@) W)
Corollary 5.2. )
P(Vm < C) = %a

The random variables Sy, and Xy, — Sy, are independent conditionally to V, < ¢
and the distribution of Xy, — Sy, on V, < ( is characterized by the identity,

U(dz) « P(Xy, — Sy, € dz; V, < ()

b(x)]~". [1Z<_z0(dz)} + [é_lég(dz) + ()80 (dz) — znj ej(x)zkjeﬂj21z<_z(dz)}

And,
P(Sy, € dy;V, < () = é(x)(boéo(dy) + Z bi(x)ymi(z)e_ﬁi(z)ylywdy).
i=1
Where, if m = n,
i=0  Golx)=-1 ¢a)=— ‘W(m)fw(m)] j=0,....n
And if m =n + 1, then

=1
The 5;(x), the exponents m;(z) := ${k < 4;Br(x) = Bi(x)} and the coefficients

b;(x) are given by the following fractional expansion
1

Ui bz(l') s - " s —1
bo(z) +; O+ Bi@) [C_1(x)\ + éo(z) — Zlcj(x)i()\+,7j)nj+1]

my(x)+1
2 J1=
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T e
:‘ wia) wie) WO ‘ om=ntd

Remark §
1) Notice that, when ¢(0) = 0, that means that X does not drift to +oco (see lemma
2, chapter 6 of [B9¢]) then
P(Xr, <) =P(Xr, <+o0) =1,
thus o
(AU

and we get

o—af(N) =E(e M7 T, < 400) =1 A—=0

omni |:1Z)(/\)67)\z0]—oo,—z[(>‘> - 12)(/\)6710]—00,—1[(7’”

lim ¥ \)n;i(z, \) = i
g})w( Jnj(z,A) = lim Nty N

A—=0 (—0y)"
"
S [1} =1;(0)
(=07)" Lylay=;
Thus, we see that b(z) = ¢(z) when ¢(0) = 0 and, according to the previous
corollary, we obtain that P(V, < +o00) = 1 when X does not drift to +oco: this
means that the heights of the excursions out of the set {t, X; = S;} are unbounded
a.s. This can be obtained by elementary trajectorial arguments.
2) In order to obtain a direct characterization of the distribution P(Xy, — Sy, €
dz; Vi, < () instead of the characterization of the convoluted distribution U(dy) *
P(Xy, — Sv, € dz;V, < (), it is necessary to introduce the drift, the Lévy mea-
sure and the killing rate associated to the exponent 1. We leave this part to the
interested reader.
3) Due to the lake of memory of exponential distributions and the fact that

Xv,1xy, 50 = (Sv, + (Xv, — Sv,)7,

the distribution of Xy, given Xy, > 0 is, like the distribution of Sy, as stated in
the preceding corollary, a linear combination of the functions y™(®)e—Fi(#)y 1y>o0-

4) It is clear from the characterisation of the distribution of Xy, — Sy, when m =
n + 1 that the convolution 1,._,U(dz) * §'(dz) is a signed measure, that means
that the measure U (dy) has a density, and this density, which is the fonction @

appearing in lemma EI, is of bounded variations.

6. BEHAVIOR OF THE PROCESS (I, X) AT TIME V* :=inf{¢; X; — I} > x}

Theorem 6.1.

0 i(Mz) ‘
E(e—mive g—p2(Xve—Ive)y — ev—uzﬂc c W(x) : _
(e ‘ Pu) | 1 n(x,ul)’ gom=n
c W(x)
0 L |
:16/3(:213; ¢ wiz) W) if m=n+1

1 6_”15”{]],007,93[(,“1) n(ac,,ul)'
c w(z) W(z)
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Notations If m = n,

0 1(0) - . - 1 n(z,/\)
=0 wy| M =Imin| o W |
Ifm=n+1,
R U i(0) P — Tim 4 1 e MU0, —u(—A) mn(z,A)
() = c w(zx) W(m)‘ o )7;\401/)(/\) c w(zx) W (x) }

One can notice again that b(x) = ¢(x) when ¢(0) = 0.

Corollary 6.2.

P(V* <) :%

and Iy« and Xy« — Iy« are independent conditionally to V* < (

n

P(Xve —Iye € wdy| V" < ¢) = [e(@)] " (co@)oldy) + 3 e ()™ e 1,50y

j=1

P(ly. € dz;V, < () = igg {U(dz)} * [f u;n(dz)]
n=0
with

n

Hy(dz) = [1Z<0.U(dz — )] * [co(x)do(dz) + Z ¢j(@)2" e~ %1, 50dz] 1.<o,

j=1
and, if m = n,
(Wi ()| ,
co(z) =0 and ¢j(x) = for j=1,...,n
( = W)
Ifm=n+1,
Wi+l
cj(x):w for j=0,...,n
(W ()|

7. BEHAVIOR OF THE PROCESS AT TIME U, = inf{¢,S; — I; > z}.

Theorem 7.1.
a(x)c(r a(x)c(x
r(z)
Given the event {U, < (; Xy, = Iv, }, Su, and Xy, — Sy, are independent. The
random variable Sy, has the same distribution as S¢ given S¢ — Ic < x if ¢(0) > 0,
fooo P(St c dZ, St - It S SC)dt
fOOO P(St - It S SC)dt
variable Xy, — Sy, has the same distribution as Xy, — Sy, given V, < (.
Given the event {U, < (; Xy, = Suv, }, Iy, and Xy, — Iy, are independent. The
random variable Iy, has the same distribution as I. given S¢ — I < z if $(0) > 0,
fooo P(It S dy, St - It S Z')dt
fOOO P(St - It S SC)dt
variable Xy, — Iy, has the same distribution as Xy« — Iy= given V* < (.

P(Uz < C’XUm = IUT) =

and has the distribution

if (0) = 0. The random

and has the distribution

if $(0) = 0. The random
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8. BEHAVIOR OF THE PROCESS AT TIME TP = inf{t; X; & [—a, b]}

Theorem 8.1. We have, if $(0) >0
c(b—y) P(I; € dy,Sc <b)

P(Xp, = STgan <¢) :/
[=a,0]

a(b —y) #(0)
And
P(Xpo = I Tb < ()= / éla+x) P(IC > —a,S¢ € dx)
s bl 0.y ala+z) #(0)
1f$(0) = 0, we replace in last formulas P(ICEdSI(%V)Séb) and P(ICZ;(G(J)SCGCII) by respec-
tively

+oo +oo
/ P(I; € dy,S; < b)dt and / P(S; € de,—I; > —a)dt
0 0

Given {Xpv = STg,th < (}, the distribution of Iy is the distribution of I given
> Pl < dy.5, <
JFP(S, < b~ > —a)dt
#(0) = 0. The distribution of Xg» — Ipv given Ip» =y is the one of Xys+y given
Vbty < ¢,
Given {Xv = ITE’Z’TIf < (}, the distribution of Stv is the distribution of S¢ given
[ P(S, € de, —1, > —a)dt
i
[T P(S, < by~ > —a)dt
¢(0) = 0. The distribution of Xpo — Stv given Stv = x is the one of Xv,,, given
Va-i-ac < g

Remarks 1) We can deduce from this theorem that the distribution of X7» —b given
X7v > bis a linear combination of distribution of the distributions y"/e™77¥1,~ ody.
That could easily be deduced from the lack of memory of the exponential distribu-
tion. The previous result allows also to compute a closed form of the coefficients.

2) As in the remark following theorem @, let ¢o be a proper (not killed) Lévy
exponent and apply the formula of theorem to ¢ = ¢g + ¢ when ¢ vary from 0 to
+00, let P = P, be the corresponding distribution, that is the distribution of the
Lévy process X, with Lévy exponent ¢q, killed at an independent exponential time
of rate ¢. The probabilities Py(Xp» = STch,,Tlf < () and Py(Xpp = ITg,Té’ <)
are ¢ times the Laplace transforms of the functions of ¢,

{8¢ <b,I: > —a} if $(0) > 0 and the distribution

{S¢ > —a,I; < b} if $(0) > 0 and the distribution

Po(Xro = Sy, Ty <t) and Po(Xpp = Spu, Ty < t).
On the other hand, the price of a double barrier with rebate, say rebate r* (resp.
r~) if the option exceed the value b (resp. goes down the value a) before time T.

(Denote a = —log 3, b =log Yio) is given by the next formula
E((Yoe™ — K)1x, 10 & Uy —aspan) 1T P(X TP = STb’Tb <T)
+17P(X g = Ly, T2 < T)

We have seen that the first term can be computed with the help of theorem EI
and now we see that the two other terms can be computed by an inverse Laplace
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transform in time of P, (X STZ_”T};) < () and Py (X5 = I3, T};j < ¢) which are

TP =
a a

characterized in the preceding theorem.

9. RECALL OF THE MAIN RESULT OF [[F1(J] AND ITS APPLICATION WITH THE
ASSUMPTION

Proposition 9.1. There exist unique functions A(z, \), Az, \), B(z,\) and B(z, \),
C(x,\) and C(x,\) such that A(z,\) and A(x,\), are defined for X\ € C and en-
tire; B(x, ) and C(x,\) are defined, continuous on {R(N\) > 0} and holomorphic
on {R(\) > 0}; B(z,\) and C(z,\) are defined and continuous on {R(\) < 0},
and holomorphic on {R(\) < 0}, satisfying the following identities,

¢ ¢
P([ Mg gzae M) P[0 e MO Say
0 0

= A(z, A1) A(x, A\2)
E<exp(u25vI — (X, — SVI)1VI<<)) =

C
E(exp(—ullvm — po(Xye — Ivm)1Vm<<)) =S

Y(NA(z,\) = 1 B(z,\) ~¢(\) for A — 400
B(z,\) ~¥(\)  for A — —o0
Proof. The existence of the 6 functions 4,4, B, B, C, C has been settled in the
general setting of a Lévy process in proposition 6.1 and proposition 6.2 of [] ,
the behavior of the functions is given in theorem 4.2 of [F1(]. The uniqueness is
obvious.

O

More over, we know from theorem 4.2 of [F1(] (or we can deduce them from propo-
sition @), the behavior of the six functions as settled in next proposition

Proposition 9.2. The functions of \, A(z,\), e " A(x,\) , %, e C(z, \)
are bounded on {Re(\) > 0}. )

The functions A(z,\), eM Az, \), ?fm); e~ C(x, \) are bounded on {Re(\) <
0}.

For ®(\) — +oo e*C(x,\) — 0 if ¥()\) is bounded, and for R(\) — —oo,
e~ C(x, \) — 0 if () is bounded.

Remark The property ”¢(\) is bounded” means that v is the exponent of a
compound Poisson process and this is equivalent to the property (see chapter 6 of
[B96] that the first time the Lévy process X visits |0, +-00[ is non zero a.s. (here it
is also equivalent to the condition m = n).

In the next lemma, we state that the determination of these six functions reduces
to the computation of four polynomials.
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Proposition 9.3. There exist unique polynomials of A, P1(x, ), Q1(x, \), Pa(z, ),
Q2(x, X)), with

degPr=n degPo=m deg@Qi <m—1 deg@Qs:<m—1,

such that
P, N) 4 Qi Ne U, (N
Ale2) = 7 O\ + 5;)
_ Qo NN + Po(x, NU_q 01 (N)
Alw2) = 7N+ B;)
- PQ(SC,)\)
Bl = 505,
. . Lz, N) — Qi Ne MU oo _ar(A
B = A = e )
B e Qi (z,\)
Ole, ) = 7 (A +75)
. . 0 (2, N oo —2t(X) — Qa(, N)er™
) :1/)(/\)-(P( U H,?(A[(JF)%)Q (x, A)er)

Proof. of proposition , proposition @, We have seen in [ theorem 4.2 that
the matrix M (x, \) defined as follows

M(z, ) = ( A(z,\) B(z,\) >

M(z, )) == ( 76(523)) féiig ) it R <.

satisfies the identity

(9.1) M*WWZM(”“'“)(? %éw )

Moreover, det M (x,\) = 1, and M is invertible. On the other hand, one can easily
check that the matrix

3 1 0 (A +7;) 0
N(z,\) = ( o) 1 ) ( 0 7. (L + 6) )for R(N) >0
_ 30N | P (A4 8) 0
N“”’”‘(wmﬁ]_m,_m[(» 0[_Z,O]<A>)( 0 H?(Aw))for R <0

satisfies the same identity P.1]

Thus, the product N(x, \)M ~!(z, ) is entire. One can see easily that, because of
the boundary conditions fulfilled by the components of M (x, \) given in proposition
p.3, that this matrix N(z, \)M~*(z, \) is of the form :

Py(x, \) —e MQq(z,\) .
—eNQy(z, ) Pi(w\) = R(z,3)
Where Pi, @1, P> and Q2 are polynomials of A. Then

det R = det N = II{*(\ + B)IIT (A +;),

N(z, VM~ (z,\) = (
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and we obtain
M(z,\)

.T
_ Pl(.’L' )\) _)\IQI :Ca)‘
o AICQQ(.CC )\) P2 ZL' A

x HWL (A+BZ
0 Hn()‘+’71

_ ( Pl(x,)\) )\le(x A) ) % ( 3 / ) 1V )
e Qa(x, N) Pz(w ) —w(A).U},m,,z[(A) Ui_wo(N)

% 0
><< 1 %*W 1 for R(A) <0

7 (A7)

Developping each term of this matrix product, we obtain the identities of the the-
orem. Now, according to proposition P.4, e=**C(z, \) is bounded on {R(\) > 0}
and goes to 0 if ¢ is bounded (that is if m = n), that gives that deg @1 < m — 1.
Futhermore, the equivalence of the proposition @ B(xz,\) ~ 1(\) gives that
Py(z,\) = A™ for A = +oo. Since Y(A)A(z,A) — 1, we deduce that Pj(\) ~ A"
for A = 4o0.

Also e=**C(z,\) is bounded for R(\) — 400 and goes to 0 if )()\) is bounded.
This is equivalent to say that

P2(za A)6_)\$U]—<>o,—z[(>‘> B Q2(za A)
7 (A +5)

A).N(z

<U[m0] (M) (1))

-0 if RO\ — -0

In other words,
(9.2) Py(2,0)e MU oo, —a((A) — Q2(z,A) = o(\")

If m = n then Ps(z,\) ~ A" and we have clearly that e **U}_., _,((A) — 0 These
two facts put together with property (p.2) give us that Q2(z, A) = o(A") and so,

deg Q2(z,\) <n—1=m-—1
If m =n+ 1, then Py(x,\) ~ A\"*! and Py(x, )\)e’/\xﬁ]_m,_m[(/\) = o(A"*1) then,
with property (@), we deduce that Qa(z,\) = o(A\"*1), in other words,

degQ2(z, ) <n=m-—1
The uniqueness of the 4 polynomials come from the uniqueness of the 6 functions.
This finish the proof of proposition
Now, when m = n + 1 and when looking more precisely the preceding identities,

since deg Q2(xz, A) < n, we have that % has a finite limit. Since
j=1 '

P2(:C7 )‘)eiAIU]—oo,—m[(A) - QQ(xv >‘)

—0 A — —00
7 (A +)

we deduce that

P (:L', A)67)\10]—oo,—z[(>‘)
7 (A +5)
Since Py(x,A) ~ X" and TIj_; (A + ;) ~ A", we obtain that

has a finite limit when A — —o0




18 SONIA FOURATI

Ae V) _ _4(A) has a finite limit (—(—2)) when A — —oc. That proves propo-
.. . Po(z, ) e U oo, —o[(A)—Q2(x,\)

sition @ Now since T, (A iy)

Q2(w,A)

BT — —u(—x). We state this property in the next lemma. O

goes to 0( for we deduce that

Lemma 9.4.

10. COMPUTATION OF A AND A AND PROOF OF THEOREM [L.] AND COROLLARY

Proposition 10.1.

1 1
e Mm(z,\) W(z)
Az, \) = when m = n,
o W)
-z A W
Az, \) = e m(ii’ ) (@) | when m =n+ 1
(W ()]
Proof. Recall the equation of proposition @
1 .
A@,\) = ————( Pr(z, A Ne MU0/ (A
@0 = i (PN + Qe e U0

Since A(z, A) is an entire function and because deg Py = n and deg Q1 < m —1 (see
proposition P.3), then A(z, \) is necessarily of the next form

m m BT A _ o—AxT]
Az, \) = ag(z) — zljai(x) (gﬂ)mi {e Ul—a,0)( ﬁﬂ)+§ Ul—ay) (A)La—m
= ao(e) — 3 ax(w)e (. N
for some coefficients a;(z), i = 0, 1, . .1. m
Thus,
Pi(e,\) =TI (A + 6;) (ao(x) - XT:: ai(x) (g;;ml_ [eﬂmii‘y—ﬁ )La—m)

Qi(z,\) =TI\ + i) (i ai(x)% {ﬁ}ﬂ_ﬂ)

Now using property Pi(z,A) ~ A" of lemma E, one obtain

(10.1) aplz) =1 if m=n

(10.2) ap(z) =0 and Zai(x)wz(z) =—-1 if m=n+1
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On the other hand, take the identity

- 0gey e
B(z,\) = =———— .| Pi(z,\) — A U oo —zf(A
(SC, ) H()\+'7]) 1(1'5 ) Ql(za )6 U] 0, Z[( ) )
and replace P; and Q1 by the above expressions, we get
. . Hm()\ + 51 gmi eﬂwU[im 0](_5) + e—)\zU]ioo ﬂc[()\) )
Bz, \) = p(\) =22 ; )
(20 = SO ()3t S | — 1,

i=1

The function B(m, A) is holomorphic on the left half plan, in particular at points
A = —;, this implies that for every j =1,...,n,

=1 06 ) B+A p=pir=—y (@A) T

In other words,

Z ai(x)Wi,j (.T) = 17”:0 if m=n
i=1

And

m

Zai(x)W,]( )=0 ifm=n+1

i=1
These n equations added to equation () if m =n+ 1, form a linear system of
m equations with variables a;(z), i = 1,...,m. It is easy to be convinced that each

solution of this systems brings a new couple of polynomials P;(x,\) and Q1(x, \).
The uniquiness of such a couple leads to the uniquiness of this solution. Thus the
system is a Cramer System and the determinant of the matrix W(z) for m = n
(resp. of the matrix W (z) for m = n + 1) does not vanish. Finally we obtain,

For m = n,
Wl
ap(z) =1 a;(z) = ||VVZ((;))|| for i=1,...,n
and
1 1
- _ e (z,)) Wi(z)
Az, \) = ap(x ZaZ Aem;y(z, \) =
: (W ()]
Form=n+1
W;
ap(xz) =0 ai(x) = — ||W(( )|| for i=1,...,m,
x

and




20 SONIA FOURATI

} [f(x,m(ki) a(z:c)) V(Zﬁ)) }
o m(z, \ w(z) W(z , _
Az, \) = W if m=n+1
Proof. Take the equation of proposition @,
1 . .
AN = (@2, e + Pa(w, VT gy (V).

Since A(z, \) is an entire function of A and Py(\) ~ A™, deg Q2 < m — 1 according
to proposition @, then A(z, \) is necessarily of the next form

U[—z,O] (>‘> B e(/\Jrﬁ)IU[—z,O] (7ﬂ>
A, )) = +Z‘“ aﬁmz[ Nt }

i x)m;(z, \)

For some coefficients a;(z), i = 1,...,m. Thus,
m o ebr U ( Bz)
A =TI (A i
Qale,A) = A (Lt 85“%[ S E e

1

" ey omi 1
Py, 2) = 7" (A + B) (1 + zlj @) o gy [m}ﬂ:ﬂi)
Take now the identity of proposition @,

. e\
N =07

C(z, \) is holomorphic on {Re(\ < 0}. Then for all j = 1,...,n,

(Palw, Ne 201 e, (V) = Qa(a. V)

omi [P2(1'; /\)eiAzU]—oo,—z[(A> - QQ(za /\):| -0

(OA)™ 7 (A + i) A==y
In this last equation, when replacing Py(x, A) and Q2(x, A) by their above expres-
sions, we obtain the next system, for j =1,...,n,

i py.
“Xegn (A
g | D W]
o e MU _ o —atON) 4+ €P7U_ o1(—
+Z“Z [ o0, ~a[(A) [—a,0)( 5)} _0

8)\ ni (—9Qp)™ A+0 B=Bi,A=—n;
In other words ,
(10.3) ai(x)Wi;(z) = v;(x)

i=1

This a system of n equations where the variables are the m terms a;(z).
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When m = n 4+ 1, we have the property of lemma @ w — —u(—x) when
A — —oo then

m gmi 3
> di(x)w [eﬁzU[—z,o](*ﬂ)} b ()

i=1
In other words

(10.4) Z i (z)wi(x) = a(—x)

We have already seen in the previous proof, that det W(z) # 0 if m = n and
det W(z) # 0 if m = n+ 1. Then the system () augmented by the equation
([0-4) if m = n + 1, is a Cramer system; and the solution is given as follows. If
m=n,

W
and y
o L 3
A, ) = Up_a g\ = Y dslw)my (2, )) = = iv&(:m -
If m=n-+ 15

W ()"
W ()

Upzo)(V)  a(-2) V(x)‘
eAMm(z,\)  w(r) W)

W ()]

Proof of theorem @ and corollary @#.2

Theorem follows from ropositions P.1], and [[0.9.

After that, corollary Q becomes obvious by the Laplace inversion of the functions
m;(z, \) given in proposition P.4.

11. COMPUTATION OF C(x,\) AND B(z,\) AND PROOF OF THEOREMS [5.1] AND
COROLLARY [.9)

Proposition 11.1.

. w () W(z)
W ()|
i) Wi
B(z,\) = W) if m=n
‘ )‘Uv]fcx/) 7I[()\) _V]foo,fx[()‘) e)\i;l](‘r’)‘) ‘
Gy — oy ) wii) (=)
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) ) Wiy |
B(xz,\) = W) if m=n+1

Proof. We take the expression of C'(x, \) of proposition @,
0gey x -
— AN)eN + Po(x, MU _oo —o(A
H?()\—i—%‘)( Qa2 Ve + Pa(e: W a3

with deg{Dg =m and deg Q2 < m — 1. 5
Because C(x,\) is holomorphic on {()\) < 0}, the function e=**C(x, \) is in the
next form,

C(z,\) =

e MC(xz,\) = 1&()\).(é_l(x))\e_”\zlvf],ooy,m[()\) + &0 (2)e M U)o, —[(A) + do(2)

n 0" 1e MU —o((N) — €U} oo, —a((—7)
- | ]
Oy A+ V=75

In other words,

e 2 C(z, \)
= (é_l(m)A.eiAIU],Ooﬁ,z[()\)—i—éo(x)ef)‘zU],ooﬁ,z[ Zéﬂ x)n;(z, ) )
j=1

for some coefficients ¢;(x), j = —1,0,1,...,n and a coefficient dy(z).
Thus

Sy i 1

TN I N R
And
- " 6710]—00 —z[(fv)
A A 6 :
Qalar, ) =TI +5) (~do(a) = Do) g [ )] )

J=1

Take the equation of proposition @

m (Qaler ) + Palar, Ve T V).

The function A(x,)\) is an entire function, then we obtain the equation for every
i=1,....,m

e M Az, \) =

)

omi [Qg(:c, A) + Pa(x, \)e Uy /()

=0
(OA)m I (A + 75) ] A=—Bi
Taking the expressions of P» and ()2 upwards, we obtain the next equations,
APy ey A) + & (2)e™ 0 \) —d
G Pecr@)e Vies g (A) + eo(@)e ™ Tiag (V) — dofe)] |

=0
A=—Bi,y=";

- i é(l‘) |: gmi omi 67)\10[—1,0] (>‘) + e'ymﬁ]—oo,—z[(’}/)}
LA (<o) A+
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In other words,
(11.1)

n omi 5
[~ 1 @A T () + do )

Go(w)wi(x) + Y &(@) Wi (x) = @

j=1

¢

A=—Bi

We can compute the coefficients ¢_; (z), éo(z) and do(z) by using the assertions of
lemma P.d. More precisely, if m = n, we have Py(z,\) ~ \* and degQa < n — 1,
thus we obtain

(11.2) ¢ q(z) =do(x) =0  G(z) =1

If m = n+ 1 then Py(z,\) ~ A™ and according to proposition @, Qa(x, ) ~
[—@(—2)]\", thus we obtain

(11.3) do(z) = u(—x) é1(x) =1
Then, if m = n, using the system () and equation () we get the new system

n

> (@)W (@) = —wi(x) fori=1,...,n

Thus )
And
Cla,\) = 1/3()\).(01_007_33 A Z & (w)n; ( /\)
’ Oimi) —enle ) ‘
- W@
And
_P2($’)‘) _ _n@x 9" ; _ _n@xi,
B(m,)\)_H(/\+’}/])_1 ; ]( )(78,_””] [)\4»7}’7:’73'_1 ; ]( )J()‘)
‘ I =i ‘
| we) Wi
W (z)]

Similarely if m = n+ 1, we obtain from system ([LL1)) and equation ([[1.3), the new

Cramer system

n 87"’” . ) )
D+ Wagle) = Copp [P Ve () +al-a)] | = wi)

Then (for j =0,1,...,n),
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X Jj+1
) }W(””)[w'(wn
Cj (x) = = ’

’ A j? i\ ’
| W) w@) W)
’W(x)‘

O

Proof of theorem and corollary .

The proof of theorem follows from the above proposition and proposition .
Corollary @ follow then with the help the inverse Laplace transform of the func-
tions n;(x, A) given in proposition b.d.

12. COMPUTATION OF THE FUNCTIONS C(x,\) AND B(z,\) AND PROOF OF
THEOREM [5.1] AND COROLLARY

Proposition 12.1.

e | : %2
S ’ B(x, \) = 9 ¢ ’ if m=n
CON=T @ PN T g
0 1 i ‘
Oz, \) = e ¢ W|'(f) x)‘|7V(x)
0 eiAzU]—oo,—m[(A) r{)(‘fa )‘) ’
Bz, \) = d(n) = wi@) D1 mens1

(W ()|
Proof. According to proposition @, we have the identity
» ’JJ()‘) —AZT]
B(x,\) = ————— (Pi(z,\) — A Uy o —af(A
(@0 = i oy (AN = Qi Ve O e, i (Y)
with
deg Pi(A\) ~ A" and deg@; <m-—1
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Since B(x, \) is holomorphic on {R(\) < 0}, we can write B(x, \) in the following
form,

n n; e g ol (=7) = e~ AT g o
Bz, \) = d()) (1+Bo(x)e—”0]oo,z[(A)JrZEj(w) ((;)nj { Aoooal v/\)+v e [(A)Lv )

In other words,

B(a,\) :zZ(A).(1+BO( )e AT _af(A Z o)n; (z )\)

for some coefficients Bj(z), j=-1,0,1,....,nand a coefﬁment do(x).
Thus the polynomial P; and @) are given by the next expressions
- & e’me]foo 7I[(_’Y)
Pi(z,\) = I (A + [ ’ }
(5 =0 ( g ==
Qi) = T\ + znjz; ]
1\, 'YJ = 3’}/ % LA+ ) y=y,

On the other hand, according to proposition E, we have

1 —AZT]
A(Z' A) m (Pl (ZL', A) + Ql(z, A)e U[—z,O](A))
Since A(z, ) is an entire function of A, then it is holomorphic at A\ = —f;; Thus
we have the equations for i =1,...,m.
omi [Pl(:v, A) + Q1 (z, )\)e”\zU[fx,o]()\)} —0
(OA)m I (A + ;) A=—Bi
that is,
. omi 3
b 2T 01 (A
o) (ON)™ {e (.01 )} _—
= o oy A+ i A=—p 0
In other words,
(12.1) bo(z)wi(z) + > bj(x)W, j(2) = Lm,—0

J

ﬂ.

Moreover, if m = n, since deg Q1(x,A) < n — 1, we have

(12.2) bo(z) =0

We have already seen that the determinants [W(z)| (if m = n) and |[W(z)| (if
m =n+1), then the system ([[2.1) augmented with (12.9) if m = n, form a Cramer
system whose solutions are given by the next expressions,

If m=n,

v s W)

=——>= forj=1,...,n
(W ()]
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Thus
1 n(z,A) }
. c W(x)
1
and the expression of C'(z, \) given in proposition @ gives
0 i)
@iz, Ne” oA — —bj(x el © W
C(z, A _— = *( P
(2, 4) = I (A + ;) ; A+ 'yj |W ()]
If m=n+1, we have for j =0,...,n,
3 We. (2)
bj(x) ’ - ‘
W)
And
3(,2) = 5O (1= Bo(@)e 0o, (V) = > b (@) (2, 1))
1
. c w(zx x
=9(N) .
W ()|
and then,

P (A + ;) A+
0 1 i) ‘
_ c w(z) W(a)
W (x)

O

Proof of corollary . This corollary becomes obvious when using proposi-
tions and the previous one and when using the Laplace thransform inversion of

n;(x,\) and i;()\) given in proposition P.g

13. PROOF OF THEOREMS [7.1 - AND @

It has been proven in [F1(] (propositions 6.3. and 6.4) that the distributions of the
triple (X, I, 5) at time U, and at time T? are also characterized by the 6 functions
A A, B,B,C,C. Then, we translate these two propositions with reference to the

explicit forms of the functions obtained previously.
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