Decomposition of reductive regular prehomogeneous vector spaces

Hubert Rubenthaler

To cite this version:

Hubert Rubenthaler. Decomposition of reductive regular prehomogeneous vector spaces. 2010. hal00464602v1

HAL Id: hal-00464602
 https://hal.science/hal-00464602v1

Submitted on 17 Mar 2010 (v1), last revised 31 May 2010 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DECOMPOSITION OF REDUCTIVE REGULAR PREHOMOGENEOUS VECTOR SPACES

HUBERT RUBENTHALER

Abstract

Let (G, V) be a regular prehomogeneous vector space (abbreviated to $P V$), where G is a connected reductive algebraic group over \mathbb{C}. If $V=\oplus_{i=0}^{n} V_{i}$ is a decomposition of V into irreducible representations, then, in general, the PV's $\left(G, V_{i}\right)$ are no longer regular. In this paper we introduce the notion of quasi-irreducible $P V$ (abbreviated to Q-irreducible), and show first that for completely Q-reducible $P V^{\prime}$'s, the Q-isotopic components are intrinsically defined, as in ordinary representation theory. We also show that, in an appropriate sense, any regular PV is a direct sum of quasi-irreducible $P V^{\prime}$'s. Finally we classify the quasi-irreducible PV's of parabolic type.

1. Introduction

1.1. Let us first recall that a prehomogeneous vector space (abbreviated to $P V)$ is a triplet (G, ρ, V) where G is an algebraic group over \mathbb{C}, and ρ is a rational representation of G on the finite dimensional vector space V, such that G has a Zariski open orbit in V. The theory of PV's was created by Mikio Sato in the early 70's to provide generalizations of several kinds of known local or global zeta functions satisfying a functional equation similar to that of the Mellin transform, the Riemann zeta function, the Epstein zeta function or the zeta function of a simple algebra Sa. M].
For the basic results on PV's we refer the reader to $\mathrm{S}-\mathrm{K}$] and to [Ki-1].
There are many papers concerned with local or global zeta functions of PV's and their functional equations. Among them let us mention $\mathrm{Sa}-\mathrm{Sh}$, Sa. F-1], Sai], B-R Sa. F-2] for example.
There are also many papers concerning the classification theory of $P V$'s. Many of them are written by T. Kimura and his students. We refer to the bibliography of Ki-1 and to Ki-2], Ki-al1, Ki-al2], Ki-al3] for more details. The regular $P V^{\prime}$'s of parabolic type were classified in M0.
1.2. In order to associate a zeta function to a reductive $P V$ one needs a further condition on the $P V$, namely the so-called regularity condition (see section 2.1) Therefore knowledge of the structure of the reductive regular $P V$'s as well as their classification is of particular interest. Unfortunately if (G, V) is a non irreducible reductive regular $P V$, it can be seen in easy examples (see example 2.2.2) that the irreducible components of the representation (G, V), which are still prehomogeneous, are in general not regular. This makes understanding the structure of such $P V$'s difficult. To
get around this difficulty we introduce the notion of quasi-irreducible $P V$ (abbreviated to Q-irreducible) and show that, in an appropriate sense, any reductive regular $P V$ is a sum of Q-irreducible $P V^{\prime}$'s.
1.3. Let us now describe the content of the paper.

It is worthwhile pointing out that usually the group G of a $P V$ is supposed to be connected. For our purpose we do not make this hypothesis. Therefore in section 2.1 we begin by giving extensions of basic results to the case where the group is not connected.
In section 2.2 we give the definition of Q-irreducible $P V^{\prime}$'s and prove that, if G is reductive and if (G, V) is a regular PV which is completely Q-reducible, then the Q-isotypic components of (G, V) are intrinsically defined.
In section 3 we give our structure theorem for reductive regular $P V^{\prime}$'s which asserts that, if (G, V) is a regular reductive $P V$, there exists a filtration of the space V :

$$
\{0\}=U_{k+1} \subset U_{k} \subset \cdots \subset U_{2} \subset U_{1}=V
$$

and a filtration of the group G

$$
G_{k} \subset G_{k-1} \subset \cdots \subset G_{1}=G
$$

such that the $G_{i}^{\prime} s$ are reductive and the U_{i} and U_{i+1} are G_{i}-stable. Moreover $\left(G_{i}, U_{i}\right)$ is a regular PV and $\left(G_{i}, U_{i} / U_{i+1}\right)$ is completely Q-reducible, for $i=1, \ldots, k$. See Theorem 3.2.1 below for the precise statement.
In section 4.1 we give a brief account of the theory of parabolic $P V$'s, and in section 4.2 we give the complete classification of regular Q-irreducible $P V^{\prime}$ s.
1.4. Acknowledgement. I obtained the results of this paper a long time ago, but never published them. I would like to thank Tatsuo Kimura for the recent stimulating conversations about classification theory of $P V^{\prime}$'s which convinced me to write them up.

2. Completely Q-reducible regular PV's

2.1. The regularity for non connected reductive groups. As said in the Introduction a prehomogeneous vector space is a triplet (G, ρ, V) where G is an algebraic group over \mathbb{C}, and ρ is a rational representation of G on the finite dimensional vector space V, such that G has a Zariski open orbit in V. The open orbit is usually denoted by Ω and $S=V \backslash \Omega$ is the singular set. The elements in the open orbit are called generic. We often simply write (G, V) for a $P V$ when we do not need to make the representation explicit. A relative invariant of the $P V(G, V)$ is a rational function f on V, such that there exists a rational character χ of G, such that for all $x \in \Omega$ and all $g \in G$, one has $f(g \cdot x)=\chi(g) f(x)$. The character χ determines f up to a multiplicative constant. The subgroups we shall consider in the sequel are isotropy subgroups. These will be reductive, but not necessarily connected. Therefore we need to extend slightly the basic results concerning the regularity.

Proposition 2.1.1. Let (G, V) be a $P V$, where G is not necessarily connected and not necessarily reductive. Let G° be the connected component group of G. Denote by Ω the open orbit under G° and define $S=V \backslash \Omega$.

Let S_{1}, \ldots, S_{k} be the irreducible components of codimension one in S. Let $f_{1}, f_{2}, \ldots, f_{k}$ be irreducible polynomials such that

$$
S_{i}=\left\{x \in V \mid f_{i}(x)=0\right\}
$$

The f_{i} 's are (as well known) the fundamental relative invariants of $\left(G^{\circ}, V\right)$. Then:

1) Ω is also the open G-orbit.
2) For any $g \in G$ and for any $i \in\{1, \ldots, k\}$, there exists $\sigma^{g}(i) \in\{1, \ldots, k\}$ and a non zero contant $c(i, g)$ such that for all $x \in V$, one has $f_{i}(g \cdot x)=$ $c(i, g) f_{\sigma^{g}(i)}(x)$. Therefore the group G acts by permutations on the set of lines $\left\{\mathbb{C} f_{i}, i=1, \ldots, k\right\}$.
3) Let $I_{1} \cup I_{2} \cup \cdots \cup I_{r}=\{1,2, \ldots, k\}$ be the partition defined by the G-action on the lines $\mathbb{C} f_{i}$. Define $\varphi_{j}=\prod_{i \in I_{j}} f_{i}$. Then φ_{j} is a relative invariant under G. Any relative invariant φ under G can be uniquely written in the following way:

$$
\varphi=c \varphi_{1}^{m_{1}} \varphi_{2}^{m_{2}} \ldots \varphi_{r}^{m_{r}}
$$

where $m_{j} \in \mathbb{Z}$ and $c \in \mathbb{C}$.
Proof.

1) Let Ω be the open G°-orbit of V. Let us prove first that for any $g \in G$ the set $g . \Omega$ is a G°-orbit. Let $u=g . x$ and $v=g . y(x, y \in \Omega)$ be two elements in $g . \Omega$. By definition there exists $h \in G^{\circ}$ such that $x=h . y$. Therefore

$$
u=g \cdot x=g h \cdot y=g h g^{-1} g \cdot y=h^{\prime} g \cdot y=h^{\prime} \cdot v
$$

(where $h^{\prime}=g h g^{-1} \in G^{\circ}$, because G° is a normal subgroup of G). As $g . \Omega$ is open, we have $g . \Omega=\Omega$, for all $g \in G$. Hence Ω is also the open G-orbit.
2) Denote by χ_{i} the G° character of f_{i}. For $g \in G$ and $x \in V$, define $\psi_{i}^{g}(x)=$ $f_{i}(g \cdot x)$. Then for $h \in G^{\circ}$ we have $\psi_{i}^{g}(h \cdot x)=f_{i}(g h \cdot x)=f_{i}\left(g h g^{-1} g \cdot x\right)=$ $\chi_{i}\left(g h g^{-1}\right) \psi_{i}^{g}(x)$. Therefore ψ_{i}^{g} is an irreducible relative invariant of G°. Hence there exists $\sigma^{g}(i) \in\{1, \ldots, k\}$ and a non zero contant $c(i, g)$ such that for all $x \in V$, one has $\varphi_{i}(x)=f_{i}(g \cdot x)=c(i, g) f_{\sigma^{g}(i)}(x)$.
3) Let φ_{j} as defined above. Let $g \in G$. One has $\varphi_{j}(g \cdot x)=\prod_{i \in I_{j}} f_{i}(g \cdot x)=$ $\left(\prod_{i \in I_{j}} c(i, g)\right) \varphi_{j}(x)$. Hence φ_{j} is a relative invariant under G, with character $\widetilde{\chi}_{j}(g)=\left(\prod_{i \in I_{j}} c(i, g)\right)$. Let φ be a relative invariant under G. Let χ_{φ} be the corresponding G character. As φ is a relative invariant under G°, one has $\varphi=c \prod_{i=1}^{k} f_{i}^{n_{i}}$, where $c \in \mathbb{C}$ and where $n_{i} \in \mathbb{Z}$. We have, for $g \in G$ and $x \in \Omega$:

$$
\varphi(g \cdot x)=c \chi_{\varphi}(g) \prod_{i=1}^{k} f_{i}^{n_{i}}(x)=c \prod_{i=1}^{k} f_{i}^{n_{i}}(g \cdot x)=c^{\prime} \prod_{i=1}^{k} f_{\sigma^{g}(i)}^{n_{i}}(x) \quad\left(c^{\prime} \in \mathbb{C}\right)
$$

Therefore from the uniqueness of the decomposition for G° relative invariants, we obtain that for every $g \in G$ we have $n_{\sigma^{g}(i)}=n_{i}$. Hence the powers n_{i} of the f_{i} 's in the same subset I_{j}, are the same, say m_{j}. This implies that

$$
\varphi=c \varphi_{1}^{m_{1}} \varphi_{2}^{m_{2}} \ldots \varphi_{r}^{m_{r}}
$$

Remark 2.1.2. Of course all the f_{i} where $i \in I_{j}$ have the same degree.

Definition 2.1.3. Let (G, V) be a $P V$ where G is a reductive, non necessarily connected, algebraic group. The $P V(G, V)$ is called regular if there exists a relative invariant f such that the Hessian $H_{f}(x)=\operatorname{Det}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x)\right)$ is not identically zero. Such a relative invariant is said to be nondegenerate.

Proposition 2.1.4. (Compare with Ki-1, Th. 2.28), and S-K], Remark 11 p.64)
Let G be a reductive algebraic group. Let G° be the connected component group of G and suppose that (G, V) is a $P V$.
The following conditions are equivalent:
i) (G, V) is regular.
ii) There exists a relative invariant f such that $\frac{d f}{f}=\operatorname{gradlog}(f)$ is generically surjective.
iii) The singular set S is a hypersurface.
iv) The open orbit $\Omega=V \backslash S$ is an affine variety.
v) Each generic isotropy subgroup is reductive.
vi) Each generic isotropy subalgebra is reductive.

Suppose moreover that these conditions hold. Then any polynomial f satisfying $S=\{x \in V \mid f(x)=0\}$ is a nondegenerate relative invariant. In the notations of Proposition 2.1.1 the set of these polynomials is the set of polynomials of the form

$$
f=c \varphi_{1}^{m_{1}} \varphi_{2}^{m_{2}} \ldots \varphi_{r}^{m_{r}}
$$

where $m_{j} \in \mathbb{N}^{*}$ and $c \in \mathbb{C}^{*}$.
Proof.
We will of course use the same result for connected reductive groups (Ki-1, Th. 2.28. and S-K])
First of all we remark that by the same proof as in the case where the group is connected (see S-K, Proposition 10 p. 62 and Remark 11 p. 64) we obtain i) \Leftrightarrow ii).
i) \Rightarrow iii): If (G, V) is regular, there exists a nondegenerate relative invariant f. This function is also a relative invariant of $\left(G^{\circ}, V\right)$, hence the singular set for the G° action is an hypersurface. But the singular set for G is the same as for G°, from Proposition 2.1.1. Assertion iii) is proved.
iii) \Rightarrow iv): This is classical: the complementary set of a hypersurface is allways an affine variety.
iv) $\Rightarrow \mathrm{v}$): From Ki-1], Th. 2.28, we know that for $x \in \Omega$, the isotropy subgroup G_{x}° is reductive. Hence the isotropy subgroup G_{x} is reductive.
$\mathrm{v}) \Rightarrow \mathrm{vi})$: As the Lie algebras of G° and of G are the same, this is obvious. vi) \Rightarrow i): Let S_{1}, \ldots, S_{m} be the irreducible components of S. They correspond to irreducible polynomials f_{1}, \ldots, f_{m} which are the fundamental relative invariants for G°. We know from Ki-1, Th. 2.28 that if vi) is satisfied then $\left(G^{\circ}, V\right)$ is regular and therefore any polynomial f such that $S=\{x \in V \mid f(x)=0\}$ is a nondegenerate relative invariant under G°. Among them the functions which are relative invariants under G are of the proposed form from Proposition 2.1.1. Hence (G, V) is regular and i) is true.

Remark 2.1.5. Under the assumptions of the preceding Proposition, the polynomial $f=f_{1} f_{2} \ldots f_{k}=\varphi_{1} \varphi_{2} \ldots \varphi_{r}$ is the unique polynomial of minimal degree which defines S. It is a relative invariant under G.

2.2. Quasi-irreducible PV's and complete Q-reducibility.

The following result is often very useful.
Proposition 2.2.1. Let (G, V) be a $P V$. Here we do not suppose that G is connected and we do not suppose that G is reductive. Suppose that $V=$ $V_{1} \oplus V_{2}$ where V_{1} and V_{2} are two non trivial G-invariant subspaces of V. Denote by $p_{1}\left(\right.$ resp. $\left.p_{2}\right)$ the projections on $V_{1}\left(\right.$ resp. $\left.V_{2}\right)$ defined by this decomposition.

1) The representations $\left(G, V_{1}\right)$ and $\left(G, V_{2}\right)$ are $P V$'s. Moreover the open orbits in $V_{1}\left(\right.$ resp. $\left.V_{2}\right)$ are the projections of Ω_{V} i.e. $\Omega_{V_{i}}=p_{i}\left(\Omega_{V}\right), i=1,2$. 2) Let $x_{0}+y_{0}$ be a generic element of (G, V), with $x_{0} \in V_{1}$ and $y_{0} \in V_{2}$. Let also $G_{x_{0}}\left(\right.$ resp. $\left.G_{y_{0}}\right)$ be the isotropy subgroup of $x_{0}\left(\right.$ resp. $\left.y_{0}\right)$. Then $\left(G_{y_{0}}, V_{1}\right)$ and $\left(G_{x_{0}}, V_{2}\right)$ are $P V ' s$, and x_{0} is generic in $\left(G_{y_{0}}, V_{1}\right)$ and y_{0} is generic in $\left(G_{x_{0}}, V_{2}\right)$.
 $\Omega_{V_{1}}\left(y_{0}\right)=\left\{x \in V_{1}, x+y_{0} \in \Omega_{V}\right\}$ and the open $G_{x_{0}-\text { orbit in } V_{2} \text { is equal to }}$ $\Omega_{V_{2}}\left(x_{0}\right)=\left\{y \in V_{2}, x_{0}+y \in \Omega_{V}\right\}$.
2) The subgroup \widetilde{G} generated by $G_{x_{0}}$ and $G_{y_{0}}$ is open, and hence closed, therefore we he have $\widetilde{G}=G$ if G is connected. More precisely the subset $G_{x_{0}} . G_{y_{0}}$ is open in G.
3) Suppose that G is reductive, and that (G, V) and $\left(G, V_{1}\right)$ are regular. Then $\left(G_{x_{0}}, V_{2}\right)$ is a regular reductive $P V$.

Proof.

1) As the projections p_{1} and p_{2} are open maps, the sets $\Omega_{V_{i}}=p_{i}\left(\Omega_{V}\right), i=1,2$ are open. Let x_{1} and x_{2} be two elements in $\Omega_{V_{1}}$. From the definition there exists y_{1} and y_{2} in V_{2} such that $x_{1}+y_{1}$ and $x_{2}+y_{2}$ belong to Ω_{V}. Therefore there exists $g \in G$ such that $g .\left(x_{1}+y_{1}\right)=x_{2}+y_{2}$. Hence $g . x_{1}=x_{2}$. Hence two elements in $\Omega_{V_{1}}$ are congugate. Conversely the conjugate of an element in $\Omega_{V_{1}}$ is still in $\Omega_{V_{1}}$. This proves the first assertion for V_{1}. The argument for V_{2} is the same.
2) Define $n=\operatorname{dim} V, n_{1}=\operatorname{dim} V_{1}, n_{2}=\operatorname{dim} V_{2}$. As (G, V) is prehomogeneous, we have $n=\operatorname{dim} G-\operatorname{dim} G_{x_{0}+y_{0}}$ and as $\left(G, V_{1}\right)$ is also prehomogeneous we have $n_{1}=\operatorname{dim} G-\operatorname{dim} G_{x_{0}}$. Therefore

$$
\begin{aligned}
n=n_{1}+n_{2} & =\operatorname{dim} G-\operatorname{dim} G_{x_{0}+y_{0}} \\
& =\operatorname{dim} G-\operatorname{dim} G_{x_{0}}+\operatorname{dim} G_{x_{0}}-\operatorname{dim} G_{x_{0}+y_{0}} \\
& =n_{1}+\operatorname{dim} G_{x_{0}}-\operatorname{dim} G_{x_{0}+y_{0}}
\end{aligned}
$$

Therefore $n_{2}=\operatorname{dim} G_{x_{0}}-\operatorname{dim} G_{x_{0}+y_{0}}$ and as $G_{x_{0}+y_{0}}=\left(G_{x_{0}}\right)_{y_{0}}$ is the isotropy subgroup of y_{0} in $G_{x_{0}}$, the representation $\left(G_{x_{0}}, V_{2}\right)$ is prehomogeneous, and y_{0} is generic for this space.
3) The assertion $G_{x_{0}} \cap G_{y_{0}}=G_{x_{0}+y_{0}}$ is obvious. It is clear that $\Omega_{V_{2}}\left(x_{0}\right)=$ $\left\{y \in V_{2}, x_{0}+y \in \Omega_{V}\right\}$ is stable under $G_{x_{0}}$. Moreover if $y_{1}, y_{2} \in \Omega_{V_{2}}\left(x_{0}\right)$, then $x_{0}+y_{1}, x_{0}+y_{2} \in \Omega_{V}$ and there exists $g \in G$ such that $g\left(x_{0}+y_{1}\right)=x_{0}+y_{2}$, and hence $g \in G_{x_{0}}$ and $g y_{1}=y_{2}$. This proves that the open $G_{x_{0} \text {-orbit in } V_{2}}$ is $\Omega_{V_{2}}\left(x_{0}\right)$. The proof for the space $\left(G_{y_{0}}, V_{2}\right)$ is symmetric.
4) Consider the set $\mathcal{O}=\left(\Omega_{V_{1}}\left(y_{0}\right) \oplus \Omega_{V_{2}}\left(x_{0}\right) \cap \Omega_{V}\right.$. This set is nonempty $\left(x_{0}+y_{0} \in \mathcal{O}\right)$ and open. Let $x+y \in \mathcal{O}$. Then $x \in \Omega_{V_{1}}\left(y_{0}\right)$ and we know from the third assertion that there exists $g_{1} \in G_{y_{0}}$ such that $g_{1} x=x_{0}$. Hence $g_{1}(x+y)=x_{0}+g_{1} y$. As $x+y \in \Omega_{V}$, we have also $x_{0}+g_{1} y \in \Omega_{V}$. Hence $g_{1} y \in \Omega_{V_{2}}\left(x_{0}\right)$. Then we know that there exists $g_{2} \in G_{x_{0}}$ such that $g_{2} g_{1} y=y_{0}$. Hence $g_{2} g_{1}(x+y)=x_{0}+y_{0}$. Therefore the elements of \mathcal{O} are conjugate under the set $G_{x_{0}} \cdot G_{y_{0}}$. Hence $G_{x_{0}} \cdot G_{y_{0}} / G_{x_{0}+y_{0}} \simeq \mathcal{O}$ is an open subset of $G / G_{x_{0}+y_{0}} \simeq \Omega$. This implies that $G_{x_{0}} . G_{y_{0}}$ is open in G. Therefore the group \widetilde{G} generated by $G_{x_{0}}$ and $G_{y_{0}}$ is open and hence closed. If G is connected, then $\widetilde{G}=G$
5) From Proposition 2.1.4 we know that $G_{x_{0}}$ is reductive and from Proposition 2.2.1 we know that $\left(G_{x_{0}}, V_{2}\right)$ is a $P V$. As $\left(G_{x_{0}}\right)_{y_{0}}=G_{x_{0}+y_{0}}$, using again Proposition 2.1.4, we obtain that $\left(G_{x_{0}}, V_{2}\right)$ is regular.

Unfortunately the irreducible components of a reductive regular $P V$ are in general not regular as shown by the following example.

Example 2.2.2.

Let $G=\mathbb{C}^{*} \times S L_{n} \times \mathbb{C}^{*}$, let $V=\mathbb{C}^{n} \times \mathbb{C}^{n}$ and define ρ as follows:

$$
\rho(x, g, y)(v, w)=\left(x^{t} v g^{-1}, y^{-1} g w\right)
$$

where $x, y \in \mathbb{C} *, g \in S L_{n}$, where $v, w \in \mathbb{C}^{n}$ are considered as column matrices and where ${ }^{t} v$ is the transpose of the vector v. A simple computation shows that if $v_{0}=w_{0}=^{t}(1,0, \ldots, 0)$ then the isotropy subgroup is the set of triplets $\left(x,\left(\begin{array}{ll}x & 0 \\ 0 & A\end{array}\right), x\right)$, where $A \in G L_{n-1}$, and such that $x \cdot \operatorname{Det} A=1$, and this proves that (G, ρ, V) is a regular PV. In fact the scalar product $Q(v, w)={ }^{t} v . w$ of v and w is the unique relative invariant. The irreducible components are $V_{1}=\mathbb{C}^{n} \times\{0\}$ and $V_{2}=\{0\} \times \mathbb{C}^{n}$, and the PV's $\left(G, \rho_{V_{V_{i}}}, V_{i}\right)$ $(i=1,2)$ are obviously not regular.

The following lemma is also useful in the sequel.
Lemma 2.2.3. Let (G, V) be a $P V$ where G is not necessarily connected and not necessarily connected and suppose that $V=V_{1} \oplus V_{2}$ where V_{1} and V_{2} are G-invariant subspaces.
a) Let f be a relative invariant of $\left(G, V_{1}\right)$. Then the function \tilde{f} defined by $\tilde{f}(x+y)=f(x)\left(x \in V_{1}, Y \in V_{2}\right)$ is a relative invariant of (G, V) with the same character as f.
b) Let f be a relative invariant of (G, V) which is defined and nonzero on an open subset of V_{1}, then for $x \in V_{1}, y \in V_{2}$, we have $f(x+y)=f(x)$.
Proof.
a) Let χ_{f} be the character of f. For $g \in G$, we have:

$$
\tilde{f}(g \cdot x+g \cdot y)=f(g \cdot x)=\chi_{f}(g) f(x)=\chi_{f}(g) \tilde{f}(x+y)
$$

b) For $x \in V_{1}, y \in V_{2}$ let us set $\tilde{f}(x+y)=f(x)$. From a) we know that \tilde{f} is a relative invariant of (G, V) with the character as f. Therefore there exists a constant $c \in \mathbb{C}$ such that $\tilde{f}=c$.f. But as $\tilde{f}=f$ on U, we have necessarily $c=1$

Definition 2.2.4. Let G be a reductive group (not necessarily connected) and let (G, V) be a regular $P V$.
a) The prehomogeneous vector space (G, V) is called 1-irreducible if the singular set $S=V \backslash \Omega$ is an irreducible hypersurface. (According to Proposition 2.1.1, this is equivalent to the fact that there exists only one fundamental relative invariant under G°, up to constants).
b) The prehomogeneous vector space (G, V) is called 2-irreducible if for any proper invariant subspace $U \subset V$, the prehomogeneous vector space (G, U) has no nontrivial relative invariant.
c) The prehomogeneous vector space (G, V) is called quasi-irreducible (abbreviated Q-irreducible) if for any proper invariant subspace $U \subset V$, the prehomogeneous vector space (G, U) is not regular.

Remark 2.2.5. It is well known that if (G, V) is irreducible, than there exists at most one fundamental relative invariant. Therefore the irreducible regular $P V$'s with a reductive group are 1-irreducible. The $P V$ from Example 2.2 .2 is 1-irreducible but not irreducible.
Proposition 2.2.6. Let (G, V) be a regular $P V$ where G is reductive. Among the various definitions of irreducibility, we have the following implications:
(G, V) is 1 -irreducible $\Rightarrow(G, V)$ is 2 -irreducible $\Rightarrow(G, V)$ is Q-irreducible.
Proof. Suppose that (G, V) is not 2-irreducible. Then it exists a proper invariant subspace $U \subset V$ such that (G, U) has a non trivial relative invariant f. Let W be a G-invariant supplementary subspace to U. Then according to Lemma 2.2.3 the fonction \tilde{f} defined by $\tilde{f}(x+y)=f(x)(x \in U, y \in W)$ is a relative invariant on V depending only on x. Therefore the map $\frac{d \tilde{f}}{\tilde{f}}$ cannot be generically surjective. But as (G, V) is regular there exists a relative invariant φ such that $\frac{d \varphi}{\varphi}$ is generically surjective. This is not the case if $\varphi=c \tilde{f}^{k}(c \in \mathbb{C})$. Therefore there exists another fundamental relative invariant, and hence (G, V) is not 1-irreducible.
Suppose now that (G, V) is not Q-irreducible. Then it exists a proper invariant subspace $U \subset V$ such that (G, U) is regular. Hence (G, U) has a non trivial relative invariant. Therefore (G, V) is not 2-irreducible.

Proposition 2.2.7. Let (G, V) be a $P V$ where G is reductive. Suppose that $V=\oplus_{i=1}^{n} V_{i}$ where each V_{i} is a G-invariant subspace such that $\left(G, V_{i}\right)$ is regular. Let Ω and Ω_{i} be the open orbits of (G, V) and $\left(G, V_{i}\right)$ respectively $(i=1, \ldots, n)$. Then (G, V) is regular and $\Omega=\oplus_{i=1}^{n} \Omega_{i}$. Moreover any polynomial relative invariant of (G, V) is a product of relative invariants of the spaces $\left(G, V_{i}\right)$.
Proof. Let us make the usual identification $V^{*}=\oplus_{i=1}^{n} V_{i}^{*}$. Let f_{i} be a relatively invariant polynomial of $\left(G, V_{i}\right)$ such that $\varphi_{i}=\frac{d f_{i}}{f_{i}}: \Omega_{i} \longrightarrow V_{i}^{*}$ is generically surjective. Replacing eventually f_{i} by its square, we can suppose that $\partial^{\circ}\left(f_{i}\right)>1$. Define a relative invariant of (G, V) by:

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right) f\left(x_{2}\right) \ldots f_{n}\left(x_{n}\right) \quad\left(x_{i} \in V_{i}\right)
$$

Then $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{d f\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{f\left(x_{1}, x_{2}, \ldots, x_{n}\right)}=\varphi_{1}\left(x_{1}\right) \oplus \varphi_{2}\left(x_{2}\right) \oplus \cdots \oplus \varphi_{n}\left(x_{n}\right)$. As the map $x_{i} \longrightarrow \varphi_{i}\left(x_{i}\right)$ is generically surjective from Ω_{i} to V_{i}^{*}, we see that φ is generically surjective from $\oplus_{i=1}^{n} \Omega_{i}$ to V^{*}. Then from Proposition 2.1.4 we obtain that (G, V) is regular. Moreover we have $\operatorname{det} d \varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=$ $\prod_{i=1}^{n} \operatorname{det} d \varphi_{i}\left(x_{i}\right)$ and we know from S-K p. 63 that the Hessian H_{f} is given by

$$
H_{f}(x)=(1-r) \operatorname{det} d \varphi(x) \cdot f(x)^{k}
$$

where $r=\partial^{\circ}(f)$ and where $k=\operatorname{dim} V$. Hence $H_{f} \neq 0$ on $\oplus_{i=1}^{n} \Omega_{i}$. On the other hand it is known (S-K, p.70 Ru-4 p. 22-23), that if $H_{f} \neq 0$ then $\Omega=\left\{x \mid f(x) H_{f}(x) \neq 0\right\}$. This implies that $\oplus_{i=1}^{n} \Omega_{i} \subset \Omega$. The reverse inclusion is a consequence of Proposition 2.2.1. The set $S_{i}=V_{i} \backslash \Omega_{i}$ is a hypersurface defined by an equation $P_{i}=0$ where P_{i} is a relatively invariant polynomial on V_{i} (Proposition 2.1.4). We will choose P_{i} of minimal degree among the polynomials defining S_{i}. Then $P_{i}=f_{i, 1} \ldots f_{i, l_{i}}$ where the $f_{i, j}^{\prime} s$ are irreducible relatively invariant polynomials under G° on V_{i}, which are algebraically independant. From Proposition 2.1.1 we know that we can write $P_{i}=\varphi_{i, 1} \ldots \varphi_{i, m_{i}}$, where the $\varphi_{i, j}$'s are polynomials on V_{i} which are relatively invariant under G. As $\Omega=\oplus_{i=1}^{n} \Omega_{i}$ we obtain that

$$
S=V \backslash \Omega=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in V \mid P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P_{i}\left(x_{i}\right)=0\right\}
$$

Using again Proposition 2.1.1, we obtain that any G-relatively invariant polynomial on V is a product of polynomials of the form $\varphi_{i, j}^{\alpha_{i, j}}$, where $\alpha_{i, j} \in$ \mathbb{N}.

Definition 2.2.8. Let G be a reductive group (not necessarily connected) and let (G, V) be a $P V$. The $P V(G, V)$ is called completely Q-reducible if there exists a decomposition $V=\oplus_{i=1}^{n} V_{i}$ where the V_{i} 's are G-invariant subspaces such that $\left(G, V_{i}\right)$ is Q-irreducible. The spaces V_{i} are then called Q-irreducible components of (G, V).

Remark 2.2.9. We know from Proposition 2.2 .7 that a completely Q irreducible $P V$ is regular.

It is well known that for ordinary finite dimensional completely reducible representations of a group G the equivalence classes occuring in any decomposition into irreducibles are uniquely determined, as well as the isotypic components. Our next aim is to prove analogous results for completely Q reducible regular $P V^{\prime}$'s where the irreducible components are replaced by the Q-irreducible components and the isotypic components are replaced by the Q-isotypic components.

[^0]
Theorem 2.2.10.

Let (G, V) be a completely Q-reducible $P V$. Let $V=\oplus_{i=1}^{n} V_{i}$ be a decomposition of V into Q-irreducible components. Let $W \subset V$ be an invariant subspace such that (G, W) is regular. Then (G, W) is a completely Q-reducible $P V$. Moreover if W_{j} is a Q-irreducible component of (G, W), there exists an integer $\ell(j) \in\{1,2, \ldots, n\}$ such that the representation $\left(G, W_{j}\right)$ is equivalent to $\left(G, V_{\ell(j)}\right)$.
The equivalence classes of the Q-irreducible components arising in (G, V) are uniquely determined.
Let δ be an equivalence class of one of Q-irreducible components arising in $V=\oplus_{i=1}^{n} V_{i}$ (i.e. an equivalence class of one of the representations $\left.\left(G, V_{j}\right)\right)$. Let $I(\delta)=\left\{i \mid\left(G, V_{i}\right) \in \delta\right\}$ and let $m(\delta)=\operatorname{Card} I(\delta)$ be the multiplicity of δ. Set also $V(\delta)=\oplus_{i \in I(\delta)} V_{i}$ be the so-called Q-isotypic component of δ. Then $m(\delta)$ does not depend on the decomposition of V into Q-irreducible subspaces. Moreover if $U \subset V$ is an invariant subspace of type δ (this means that U is a direct sum of Q-irreducible invariant subspaces which are all of type δ), then U is a subspace of $V(\delta)$. In other words the Q-isotypic components are uniquely determined.
Proof.
Let $V_{j}=\oplus_{i=1}^{\ell(j)} U_{j}^{i}$ be a decomposition of V_{j} into irreducible components in the ordinary sense. As we are only interested in equivalence classes of representations we can assume that $W=\left(\oplus_{j \in A} V_{j}\right) \oplus\left(\oplus_{j \in A^{c}} \oplus_{i \in I_{j}} U_{j}^{i}\right)$, where A is a subset of $\{1,2, \ldots, n\}$ and where I_{j} is a proper subset of $\{1,2, \ldots, \ell(j)\}$. After renumbering, we can suppose that $I_{j}=\{1,2, \ldots, m(j)\}$ where $m(j)<$ $\ell(j)$. Let us denote by x_{j} the variable in V_{j} and by x_{j}^{i} the variable in U_{j}^{i}. Hence $x_{j}=\left(x_{j}^{1}, x_{j}^{2}, \ldots, x_{j}^{\ell(j)}\right)$. Let $j_{1}, j_{2}, \ldots, j_{k}$ be the elements of A, and j_{k+1}, \ldots, j_{n} be the elements in A^{c}.
Let f be a relative invariant of (G, W) such that $\frac{d f}{f}$ is generically surjective. Then f is a function in the variables:

$$
\left(x_{j_{1}}, \ldots, x_{j_{k}} ; x_{j_{k+1}}^{1}, \ldots, x_{j_{k+1}}^{m\left(j_{k+1}\right)} ; \ldots ; x_{j_{n}}^{1}, \ldots, x_{j_{n}}^{m\left(j_{n}\right)}\right) .
$$

We know from Proposition 2.2.7 that f is a product of relative invariants of the V_{j} 's. Hence

$$
\begin{gathered}
f\left(x_{j_{1}}, \ldots, x_{j_{k}} ; x_{j_{k+1}}^{1}, \ldots, x_{j_{k+1}}^{m\left(j_{k+1}\right)} ; \ldots ; x_{j_{n}}^{1}, \ldots, x_{j_{n}}^{m\left(j_{n}\right)}\right) \\
=f_{j_{1}}\left(x_{j_{1}}\right) \ldots f_{j_{k}}\left(x_{j_{k}}\right) f_{j_{k+1}}\left(x_{j_{k+1}}^{1}, \ldots, x_{j_{k+1}}^{\ell_{j_{k+1}}}\right) \ldots f_{j_{n}}\left(x_{j_{n}}^{1}, \ldots, x_{j_{n}}^{\ell_{j_{n}}}\right)
\end{gathered}
$$

where each $f_{j_{r}}$ is a relative invariant of $\left(G, V_{j_{r}}\right)$. Therefore:

$$
\begin{array}{ccc}
f_{j_{k+1}} & \text { depends only on the variables } & x_{j_{k+1}}^{1}, \ldots, x_{j_{k+1}}^{m\left(j_{k+1}\right)} \\
\vdots & \vdots & \vdots \\
f_{j_{n}} & \text { depends only on the variables } & x_{j_{n}}^{1}, \ldots, x_{j_{n}}^{m\left(j_{n}\right)}
\end{array}
$$

But as $\frac{d f}{f}=\frac{d f_{j_{1}}}{f_{j_{1}}} \oplus \cdots \oplus \frac{d f_{j_{k}}}{f_{j_{k}}} \oplus \frac{d f_{j_{k+1}}}{f_{j_{k+1}}} \oplus \cdots \oplus \frac{d f_{j_{n}}}{f_{j_{n}}}$ is generically surjective, each $\frac{d f_{j_{r}}}{f_{j_{r}}}$ must be generically surjective. For example $\frac{d f_{j_{k+1}}}{f_{j_{k+1}}}$ will be
generically surjective from an open set of $U_{j_{k+1}}^{1} \oplus \cdots \oplus U_{j_{k+1}}^{m\left(j_{k+1}\right)}$ to its dual. Therefore, from Proposition 2.1.4 we know that ($G, U_{j_{k+1}}^{1} \oplus \cdots \oplus U_{j_{k+1}}^{m\left(j_{k+1}\right)}$) would be regular. But this is impossible, since $\left(G, V_{k+1}\right)$ is Q-irreducible. Hence $(G, W) \simeq\left(G, \oplus_{j \in A} V_{j}\right)$, and this shows that (G, W) is completely Q-reducible.
Let $W=\oplus_{j=1}^{k} W_{j}$ be a decomposition of W into Q-irreducible components. Then the same proof as above, applied to W_{j} instead of W shows that (G, W_{j}) is equivalent to $\left(G, \oplus_{k \in B} V_{k}\right)$, where $B \subset\{1, \ldots, n\}$. But as $\left(G, W_{j}\right)$ is Q-irreducible the set B is a single element. The same proof applied to V shows that any Q-irreducible component of V is equivalent to some V_{i}. Hence the equivalence classes of the Q-irreducible components are uniquely determined.
Let us now prove the assertion concerning the multiplicities. Let $V=$ $\oplus_{k=1}^{r} U_{k}$ be another decomposition of V into Q-irreducible components. We can suppose that $r \leq n$. From above we know that $\left(G, U_{1}\right) \simeq\left(G, V_{i_{1}}\right)$ where $i_{1} \in\{1, \ldots, n\}$. Then by a classical argument $\left(G, \oplus_{k=2}^{n} U_{k}\right) \simeq\left(G, \oplus_{i \neq i_{1}} V_{i}\right)$. Then inductively one proves that $r=n$ and that there exists a permutation σ of $\{1, \ldots, n\}$ such that $\left(G, U_{i}\right) \simeq\left(G, V_{\sigma(i)}\right)$. Therefore the multiplicity does not depend on the decomposition into Q-irreducibles.
Let now $U \subset V$ be an invariant Q-irreducible subspace of type δ and define $V^{\prime}=\oplus_{i \notin I(\delta)} V_{i}$. Let S be a G-invariant supplementary space of $U \cap V(\delta)$ in U. Hence we have:

$$
U=U \cap V(\delta) \oplus S, \quad V=V(\delta) \oplus V^{\prime} .
$$

For $s \in S$ let us write $s=v_{1}+v_{2}$ with $v_{1} \in V(\delta)$ and $v_{2} \in V^{\prime}$. The linear mapping $\varphi: S \longrightarrow V^{\prime}$ defined by $\varphi(s)=v_{2}$ is injective, because if $\varphi(s)=v_{2}=0$, then $s=v_{1} \in U \cap V(\delta) \cap S=\{0\}$. Moreover φ is G equivariant. Suppose that $U \cap V(\delta)=\{0\}$. If this is the case, we have $S=U$, and then $S^{\prime}=\varphi(S)$ is a subspace of type δ of V^{\prime}. This is not possible from the definition of V^{\prime}. Therefore $U \cap V(\delta) \neq\{0\}$. Define $U^{\prime}=U \cap V(\delta) \oplus S^{\prime}$. As φ is G-equivariant, the subspace U^{\prime} is invariant of type δ. Let f be a relative invariant of $\left(G, U^{\prime}\right)$ such that $\frac{d f}{f}$ is generically surjective. From Proposition 2.2.7 we know that $f\left(x, s^{\prime}\right)=\varphi_{1}(x) \varphi_{2}\left(s^{\prime}\right)$, where $x \in U \cap V(\delta), s^{\prime} \in S^{\prime}$, and where φ_{1} and φ_{2} are relative invariants of $(G, V(\delta))$ and $\left(G, V^{\prime}\right)$ respectively. As $\frac{d f}{f}=\frac{d \varphi_{1}}{\varphi_{1}} \oplus \frac{d \varphi_{2}}{\varphi_{2}}$, we obtain that $\frac{d \varphi_{1}}{\varphi_{1}}$ and $\frac{d \varphi_{2}}{\varphi_{2}}$ are generically surjective. This implies that ($G, U \cap V(\delta)$) is regular and this is possible if and only if $U \cap V(\delta)=U$, because (G, U) is Q-irreducible. Hence $U \subset V(\delta)$.

3. The decomposition theorem for reductive regular PV's

3.1. Of course, reductive regular $P V$'s are not necessarily completely Q reducible as shown by the following example.

Example 3.1.1. Let $n \geq 2$ be an integer and let $G=G L(n, \mathbb{C}) \times \mathbb{C}^{*}$ and $V=S(n, \mathbb{C}) \times \mathbb{C}^{n}$ where $S(n, \mathbb{C})$ is the space of complex n by n symmetric
matrices. The action of G on V is given by

$$
(g, a)(X, v)=\left(g X^{t} g, a^{t} g^{-1} v\right), \quad g \in G L(n, \mathbb{C}), a \in \mathbb{C}^{*}, X \in S(n, \mathbb{C}), v \in \mathbb{C}^{n} .
$$

The isotropy subgroup of $\left(I_{n}, e_{1}\right)$, where I_{n} is the identity matrix and where e_{1} is the first vector of the canonical basis of \mathbb{C}^{n}, is easily seen to be isomorphic to the orthogonal group $O(n-1)$. This proves that (G, V) is a reductive regular $P V$. As the irreducible components are $S(n, \mathbb{C})$ and \mathbb{C}^{n}, and as $\left(G, \mathbb{C}^{n}\right)$ is not regular, the $P V(G, V)$ is not completely Q-reducible.

3.2. Structure of reductive regular PV's.

The following theorem shows the structure of reductive regular $P V$'s.

Theorem 3.2.1.

Let (G, V) be a reductive regular $P V$ and let x be a generic element of V. Denote by G_{x} the isotropy subgroup of x. There exist a sequence of subspaces $V_{1}, V_{2}, \ldots, V_{n}$ such that $V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{n}$, a sequence of integers $i_{1}=1<i_{2}<\cdots<i_{k} \leq n$ and a sequence of reductive subgroups

$$
G_{x}=G_{k+1} \subset G_{k} \subset \cdots \subset G_{1}=G
$$

with the following properties:

1) If $x=x_{1}+x_{2}+\cdots+x_{n}$ with $x_{j} \in V_{j}$, then

$$
G_{\ell+1}=\left(G_{\ell}\right)_{x_{i_{\ell}}+\cdots+x_{i_{\ell+1}-1}}
$$

2) For $\ell \in\{1, \ldots, k\}$ the space $V_{i_{\ell}} \oplus \cdots \oplus V_{n}$ is G_{ℓ}-invariant and $\left(G_{\ell}, V_{i_{\ell}} \oplus\right.$ $\left.\cdots \oplus V_{n}\right)$ is a regular $P V$.
3) If $i_{\ell} \leq j \leq i_{\ell+1}-1$, then V_{j} is G_{ℓ}-invariant, $\left(G_{\ell}, V_{j}\right)$ is a Q-irreducible $P V$ and $\left(G_{\ell}, V_{i_{\ell}} \oplus \cdots \oplus V_{i_{\ell+1}-1}\right)$ is a maximal completely Q-reducible $P V$ in $V_{i_{\ell}} \oplus \cdots \oplus V_{i_{n}}$. Moreover $V_{i_{\ell+1}} \oplus \cdots \oplus V_{n}$ is G_{ℓ} - invariant but does not contain any subspace $U \neq\{0\}$ such that $\left(G_{\ell}, U\right)$ is regular.
Proof.
The proof goes by induction on $\operatorname{dim} V$. There is nothing to prove if $\operatorname{dim} V=$ 1. Suppose that the theorem is proved for all reductive regular $P V$'s such that $\operatorname{dim} V \leq r$. Let then (G, V) be a reductive regular $P V$ such that $\operatorname{dim} V=r+1$. Let $V^{\prime} \subset V$ be an invariant subspace such that $\left(G, V^{\prime}\right)$ is completely Q-irreducible and maximal in V for this property. Denote by

$$
V^{\prime}=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{i_{2}-1}
$$

a decomposition of V^{\prime} into Q-irreducible components. Let $V^{\prime \prime}$ be an invariant supplement of V^{\prime}. If $V^{\prime \prime}=\{0\}$ the $P V(G, V)$ is completely Q-reducible and the proof is finished. From the maximality of V^{\prime} and Proposition 2.2.7, we know that $\left(G, V^{\prime \prime}\right)$ does not contain any subspace $U \neq\{0\}$ such that (G, U) is regular.
Let x be a generic element in V. Let us write:

$$
x=x_{1}+x_{2}+\cdots+x_{i_{2}-1}+x^{\prime \prime} \text { where } x_{j} \in V_{j} \text { and where } x^{\prime \prime} \in V^{\prime \prime} .
$$

Define $G_{2}=G_{x_{1}+\cdots+x_{i_{2}-1}}$. From Proposition 2.1.4 we know that G_{2} is reductive and from Proposition 2.2.1 5) we know that $\left(G_{2}, V^{\prime \prime}\right)$ is regular. As $\operatorname{dim} V^{\prime \prime} \leq r$, we know by induction that there exists a sequence of integers $i_{2}<i_{3}<\cdots<i_{k} \leq n$ and a sequence of reductive subgroups

$$
G_{x}=\left(G_{2}\right)_{x^{\prime \prime}}=G_{k+1} \subset G_{k} \subset \cdots \subset G_{2}
$$

which have the required properties for the triplet $\left(G_{2}, V^{\prime \prime}, x^{\prime \prime}\right)$. Then the sequences $i_{1}<i_{2}<i_{3}<\cdots<i_{k} \leq n$ and

$$
G_{x}=\left(G_{2}\right)_{x^{\prime \prime}}=G_{k+1} \subset G_{k} \subset \cdots \subset G_{2} \subset G_{1}=G
$$

have the required properties for the triplet (G, V, x).

Let us give three examples of the kind of decompositions arising in the preceding Theorem.
Example 3.2.2. Let us return to Example 3.1.1. In the notations of the preceding Theorem, we take for G_{2} the isotropy of $I_{n} \in S(n, \mathbb{C})$, namely $O(n, \mathbb{C}) \times \mathbb{C}^{*}$, and $V_{1}=S(n, \mathbb{C})$ and $V_{2}=V_{i_{2}}=\mathbb{C}^{n}$.
Example 3.2.3. (Example of the "descending chains" of F. Sato Sa. F-1) Let $V_{m}=M(m+1, m)$ be the space of complex $(m+1) \times m$ matrices. Define $V=V_{n} \oplus V_{n-1} \oplus \cdots \oplus V_{1}$ and let $G=S O(n+1) \times G L(n) \times G L(n-1) \times$ $\cdots \times G L(1)$. The group G acts by

$$
\left(g_{n+1}, g_{n}, \ldots, g_{1}\right)\left(x_{n}, \ldots, x_{1}\right)=\left(g_{n+1} x_{n} g_{n}^{-1}, g_{n} x_{n-1} g_{n-1}^{-1}, \ldots, g_{2} x_{1} g_{1}^{-1}\right)
$$

where $g_{n+1} \in S O(n+1), g_{i} \in G L(i), x_{i} \in V_{i}$ for $i=1, \ldots, n$. This representation is a regular $P V$ and the fundamental relative invariants are given by

$$
P_{k}\left(x_{n}, x_{n-1}, \ldots, x_{1}\right)=\operatorname{det}\left({ }^{t} x_{k}{ }^{t} x_{k-1} \ldots{ }^{t} x_{n} x_{n} \ldots x_{k-1} x_{k}\right) .
$$

This $P V$ is called the $P V$ of descending chains of size n (see Sa. F-1 for the details). It is then easily seen that $\left(G, V_{n}\right)$ is a maximal Q-completely reducible subspace (in fact it is irreducible regular). Taking $x_{n}^{0}=\left[\begin{array}{c}I_{n} \\ 0\end{array}\right]$ as regular element of (G, V_{n}), a simple computation shows that its isotropy subgroup $G_{x_{n}^{0}}$ is equal to $D(S O(n) \times S O(n)) \times G L(n-1) \times \cdots \times G L(1)$ where $D(S O(n) \times S O(n))$ stands for the diagonal subgroup of $S O(n) \times$ $S O(n)$, the first factor being diagonally embedded in $S O(n+1)$. Therefore the regular $P V\left(G_{x_{n}^{0}}, V_{n-1} \oplus \cdots \oplus V_{1}\right)$ is essentially the $P V$ of descending chains of size $n-1$. Therefore the sequence of completely Q-reducible spaces (under the successive isotropy subgroups) appearing in Theorem 3.2.1 is $V_{n}, V_{n-1}, \ldots, V_{1}$.
Example 3.2.4. Let $G=G L(2) \times \operatorname{Spin}(10) \times \mathbb{C}^{*}$ where $\operatorname{Spin}(10)$ is the Spin group in dimension 10. Consider the representation $\left[\Lambda_{1} \otimes \rho \otimes I d\right] \oplus[I d \otimes \operatorname{Spin} \otimes$ $\square]$ of G where Λ_{1} is the natural 2-dimensional representation of $G L(2)$, where ρ is the vector representation of $\operatorname{Spin}(10)$, where Spin is the half-spin representation of $\operatorname{Spin}(10)$, and where \square is the natural representation by multiplication of \mathbb{C}^{*} on \mathbb{C}.
This representation is a $P V$ whose generic isotropy subgroup is isomorphic to the exceptional simple Lie group G_{2} (see (42) p. 397 of Ki-al1]). Another argument to prove the prehomogeneity and the regularity is to remark that it corresponds to a $P V$ of parabolic type in E_{8} (see section 4) and that the corresponding grading element is the semi-simple element of an $\mathfrak{s l}_{2}$-triple (see (M0), case E_{8}^{3} in Proposition 6.2 .4 a) p.134). The irreducible subspace V_{2} corresponding to the Spin representation is not regular (Proposition 31
p. 121 in S-K]. The irreducible subspace $V_{1} \simeq \mathbb{C}^{20}$ of the representation $\left[\Lambda_{1} \otimes \rho \otimes I d\right]$ is well known to be regular. Its generic isotropy subgroup is locally isomorphic to $S O(2) \times S O(8) \times \mathbb{C}^{*}(\mathrm{~S}-\mathrm{K}]$, (15) p.145) and the representation $\left(G_{2}=S O(2) \times S O(8) \times \mathbb{C}^{*}, V_{2}\right)$ is regular by Proposition 2.2.1.

4. Classification of Q-irreducible Reductive regular PV's of PARABOLIC TYPE

4.1. PV's of parabolic type. At this point a brief summary of the theory of $P V^{\prime}$'s of Parabolic type is needed.
The $P V$'s of parabolic type where introduced by the author in Ru-1, Ru-2 (see also Ru-3 and Ru-4)
Let \mathfrak{g} be a simple complex Lie algebra. Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} and denote by Σ the set of roots of $(\mathfrak{g}, \mathfrak{h})$. As usually, for $\alpha \in \Sigma$, we denote by H_{α} the corresponding co-root in \mathfrak{h}. We fix once and for all a system of simple roots Ψ for Σ. We denote by Σ^{+}(resp. Σ^{-}) the corresponding set of positive (resp. negative) roots in Σ. Let θ be a subset of Ψ and let us make the standard construction of the parabolic subalgebra $\mathfrak{p}_{\theta} \subset \mathfrak{g}$ associated to θ. As usual we denote by $\langle\theta\rangle$ the set of all roots which are linear combinations of elements in θ, and put $\langle\theta\rangle^{ \pm}=\langle\theta\rangle \cap \Sigma^{ \pm}$.
Set

$$
\begin{array}{ll}
\mathfrak{h}_{\theta}=\theta^{\perp}=\{X \in \mathfrak{h} \mid \alpha(X)=0 \forall \alpha \in \theta\}, & \mathfrak{h}(\theta)=\sum_{\alpha \in \theta} \mathbb{C} H_{\alpha} \\
\mathfrak{l}_{\theta}=\mathfrak{z}_{\mathfrak{g}}\left(\mathfrak{h}_{\theta}\right)=\mathfrak{h} \oplus \sum_{\alpha \in\langle\theta\rangle} \mathfrak{g}^{\alpha}, & \mathfrak{n}_{\theta}^{ \pm}=\sum_{\alpha \in \Sigma^{ \pm} \backslash\langle\theta\rangle^{ \pm}} \mathfrak{g}^{\alpha}
\end{array}
$$

Then $\mathfrak{p}_{\theta}=\mathfrak{l}_{\theta} \oplus \mathfrak{n}_{\theta}^{+}$is called the standard parabolic subalgebra associated to θ. There is also a standard \mathbb{Z}-grading of \mathfrak{g} related to these data. Define H_{θ} to be the unique element of \mathfrak{h}_{θ} satisfying the linear equations

$$
\begin{array}{ll}
\alpha\left(H_{\theta}\right)=0 & \forall \alpha \in \theta \quad \text { and } \\
\alpha\left(H_{\theta}\right)=2 & \forall \alpha \in \Psi \backslash \theta
\end{array}
$$

The before mentioned grading is just the grading obtained from the eigenspace decomposition of ad H_{θ} :

$$
d_{p}(\theta)=\left\{X \in \mathfrak{g} \mid\left[H_{\theta}, X\right]=2 p X\right\} .
$$

Then we obtain easily:

$$
\mathfrak{g}=\oplus_{p \in \mathbb{Z}} d_{p}(\theta), \quad \mathfrak{l}_{\theta}=d_{0}(\theta), \quad \mathfrak{n}_{\theta}^{+}=\sum_{p \geq 1} d_{p}(\theta), \quad \mathfrak{n}_{\theta}^{-}=\sum_{p \leq-1} d_{p}(\theta)
$$

It is known that $\left(\mathfrak{l}_{\theta}, d_{1}(\theta)\right)$ is a prehomogeneous vector space (in fact all the spaces $\left(\mathfrak{l}_{\theta}, d_{p}(\theta)\right)$ with $p \neq 0$ are prehomogeneous, but there is no loss of generality if we only consider $\left(\mathfrak{l}_{\theta}, d_{1}(\theta)\right)$). These spaces have been called prehomogeneous vector spaces of parabolic type (Ru-1 $)$. There are in general neither irreducible nor regular. But they are of particular interest, because in the parabolic context, the group (or more precisely its Lie algebra \mathfrak{l}_{θ}) and the space (here $\left.d_{1}(\theta)\right)$ of the $P V$ are embedded into a rich structure, namely the simple Lie algebra \mathfrak{g}. For example the derived representation of the $P V$
is just the adjoint representation of \mathfrak{r}_{θ} on $d_{1}(\theta)$. Moreover the Lie algebra \mathfrak{g} also contains the dual $P V$, namely ($\mathfrak{l}_{\theta}, d_{-1}(\theta)$).
It may be worthwhile noticing also that $d_{1}(\theta)=\sum_{\beta \in \sigma_{1}} \mathfrak{g}^{\beta}$, where σ_{1} is the set of roots which belong to the set $(\Psi \backslash \theta)+\mathbb{Z} \theta$, where $\mathbb{Z} \theta$ is the \mathbb{Z}-span of θ.
As these $P V$'s are in one to one correspondence with the subsets $\theta \subset \Psi$, we make the convention to describe them by the mean of the following weighted Dynkin diagram:

Definition 4.1.1. The diagram of the $P V\left(\mathfrak{l}_{\theta}, d_{1}(\theta)\right)$ is the Dynkin diagram of $(\mathfrak{g}, \mathfrak{h})$ (or Σ), where the vertices corresponding to the simple roots of $\Psi \backslash \theta$ are circled (see an example below).

This very simple classification by means of diagrams contains nevertheless some immediate and interesting informations concerning the $P V\left(\mathfrak{l}_{\theta}, d_{1}(\theta)\right)$ (for all these facts, see Ru-1, Ru-2 or Ru-3]):

- The Dynkin diagram of $\mathrm{r}_{\theta}^{\prime}=\left[\mathrm{r}_{\theta}, \mathrm{r}_{\theta}\right]$ (i.e. the semi-simple part of the Lie algebra of the group) is the Dynkin diagram of \mathfrak{g} where we have removed the circled vertices and the edges connected to these vertices.
- In fact as a Lie algebra $\mathfrak{r}_{\theta}=\mathfrak{l}_{\theta}{ }^{\prime} \oplus \mathfrak{h}_{\theta}$ and $\operatorname{dim} \mathfrak{h}_{\theta}=$ the number of circled vertices.
- The number of irreducible components of the representation $\left(\mathrm{l}_{\theta}, d_{1}(\theta)\right)$ is also equal to the number of circled roots. More precisely, if α is a (simple) circled root, then any nonzero root vector $X_{\alpha} \in \mathfrak{g}^{\alpha}$ generates an irreducible \mathfrak{l}_{θ}-module V_{α}, and $d_{1}(\theta)=\oplus_{\alpha \in \Psi \backslash \theta} V_{\alpha}$ is the decomposition of $d_{1}(\theta)$ into irreducibles.
In fact the decomposition of the representation $\left(\mathfrak{r}_{\theta}, d_{1}(\theta)\right)$ into irreducibles can also be described by using the eigenspace decomposition with respect to $\operatorname{ad}\left(\mathfrak{h}_{\theta}\right)$. Let me explain this. For each $\alpha \in \mathfrak{h}^{*}$, let $\bar{\alpha}$ be the restriction of α to \mathfrak{h}_{θ} and define

$$
\mathfrak{g}^{\bar{\alpha}}=\left\{X \in \mathfrak{g} \mid \forall H \in \mathfrak{h}_{\theta},[H, X]=\bar{\alpha}(H) X\right\} .
$$

Then $\mathfrak{g}^{\overline{0}}=\mathfrak{l}_{\theta}$ and for $\alpha \in \Psi \backslash \theta$, we have $V_{\alpha}=\mathfrak{g}^{\bar{\alpha}}$. Hence we can write

$$
d_{1}(\theta)=\oplus_{\alpha \in \Psi \backslash \ominus \mathfrak{g}^{\bar{\alpha}}} .
$$

Moreover one can notice (always for $\alpha \in \Psi \backslash \theta$) that $V_{\alpha}=\mathfrak{g}^{\bar{\alpha}}=\sum_{\beta \in \sigma_{1}^{\alpha}} \mathfrak{g}^{\beta}$, where σ_{1}^{α} is the set of roots which belong to $\alpha+\langle\theta\rangle$.

- Moreover one can directly read the highest weight of V_{α} from the diagram. The highest weight of V_{α} relatively to the Borel sub-algebra $\mathfrak{b}_{\theta}^{-}=\mathfrak{h} \oplus$ $\sum_{\alpha \in\langle\theta\rangle^{-}} \mathfrak{g}^{\alpha}$ is $\bar{\alpha}=\alpha_{\left.\right|_{\mathfrak{h}(\theta)}}$. Let $\omega_{\beta}(\beta \in \theta)$ be the fundamental weights of $\mathfrak{r}_{\theta}^{\prime}$ (i.e. the dual basis of $\left(H_{\beta}\right)_{\beta \in \theta}$). For each circled root α (i.e. for each $\alpha \in \Psi \backslash \theta)$, let $J_{\alpha}=\left\{\left(\beta_{i}\right)\right\}$ be the set of roots in θ (= non-circled) which are connected to α in the diagram. From elementary diagram considerations we know that J_{α} may be empty and that there are always less than 3 roots in J_{α}.
If $J_{\alpha}=\emptyset$, then V_{α} is the trivial one dimensional representation of \mathfrak{r}_{θ}.
If $J_{\alpha} \neq \emptyset$, then $\bar{\alpha}=\sum_{i \in J_{\alpha}} c_{i} \omega_{\beta_{i}}$ where $c_{i}=\alpha\left(H_{\beta_{i}}\right)$ and $\alpha\left(H_{\beta_{i}}\right)$ can be computed as follows:
$(R)\left\{\begin{array}{l}\text { if }\|\alpha\| \leq\left\|\beta_{i}\right\|, \text { then } \alpha\left(H_{\beta_{i}}\right)=-1 ; \\ \text { if }\|\alpha\|>\left\|\beta_{i}\right\| \text { and if } \alpha \text { and } \beta_{i} \text { are connected by } j \text { arrows }(1 \leq j \leq 3), \\ \quad \text { then } \alpha\left(H_{\beta_{i}}\right)=-j .\end{array}\right.$
Let us illustrate this with an example.
Example 4.1.2. Consider the following diagram:

The preceding diagram is the diagram of a $P V$ of parabolic type inside $\mathfrak{g} \simeq F_{4}$. Here we have $\theta=\left\{\beta_{1}, \beta_{2}\right\}$ and $\Psi \backslash \theta=\left\{\alpha_{1}, \alpha_{2}\right\}$. The Lie algebra \mathfrak{l}_{θ} is isomorphic to $A_{2} \oplus \mathfrak{h}_{\theta}$ where $\operatorname{dim} \mathfrak{h}_{\theta}=$ number of circled roots $=2$. As $J_{\alpha_{1}}=\emptyset$, the representation of $\mathfrak{r}_{\theta}^{\prime}$ on $V_{\alpha_{1}}$ is the trivial representation. Hence the action of \mathfrak{l}_{θ} on $V_{\alpha_{1}}$ reduces to the character of \mathfrak{h}_{θ} given by the restriction of the root α_{1} to \mathfrak{h}_{θ}. On the other hand we have $J_{\alpha_{2}}=\left\{\beta_{1}\right\}$. Therefore, applying the rules (R) above, we see that $V_{\alpha_{2}}$ is the irreducible A_{2}-module with highest weight $-2 \omega_{1}$, where $\left\{\omega_{1}, \omega_{2}\right\}$ is the set of fundamental weights of A_{2} corresponding to β_{1} and β_{2}. Again the action of \mathfrak{h}_{θ} on $V_{\alpha_{2}}$ is scalar with eigenvalue the restriction of α_{2} to \mathfrak{h}_{θ}.

One can prove (Ru-1]) that the $P V$ of parabolic type $\left(\mathfrak{l}_{\theta}, d_{1}(\theta)\right)$ is irreducible if and only if \mathfrak{p}_{θ} is a maximal parabolic subalgebra, i.e. if and only if $\Psi \backslash \theta$ is reduced to a single root α_{1}.
The $P V^{\prime}$'s of parabolic type which are irreducible and regular were classified by the list of the "weighted" Dynkin diagram of \mathfrak{g}, where the root α_{1} in the discussion above is circled. This classification was announced first in Ru-1 and then given explitly in Ru-2] and Ru-3 (see also the book Ru-4).

Remark 4.1.3. Of course the irreducible regular $P V$'s of parabolic type are Q-irreducible. Therefore in order to complete the classification of the Q-irreducible $P V^{\prime}$'s of parabolic type, it is enough to consider only $P V^{\prime}$'s which are reducible. This will be done in the sequel of the paper.

For further use we need also to introduce the notion of subdiagram of the weighted Dynkin diagram associated to (Ψ, θ). Let Γ be a subset of $\Psi \backslash \theta$, that is a subset of the circled roots. For $\alpha \in \Gamma$ define Ψ_{α} to be the connected component of $\theta \cup\{\alpha\}$ containing α. Define then

$$
\Psi_{\Gamma}=\cup_{\alpha \in \Gamma} \Psi_{\alpha} \text { and } \theta_{\Gamma}=\theta \cap \Psi_{\Gamma}
$$

Definition 4.1.4.

The weighted Dynkin diagram associated to the pair $\left(\Psi_{\Gamma}, \theta_{\Gamma}\right)$ is called a subdiagram of the diagram associated to (Ψ, θ).

It can be noticed that a subdiagram is just a subset Γ of the circled roots togeteher with the non-circled roots which are connected to a root in Γ (through a path in the non-circled roots). It may also be noticed that the subdiagrams of a connected diagram are not necessarily connected. Let us give an example.

Example 4.1.5. : Consider the following weighted diagram in D_{9}

where $\theta=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}\right\}$ and $\Psi \backslash \theta=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$.
We have:

$$
\theta \cup\left\{\alpha_{1}\right\}=\stackrel{\bullet}{\beta_{1}} \underbrace{}_{1} \alpha_{1} \quad \stackrel{\beta_{2}}{\beta_{3}} \quad \stackrel{\beta_{3}}{\beta_{4}} \underbrace{\bullet}_{\beta_{5}}
$$

Therefore the irreducible subdiagram associated to $\left\{\alpha_{1}\right\}$ is given by:

$$
D_{\left\{\alpha_{1}\right\}}=\stackrel{\bullet}{\beta_{1} \alpha_{1}}
$$

Similarly the subdiagrams of D corresponding to $\Gamma=\left\{\alpha_{1}, \alpha_{4}\right\}$ and $\Gamma=$ $\left\{\alpha_{3}, \alpha_{4}\right\}$ are respectively:

Definition 4.1.6. A weighted Dynkin diagram will be called regular (resp. Q-irreducible) if the corresponding $P V$ of parabolic type is regular (resp. Q-irreducible).
4.2. Classification of classical Q-irreducible reductive regular PV's of parabolic type.
We adopt the following numbering of the roots for classical simple Lie algebras

The classification of Q-irreducible $P V$'s in the classical simple Lie algebras need now some technical lemmas. If ω_{i} is the fundamental weight corresponding to the root α_{i}, we denote by $\Lambda_{i}(\mathfrak{g})$ the corresponding representation of \mathfrak{g}. If this representation can be lifted to a group G with Lie algebra \mathfrak{g}, we will denote by $\Lambda_{i}(G)$ the lifted representation of G. For example we will denote by $\Lambda_{1}(G L(n))$ (resp. by $\Lambda_{n}(G L(n))$) the natural representation
of $G L(n)$ on \mathbb{C}^{n} (resp. the dual of the natural representation of $G L(n)$ on \mathbb{C}^{n}).

Lemma 4.2.1. Let G be a simple classical group. Let $d_{1}=\operatorname{dim} \Lambda_{1}(G)$. Let $n \leq d_{1}$ and consider the $P V\left(G \times G L(n), \Lambda_{1}(G) \otimes \Lambda_{n}(G L(n))\right.$) (it is a $P V$ because it is parabolic). Then either this $P V$ is regular, or there exists a normal unipotent subgroup of the generic isotropy subgroup which is included in G.

Proof. If G is of type A_{k} then an obvious calculation shows the Lemma.
If G is of type B_{k} or D_{k}, then we know from table 1 in Ru-2, that the given $P V$ is always regular.
The same argument holds if G is of type C_{k} and if n is even.
If G is of type C_{k} and if n is odd, the space is not regular and the calculations made at p. 102 of $[\mathrm{S}-\mathrm{K}]$ show the assertion concerning the normal unipotent subgroup.

Lemma 4.2.2. Let G be a reductive algebraic group and let Λ be an representation of G of dimension r. Let p and q be two integers such that $p<q$ and $r<q$. Suppose that the representation $\left[\Lambda_{p-1}(G L(p)) \otimes \Lambda_{1}(G L(q))\right] \oplus$ $\left[\Lambda_{q-1}(G L(q)) \otimes \Lambda\right]$ of the group $G L(p) \times G L(q) \times G$ is prehomogeneous (this is automatically the case if $p \geq r$). Then:

1) If $p \neq r$, the preceding $P V$ is not regular and there exists a non-trivial normal unipotent subgroup of the generic isotropy subgroup which is included in $G L(q)$.
2) If $p=r$, the preceding $P V$ is regular and 1-irreducible (hence Q-irreducible from Proposition 2.2.6).

Proof. As G only acts through its representation $\Lambda(G)$, we can assume that $G \subset G L(r)$. The space of the representation is $M(q, p) \oplus M(r, q)$ (where $M(u, v)$ stands for the space of $u \times v$ matrices), and the group $G L(p) \times$ $G L(q) \times G$ acts by

$$
\left(g_{1}, g_{2}, g_{3}\right)(X, Y)=\left(g_{2} X g_{1}^{-1}, g_{3} Y g_{2}^{-1}\right)
$$

where $g_{1} \in G L(p), g_{2} \in G L(q), g_{3} \in G, X \in M(q, p), Y \in M(r, q)$. As usually we denote by Ω the open orbit in $M(q, p) \oplus M(r, q)$.

- Suppose first that $p<r$.

As the representation is supposed to be prehomogeneous, we know from Proposition 2.2.1 that the open orbits of the components are the matrices of maximal rank in $M(q, p)$ and $M(r, q)$ respectively. Let $X_{0}=\left[\begin{array}{c}I_{p} \\ 0\end{array}\right] \in M(q, p)$ where I_{p} is the identity matrix of size p. An easy calculation shows that the isotropy subgroup of $\left(X_{0}, 0\right) \in M(q, p) \oplus M(r, q)$ is the set of matrices of the form:

$$
\left(g_{1},\left[\begin{array}{cc}
g_{1} & B \\
0 & D
\end{array}\right], g_{3}\right), g_{1} \in G L(p), D \in G L(q-p), B \in M(p, q-p), g_{3} \in G
$$

It can also be easily seen that that the set \mathcal{O} of matrices of the form

$$
[u \mid 0] \cdot\left[\begin{array}{cc}
g_{1} & B \\
0 & D
\end{array}\right]
$$

where $g_{1} \in G L(p), D \in G L(q-p), B \in M(p, q-p), u \in G L(r),[u \mid 0] \in$ $M(r, q)$ contains a Zariski open subset of $M(r, q)$.
Therefore $\mathcal{O} \cap\left\{m \in M(r, q) \mid\left(X_{0}, m\right) \in \Omega\right\} \neq \emptyset$
This implies that there exists a generic element of the form $\left(X_{0}, Y_{0}\right)$ where $Y_{0}=\left(y_{0}, 0\right)$ with $y_{0} \in G L(r)$. Again a simple calculation shows that the isotropy subgroup of $\left(X_{0}, Y_{0}\right)$ is the set of triplets of the form:

$$
\left(g_{1},\left[\begin{array}{cc|c}
g_{1} & B_{1} & 0 \\
0 & D_{1} & \\
\hline 0 & D_{2} & D_{3}
\end{array}\right], g_{3}\right)
$$

where $g_{1} \in G L(p), D_{1} \in G L(r-p), D_{2} \in M(q-r, r-p), D_{3} \in G L(q-r), g_{3} \in$ $G \subset G L(r)$ and where

$$
y_{0} \cdot\left[\begin{array}{cc}
g_{1} & B_{1} \\
0 & D_{1}
\end{array}\right]=g_{3} \cdot y_{0}
$$

It is now clear that the set of triplets of the form

$$
\left(I_{p},\left[\begin{array}{cc|c}
I_{r} & 0 \\
\hline 0 & D_{2} & I_{q-r}
\end{array}\right], I_{r}\right)
$$

is a unipotent normal subgroup of the (generic) isotropy subgroup of $\left(X_{0}, Y_{0}\right)$.

- Suppose that $p>r$.

Let $X_{0}=\left[\begin{array}{c}I_{p} \\ 0\end{array}\right] \in M(q, p)$ and let $Y_{0}=\left[\begin{array}{ll}I_{r} & 0\end{array}\right] \in M(r, q)$. The isotropy subgroup of $\left(X_{0}, Y_{0}\right)$ is the set of triples of matrices of the form

$$
\left(\left[\begin{array}{cc}
g_{3} & 0 \\
C_{1} & D_{1}
\end{array}\right],\left[\begin{array}{cc|c}
g_{3} & 0 & 0 \\
C_{1} & D_{1} & D_{2} \\
\hline 0 & 0 & D_{3}
\end{array}\right], g_{3}\right)
$$

where $g_{3} \in G \subset G L(r), D_{1} \in G L(p-r), C_{1} \in M(p-r, r), D_{3} \in G L(q-$ $p), D_{2} \in M(p-r, q-p)$.
A simple calculation of dimensions shows now that the representation is prehomogeneous and that $\left(X_{0}, Y_{0}\right)$ is generic. Of course the set of triplets of the form

$$
\left(I_{p},\left[\begin{array}{c|c}
I_{p} & 0 \\
\hline 0 & D_{2} \\
\hline & I_{q-p}
\end{array}\right], I_{r}\right)
$$

is a unipotent normal subgroup of the (generic) isotropy subgroup of $\left(X_{0}, Y_{0}\right)$.

- Finally suppose that $p=r$.

Let $X_{0}=\left[\begin{array}{c}I_{p} \\ 0\end{array}\right] \in M(q, p)$ and let $Y_{0}=\left[\begin{array}{ll}I_{p} & 0\end{array}\right] \in M(p, q)$. The isotropy subgroup of $\left(X_{0}, Y_{0}\right)$ is the set of triplets of the form

$$
\left(g_{3},\left[\begin{array}{cc}
g_{3} & 0 \tag{*}\\
0 & D
\end{array}\right], g_{3}\right)
$$

where $g_{3} \in G \subset G L(p), D \in G L(q-p)$.
Again an easy computation of dimensions shows that this representation is prehomogeneous. As the generic isotropy subgroup is reductive, this $P V$ is regular.

Let G_{1} be the subgroup of $G L(p) \times G L(q) \times G$ generated by a generic isotropy subgroup and by the commutator subgroup $S L(p) \times S L(q) \times G^{\prime}$. The characters of the relative invariants are exactly those characters which are trivial on G_{1} (this is true for any PV). From (*) it is easy to see that G / G_{1} is always a one dimensional torus, hence there exists only one fundamental relative invariant. One can remark that this invariant is given by $f(X, Y)=$ $\operatorname{det}(Y X), X \in M(p, q), Y \in M(q, p)$.

Lemma 4.2.3. Consider the representation

$$
\left[\Lambda_{p-1}(G L(p)) \otimes \Lambda_{r-1}(G L(r))\right] \oplus\left[I d\left(G L(p) \otimes \Lambda_{2}(G L(r))\right]\right.
$$

of the group $G L(p) \times G L(r)$, with $r \geq 3$. Note that this representation is prehomogeneous since it is infinitesimally equivalent to the $P V$ of parabolic type associated to the diagram

1) If r is odd and if $p=r-1$, this space is regular and 1-irreducible (hence Q-irreducible from Proposition 2.2.6).
2) If r is odd and $p \leq r-2$, this space is not regular and there exists a nontrivial normal unipotent subgroup of the generic isotropy subgroup which is included in $S L(r)$.
Proof.
The space of the representation is $V=M(r, p) \oplus S k e w(r)$, where $S k e w(r)$ denotes the spaces of skew-symmetric matrices of size r, and the action of the group $G L(p) \times G L(r)$ is given by

$$
\left(g_{1}, g_{2}\right)(X, Y)=\left({ }^{t} g_{2}^{-1} X g_{1}^{-1}, g_{2} Y^{t} g_{2}\right)
$$

where $g_{1} \in G L(p), g_{2} \in G L(r), X \in M(r, p), Y \in S k e w(r)$. From the computations in S-K], p. 75-76, we know that if $r=2 m+1$, there exists a generic element $Y_{0} \in \operatorname{Skew}(r)$, such that the isotropy subgroup of $\left(0, Y_{0}\right) \in V$ is the set of pairs of the form

$$
\left(g_{1},\left[\begin{array}{cc}
A & B \\
0 & D
\end{array}\right]\right)
$$

where $g_{1} \in G L(p), A \in S p(m), B \in M(2 m, 1), D \in G L(1)$, and where $S p(m)$ denotes the symplectic group inside $G L(2 m)$.

- Suppose that $p=r-1$.

One shows easily that if $X_{0}=\left[\begin{array}{c}I_{r-1} \\ 0\end{array}\right] \in M(r, r-1)$, the isotropy subgroup of $\left(X_{0}, Y_{0}\right)$ is the set of pairs of matrices of the form

$$
\left(g_{1},\left[\begin{array}{cc}
{ }^{t} g_{1}^{-1} & 0 \\
0 & D
\end{array}\right]\right)
$$

where $g_{1} \in S p(m), D \in G L(1)$.
A simple calculation of dimensions proves then that $\left(X_{0}, Y_{0}\right)$ is generic. As the preceding isotropy subgroup is reductive, this $P V$ is regular. The normal subgroup G_{1} of $G L(r-1) \times G L(r)$ generated by this isotropy subgroup and the commutator subgroup $S L(r-1) \times S L(r)$ is of codimension one.

Therefore this $P V$ is 1-irreducible. The fundamental relative invariant is given by $f(X, Y)=P f\left({ }^{t} X . Y . X\right)(X \in M(r, r-1), Y \in \operatorname{Skew}(r))$, where $P f(Z)$ denotes the Pfaffian of the skew-symmetric matrix Z.

- Suppose that $p \leq r-2$.

Set $X_{0}=\left[\begin{array}{c}I_{p} \\ 0\end{array}\right] \in M(r, p)$. Then the isotropy subgroup of $\left(X_{0}, Y_{0}\right)$ is the set of pairs of matrices of the form

$$
\left(g_{1},\left[\begin{array}{ccc}
{ }^{t} g_{1}^{-1} & 0 & 0 \\
X & Y & B \\
0 & 0 & D
\end{array}\right]\right),
$$

where $X \in M(r-1-p, p), Y \in G L(r-1-p), D \in G L(1), B \in M(r-1-p, 1)$, and where

$$
\left[\begin{array}{cc}
{ }^{t} g_{1}^{-1} & 0 \\
X & Y
\end{array}\right] \in S p(m)
$$

Then the set of matrices $\left[\begin{array}{ccc}I_{p} & 0 & 0 \\ 0 & I_{r-1-p} & B \\ 0 & 0 & 1\end{array}\right]$ is a normal unipotent subgroup in $S L(r)$.

Remark 4.2.4. If r is odd and p is even $(p<r-2)$ the function $(X, Y) \longmapsto$ $P f\left({ }^{t} X . Y . X\right)$ is a non-trivial relative invariant of the $P V$ considered in Lemma 4.2.3, which is non regular for these values of p and r. Hence the result from Ru-1] which asserts that an irreducible $P V$ of parabolic type is regular if and only if there exists a non-trivial relative invariant is no longer true if the representation is not irreducible.(See also Remark 4.2.6 for another example).
Lemma 4.2.5. Let D_{2} be the group $\left(\mathbb{C}^{*}\right)^{2}$ identified with the 2×2 diagonal matrices, and denote by Δ the natural representation of D_{2} on \mathbb{C}^{2}. Consider the representation

$$
\left[\Lambda_{p-1}(G L(p)) \otimes \Lambda_{1}(S L(q)) \otimes I d\left(D_{2}\right)\right] \oplus\left[I d(G L(p)) \otimes \Lambda_{q-1}(S L(q)) \otimes \Delta\right]
$$

of the group $G L(p) \times S L(q) \times D_{2}$. Note that this representation is prehomogeneous since it is infinitesimally equivalent to the PV of parabolic type associated to the diagram

1) If $q>p$ and $p=2$ this $P V$ is regular and 1-irreducible (hence Q irreducible from Proposition 2.2.6).
2) If $q>p$ and $p \neq 2$, then this $P V$ is not regular and there exists a nontrivial normal unipotent subgroup of the generic isotropy subgroup which is included in $S L(q)$.
Proof.
The space of the representation is $M(q, p) \oplus M(2, q)$ and the action of $G L(p) \times S L(q) \times D_{2}$ is given by

$$
\left(g_{1}, g_{2}, g_{3}\right)(X, Y)=\left(g_{2} X g_{1}^{-1}, g_{3} Y g_{2}^{-1}\right)
$$

where $g_{1} \in G L(p), g_{2} \in S L(q), g_{3} \in D_{2}, X \in M(q, p), Y \in M(2, q)$.

- Suppose that $q>p$ and $p=2$.

Let $X_{0}=\left[\begin{array}{c}I_{2} \\ 0\end{array}\right] \in M(q, 2)$ and let $Y_{0}=\left[\begin{array}{ll}I_{2} & 0\end{array}\right] \in M(2, q)$. A computation shows that the isotropy subgroup of $\left(X_{0}, Y_{0}\right)$ is the set of triplets of the form $\left(d,\left[\begin{array}{ll}d & 0 \\ 0 & g\end{array}\right], d\right)$, where $d \in D_{2}$ and $g \in G L(q-2)$. From the dimensions of the full group and of the isotropy subgroup, we see that $\left(X_{0}, Y_{0}\right)$ is generic. Moreover as the isotropy subgroup is reductive, the $P V$ is regular. The subgroup G_{1} generated by the commutator subgroup ($\simeq S L(2) \times S L(q)$) and the generic isotropy is the subgroup of triples $\left(g_{1}, g_{2}, g_{3}\right)$ with $\operatorname{det} g_{1}=\operatorname{det} g_{3}$. Hence G / G_{1} is one dimensional, therefore the $P V$ is 1-irreducible. It is easy to see that the function $(X, Y) \longmapsto \operatorname{det}(Y X)$ is the fundamental relative invariant.

- Suppose that $q>p$ and $p>2$.

Let $X_{0}=\left[\begin{array}{c}I_{p} \\ 0\end{array}\right] \in M(q, p)$ and let $Y_{0}=\left[\begin{array}{ll}I_{2} & 0\end{array}\right] \in M(2, q)$. Then again one proves that $\left(X_{0}, Y_{0}\right)$ is generic and one shows that its isotropy subgroup is the set of triples of the form

$$
\left(\left[\begin{array}{cc}
d & 0 \\
0 & D
\end{array}\right],\left[\begin{array}{ccc}
d & 0 & 0 \\
C & D & B \\
0 & 0 & D^{\prime}
\end{array}\right], d\right)
$$

where $d \in D_{2}, D \in G L(p-2), B \in M(p-2, q-p), D^{\prime} \in G L(q-p)$. The set of matrices of the form $\left[\begin{array}{ccc}I_{2} & 0 & 0 \\ 0 & I_{p-2} & B \\ 0 & 0 & I_{q-p}\end{array}\right]$ is a normal unipotent subgroup of $S L(q)$.

- Suppose that $q>p$ and $p=1$.

Let $X_{0}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right] \in M(q, 1)$ and let $Y_{0}=\left[\begin{array}{ll}I_{2} & 0\end{array}\right] \in M(2, q)$. It is easy to verify that $\left(X_{0}, Y_{0}\right)$ is generic and that its isotropy subgroup is the set of triples of the form $\left(\lambda,\left[\begin{array}{ccc}\lambda & 0 & 0 \\ 0 & \lambda & 0 \\ \gamma & -\gamma & D\end{array}\right],\left[\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right]\right)$, where $\lambda \in \mathbb{C}^{*}, D \in G L(q-$ 2), $\lambda^{2} \operatorname{det} D=1, \gamma \in M(q-2,1)$. The subset of matrices of the form $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ \gamma & -\gamma & I_{q-2}\end{array}\right]$ is a normal unipotent subgroup of $S L(q)$.

Remark 4.2.6. If $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ is a vector in \mathbb{C}^{2}, let f_{1} and f_{2} be the two projections defined by $f_{i}\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=x_{i}, i=1,2$. It is quite obvious that if $q>p$, and $p=1$, the mappings $(X, Y) \longmapsto f_{i}(Y \cdot X)$ are relative invariants which are algebraically independant. This gives another example of a parabolic $P V$
having nontrivial relative invariants and which is nonregular (see Remark 4.2.4).

Lemma 4.2.7. Let $\left(\mathfrak{r}_{\theta}, d_{1}(\theta)\right)$ be a $P V$ of parabolic type in a simple Lie algebra \mathfrak{g}. Suppose that its diagram is of the following type

where the boldface line stands for one or more edges in the Dynkin diagram. In other words, in the notation of section 4.1, we suppose that $\Psi \backslash \theta$ contains two roots α_{1} and α_{2} (but possibly others) with $\left(\alpha_{1} \mid \alpha_{2}\right) \neq 0$. Let Ψ_{1} be the connected component of $\Psi \backslash\left\{\alpha_{2}\right\}$ containing α_{1} and let Ψ_{2} be the connected component of $\Psi \backslash\left\{\alpha_{1}\right\}$ containing α_{2}. Set $\theta_{1}=\theta \cap \Psi_{1}$ and $\theta_{2}=\theta \cap \Psi_{2}$. Define

$$
D^{1}(\theta)=\bigoplus_{\alpha \in \Psi_{1} \backslash \theta_{1}} \mathfrak{g}^{\bar{\alpha}}, D^{2}(\theta)=\bigoplus_{\alpha \in \Psi_{2} \backslash \theta_{2}} \mathfrak{g}^{\bar{\alpha}}
$$

(For the notations see section 4.1, $D^{1}(\theta)\left(r e s p . D^{2}(\theta)\right)$ is just the sum of the irreducible components of $d_{1}(\theta)$ arising from the left of the root α_{1} (resp. from the right of the root α_{2}). Then:

$$
\left(L_{\theta}, d_{1}(\theta)\right) \text { is regular } \Longleftrightarrow\left(L_{\theta}, D^{1}(\theta)\right) \text { and }\left(L_{\theta}, D^{2}(\theta)\right) \text { are regular. }
$$

Proof.
Suppose first that $\left(L_{\theta}, D^{1}(\theta)\right)$ and $\left(L_{\theta}, D^{2}(\theta)\right)$ are regular. Then, as $d_{1}(\theta)=$ $D^{1}(\theta) \oplus D^{2}(\theta)$, we know from Proposition 2.2.7 that $\left(L_{\theta}, d_{1}(\theta)\right)$ is regular. Conversely suppose that $\left(L_{\theta}, D^{1}(\theta)\right)$ is not regular (for example). Let $X_{1}+$ $X_{2}\left(X_{i} \in D^{i}(\theta)\right)$ a generic element in $d_{1}(\theta)$. Then X_{1} is generic in $\left(L_{\theta}, D^{1}(\theta)\right)$ (see Proposition 2.2.1). From the hypothesis we know that the isotropy subgroup $\left(L_{\theta}\right)_{X_{1}}$ is not reductive (Proposition 2.1.4), hence $\left(L_{\theta}\right)_{X_{1}}$ contains a nontrivial normal unipotent subgroup U. The Lie algebra \mathfrak{u} of U is a nonzero ideal in $\left(\mathfrak{l}_{\theta}\right)_{X_{1}}$. Let \mathfrak{l}_{1} (resp $\left.\mathfrak{l}_{2}\right)$ be the semi-simple subalgebra of \mathfrak{g} corresponding to θ_{1} (resp. θ_{2}). One has $\mathfrak{l}_{\theta}=\mathfrak{h}_{\theta} \oplus \mathfrak{l}_{1} \oplus \mathfrak{l}_{2}$. From the hypothesis on α_{1} and α_{2}, we have $\left[\mathfrak{l}_{2}, X_{1}\right]=\{0\}$. Therefore $\left(\mathfrak{l}_{\theta}\right)_{X_{1}}=\left(\mathfrak{h}_{\theta} \oplus \mathfrak{l}_{1}\right)_{X_{1}} \oplus \mathfrak{l}_{2}$, and hence $\mathfrak{u} \in\left(\mathfrak{h}_{\theta} \oplus \mathfrak{l}_{1}\right)_{X_{1}}$. But as \mathfrak{u} is the Lie algebra of a unipotent subgroup we have $\mathfrak{u} \in \mathfrak{l}_{1}$. But as $\left[\mathfrak{l}_{1}, X_{2}\right]=\{0\}$, we obtain that U stabilizes also X_{2}. As $\left(\mathfrak{l}_{\theta}\right)_{X_{1}+X_{2}}=\left(\mathfrak{l}_{\theta}\right)_{X_{1}} \cap\left(\mathfrak{l}_{\theta}\right)_{X_{2}}$, we see that \mathfrak{u} is an ideal in $\left(\mathfrak{l}_{\theta}\right)_{X_{1}+X_{2}}$. Hence U is a normal subgroup of $\left(L_{\theta}\right)_{X_{1}+X_{2}}$. Therefore $\left(L_{\theta}, d_{1}(\theta)\right)$ is not regular.

Theorem 4.2.8. The Q-irreducible $P V$'s of parabolic type which are not irreducible regular are exactly the $P V$'s from Table 1 at the end of the paper (where the numbers p_{i} are the number of roots in the connected components of θ).

Proof.

A consequence of Lemma 4.2.7 is that the diagram of a Q-irreducible $P V$ of parabolic type will never contain two circled roots which are connected by one or more edges. Therefore we will never consider such diagrams in this proof.
\diamond Let us first consider the case of classical simple Lie algebras.
As we do not consider irreducible $P V$'s, we assume that $\operatorname{Card}(\Psi \backslash \theta) \geq 2$.

- The case A_{n}.
a) Suppose that $\operatorname{Card}(\Psi \backslash \theta)=2$. Consider a diagram of the type:
(1)

which is supposed to be Q-irreducible. If $p_{1} \geq p_{2}$, Lemma 4.2.1 implies that either the subdiagram

is either regular or the generic isotropy subgroup contains a nontrivial unipotent subgroup which is included in $S L\left(p_{1}+1\right)$. Therefore, in the second case, this unipotent subgroup will be included in the generic isotropy of the diagram (1). Hence, in the second case the diagram (1), will not be regular. Therefore we have necessarily $p_{1}<p_{2}$. The same arguments show that we have also $p_{3}<p_{2}$. But then, from Lemma 4.2.2 we obtain that this $P V$ is regular if and only if $p_{3}=p_{2}$, and in this case it is 1 -irreducible.
b) Suppose that $\operatorname{Card}(\Psi \backslash \theta)>2$. Suppose that the following diagram is Q-irreducible:

As before Lemma 4.2.1 implies that $p_{1}<p_{2}$ and $p_{n}<p_{n-1}$. By induction the same argument shows that there exists $i \in\{2, \ldots, n-1\}$ such that $p_{i-1}<p_{i}$ and $p_{i+1}<p_{i}$. If $p_{i-1} \neq p_{i+1}$ Lemma 4.2.2 implies that there exists a normal unipotent subgroup in the generic isotropy subgroup of the subdiagram

which is included in $S L\left(p_{i}\right)$. But this subgroup will still be included in the generic isotropy of the diagram (2), and hence the diagram (2) would not be regular.
If $p_{i-1}=p_{i+1}$ Lemma 4.2.2 implies that the subdiagram above is regular, hence diagram (2) is never Q-irreducible.

- The case B_{n}.
a) Suppose that $\operatorname{Card}(\Psi \backslash \theta)=2$. Suppose that the diagram

is Q-irreducible. As in the case $A_{n} a$) before, Lemma 4.2 .1 implies that $p_{1}<p_{2}$ and $2 p_{3}+1<p_{2}+1$. Then Lemma 4.2 .2 implies that the diagram (3) is Q-irreducible if and only if $2 p_{3}+1=p_{1}+1$, which is the condition in Table 1.
b) Suppose that $\operatorname{Card}(\Psi \backslash \theta)>2$. Suppose that the following diagram is Q-irreducible:

Then as before Lemma 4.2.1 implies that $p_{1}<p_{2}$ and $2 p_{n}<p_{n-1}$. There are then two possibilities:

- either there exists $i \in\{2, \ldots, n-2\}$ such that $p_{i-1}<p_{i}$ and $p_{i+1}<p_{i}$,
- or $p_{n-2}<p_{n-1}$ and $2 p_{n}<p_{n-1}$.

In both cases Lemma 4.2.2 implies that either diagramm (4) contains a regular subdiagram or it is not regular. We have showed that diagram (4) is never Q-irreducible.

- The cases C_{n} and D_{n}^{1}.

These cases can be treated in the same way as the cases A_{n} and B_{n}. It must be noticed that in the C_{n} case one cannot have a diagram where the root α_{n} is circled. This is because the subdiagram

would be regular (see the list of the irreductible regular $P V^{\prime}$'s of parabolic type in Ru-2 or in $\quad \mathbb{R u - 4}$).

- The case D_{n}^{2}.
a) Suppose that $\operatorname{Card}(\Psi \backslash \theta)=2$. Suppose that the diagram
(5)

is Q-irreducible. Then p_{2} is even because if p_{2} is odd the subdiagram

would be regular (see the list of the irreductible regular $P V^{\prime}$'s of parabolic type in Ru-2 or in Ru-4).
On the other hand from Lemma 4.2.1 we get that $p_{2}>p_{1}$. Then Lemma 4.2 .3 implies that only the case where $p_{1}=p_{2}-1$ corresponds to a Q irreducible $P V$.
b) Suppose that $\operatorname{Card}(\Psi \backslash \theta)>2$. Suppose that the following diagram is Q-irreducible:
(6)

For the same reason as for the diagram (5), we necessarily have p_{n} even. Then from Lemma 4.2.1 we get $p_{1}<p_{2}$ and from Lemma 4.2.3 we get $p_{n} \leq p_{n-1}$. If $p_{n}=p_{n-1}$ diagram (6) would contain the regular subdiagram

Hence $p_{1}<p_{2}$ and $p_{n}<p_{n-1}$. There exists then $i \in\{2, \ldots, n\}$ such that $p_{i-1}<p_{i}$ and $p_{i+1}<p_{i}$. From Lemma 4.2.2 we obtain that either the diagram (6) is not Q-irreducible (if $p_{i-1}=p_{i+1}$), or non regular (if $p_{i-1} \neq p_{i+1}$). In any case diagram (6) is never Q-irreducible.

- The case D_{n}^{3}.
a) Suppose that $\operatorname{Card}(\Psi \backslash \theta)=2$. It is easy to prove that the subdiagram

is regular if and only if $n=3$, and then $D_{3}=A_{3}$ and the corresponding diagram was already considered in the A_{n} case.
b) Suppose that $\operatorname{Card}(\Psi \backslash \theta)=3$. Suppose that the following diagram is Q-irreducible.

We know from Lemma 4.2.5 that if $p_{2}>p_{1}$ and $p_{1} \neq 1$, diagram (7) is not regular. If $p_{2}>p_{1}$ and $p_{1}=1$, the same Lemma implies that diagram (7) is Q-irreducible.
If $p_{1}=p_{2}$, diagram (7) contains obviously an A_{n-2} regular irreducible subdiagram.
If $p_{1}>p_{2}$, diagram (7) cannot be regular, as shown by Lemma 4.2.1.
c) Suppose that $\operatorname{Card}(\Psi \backslash \theta)>3$. The corresponding diagram is the following:
(8)

From Lemma 4.2.1 and Lemma 4.2.5 we deduce that if this diagram would be Q-irreducible, we would have $p_{1}<p_{2}$ and $p_{n}<p_{n-1}$. Then, using the same method as in the A_{n} case, one proves that diagram (8) is never Q-irreducible.
\diamond Let us now consider the case of exceptional simple Lie algebras.
We only give the proof for E_{6}. The cases of E_{7}, E_{8}, F_{4} and G_{2} are analogous. We begin by writing down all possible diagrams in which at least two roots are circled. The only (important) constraint comes from Lemma 4.2 .7 which excludes diagrams having two circled roots which are connected. If a diagram contains a regular subdiagram, we will write the subdiagram on the same line. Taking into account the symmetry of the Dynkin diagram of E_{6}, the list is as follows:
1)
2)

3)
4)

5)

6)
7)
8)

9)
10)

Let us consider the case 1) in the list above. The corresponding $P V$ is infinitesimally equivalent to (G, V) where $G=G L(5) \times \mathbb{C}^{*}, V=M(5,1) \oplus$ $\operatorname{Skew}(5)$ and the action is given by: $(g, a)(X, Y)=\left(a g X, g Y^{t} g\right)$ where $a \in$ $\mathbb{C}^{*}, g \in G L(5), X \in M(5,1), Y \in \operatorname{Skew}(5)$.
Define $J=\left[\begin{array}{cc}0 & I_{2} \\ -I_{2} & 0\end{array}\right] \in \operatorname{Skew}(4)$. Let then

$$
X_{0}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \in M(5,1) \text { and } Y_{0}=\left[\begin{array}{ll}
J & 0 \\
0 & 0
\end{array}\right] \in \operatorname{Skew}(5)
$$

An easy computation shows that $\left(X_{0}, Y_{0}\right)$ is generic and that its isotropy subgroup is the set of pairs of matrices of the form $\left(\left[\begin{array}{cc}A & 0 \\ 0 & a\end{array}\right], a^{-1}\right)$, where $A \in S p(2), a \in \mathbb{C}^{*}$. Hence the $P V$ is regular and one easily shows that the unique fundamental relative invariant is given by

$$
f(X, Y)=\operatorname{Pf}\left(\left[\begin{array}{cc}
Y & X \\
-\left({ }^{t} X\right) & 0
\end{array}\right]\right)
$$

For the cases 2) and 9) one computes a generic isotropy isotropy subgroup and one observes that it is not reductive.

A consequence of the preceding classification is the following statement.
Proposition 4.2.9. The Q-irreducible $P V$'s of parabolic type are 1-irreducible. In other words the three definitions of irreducibility given in Definition 2.2.4 are equivalent. 7

Remark 4.2.10. The exceptional Q-irreducible $P V^{\prime}$'s arising in E_{6}, E_{7} and E_{8} are particular cases of families of Q-irreducible $P V^{\prime}$'s which are not parabolic in general. More precisely the representations

$$
\left(G L(n) \times \mathbb{C}^{*},\left[\Lambda_{1}(G L(n)) \otimes \square\right] \oplus\left[\Lambda_{2}(G L(n)) \otimes I d\right]\right)(n \text { odd })
$$

[^1]and
$$
\left(G L(n) \times G L(n-1),\left[\Lambda_{1}(G L(n)) \otimes \Lambda_{1}(G L(n-1))\right] \oplus\left[\Lambda_{1}(G L(n)) \otimes I d\right]\right)
$$
are 1-irreducible $P V^{\prime}$'s. (Here \square denotes the one dimensional representation of \mathbb{C}^{*} on \mathbb{C} by multiplications). The first representation is an extension of the E_{6} and E_{8} cases, the second one is an extension of the E_{7} case.
For the first representation the fundamental relative invariant is given by
\[

f(X, Y)=\operatorname{Pf}\left(\left[$$
\begin{array}{cc}
Y & X \\
-\left({ }^{t} X\right) & 0
\end{array}
$$\right]\right),(X \in M(n, 1), Y \in \operatorname{Skew}(n))
\]

and for the second representation it is given by

$$
f(X, Y)=\operatorname{det}\left(\left[\begin{array}{ll}
X & Y
\end{array}\right]\right),(X \in M(n, n-1), Y \in M(n, 1))
$$

Note that the first $P V$ above is example 8) p. 95 of Ki-2 and that the second $P V$ is

Remark 4.2.11. We have proved in Ru-1 that an irreducible $P V$ of parabolic type is regular if and only if the corresponding grading element H_{θ} (see section 4.1) is the semi-simple element of an $\mathfrak{s l}_{2}$-triple. As the weighted Dynkin diagrams of type E_{6}, E_{7}, E_{8} in Table 1 below do not appear in tables $18,19,20$ of [D], such a result is no longer true for Q-irreducible $P V$'s of parabolic type.

Table 1: non irreducible, Q-irreducible $P V^{\prime}$'s of parabolic type	
$\begin{gathered} A_{n} \\ \left(p_{2}>p_{1} \geq 0\right) \end{gathered}$	
$\begin{gathered} B_{n} \\ p_{2}>p_{1} \\ \left.2 p_{3}=p_{1}, p_{3} \geq 0\right) \end{gathered}$	
$\begin{gathered} C_{n} \\ p_{2}>p_{1}, \\ 2 p_{3}=p_{1}+1, p_{3}>0 \\ p_{2} \text { odd } \end{gathered}$	
$\begin{gathered} D_{n}^{1} \\ p_{2}>p_{1} \\ 2 p_{3}=p_{1}+1, p_{3} \geq 2 \end{gathered}$ p_{2} even	
$\begin{gathered} D_{n}^{2} \\ p_{2} \geq 2, \\ p_{1}=p_{2}-1, p_{2} \text { even } \\ \hline \end{gathered}$	
$\begin{gathered} D_{n}^{3} \\ p_{2}>1 \end{gathered}$	
E_{6}	
E_{7}	
E_{8}	

References

[B-R] N. BOPP , H. RUBENTHALER - Local zeta functions attached to the minimal spherical series for a class of symmetric spaces, Mem. Amer. Math. Soc. 174 (2005) $n^{\circ} 821$, viii +233 p.
[D] E.B. DYNKIN , — Semi-simple subalgebras of semi-simple Lie algebras, Amer. Math. Soc. Transl. 6 (1957) 111-224.
[Ki-1] T. KIMURA - Introduction to prehomogeneous vector spaces, Translations of Mathematical Monographs, 215. American Mathematical Society, Providence, RI, 2003.
[Ki-2] T. KIMURA - A classification of prehomogeneous vector spaces of simple algebraic groups with scalar multiplications, J. Alg. $83 n^{\circ} 1,1983,72-100$.
[Ki-al1] T. KImURA, S. I. KASAI, M. InUZUKA, O. YASUKURA - A classification of 2-simple prehomogeneous vector spaces of type I, J. Alg. $114 n^{\circ} 2,1988$, 369-400.
[Ki-al2] T. KIMURA, S. I. KASAI, M. TAGUCHI, M. InUZUKA - Some PV equivalences and a classification of 2-simple prehomogeneous vector spaces of type II, Trans. Amer. Math. Soc. 308, $n^{\circ} 2,1988,433-494$.
[Ki-al3] T. KIMURA, S. I. KASAI, H. HOZOKAWA - Universal transitivity of simple and 2-simple prehomogeneous vector spaces, Ann. Institut Fourier, 38, $n^{\circ} 2,1988$, 1141
[Mo] A. MORTAJINE - Classification des espaces préhomogènes de type paraboliques réguliers et de leurs invariants relatifs, Travaux en cours, Vol 40, Hemann, Paris, 1991.
[Ru-1] H. RUBENTHALER - Espaces vectoriel préhomogènes, sous-groupes paraboliques et $\mathfrak{s l}_{2}$ - triplets, C.R. Acad. Sci. Paris Sér. A-B 290 (1980), $n^{\circ} 3$, A127-A129.
[Ru-2] H. RUBENTHALER - Espaces préhomogènes de type parabolique, Lect. Math. Kyoto Univ. 14 (1982), 189-221.
[Ru-3] H. RUBENTHALER - Espaces préhomogènes de type parabolique, Thèse d'Etat, Université de Strasbourg (1982).
[Ru-4] H. RUBENTHALER - Algèbres de Lie et espaces préhomogènes, in: Travaux en cours, Hermann, Paris, 1992.
[Sai] H. Saito. - Convergence of the zeta functions of prehomogeneous vector spaces, Nagoya Math. J. 170 (2003), 1-31.
[Sa. F-1] F. SATO. - Zeta functions in several variables associated with prehomogeneous vector spaces III. Einsenstein series for indefinite quadratic forms, Ann. of Math. (2) 116 (1982), $n^{\circ} 1,77-99$.
[Sa. F-2] F. Sato. - Zeta functions with polynomial coefficients associated with prehomogeneous vector spaces,Comment. Math. Univ. St Paul. 45 (1996), $n^{\circ} 2,177-211$.
[Sa. M] M. Sato. - Theory of prehomogeneous vector spaces, Notes by T. Shintani translated by M. Muro, Nagoya Math. J. 120 (1990), 1-34.
[S-K] M. SATO - T. KIMURA - A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1-155.
[Sa-Sh] M. Sato - T. Shintani (1974). - On zeta functions associated with prehomogeneous vector spaces, Ann. of Math. 100, 131-170.

Hubert Rubenthaler, Institut de Recherche Mathématique Avancée, UniverSité de Strasbourg et CNRS, 7 Rue René Descartes, 67084 Strasbourg Cedex, France, E-MAIL: rubenth@math.unistra.fr

[^0]: ${ }^{1}$ In the paper by M. Sato and T. Kimura, it is written that if (G, V) is a regular $P V$ with G reductive, and if f is a relative invariant with $H_{f} \neq 0$, then $\Omega=\left\{x \mid H_{f}(x) \neq 0\right\}$, but analyzing their proof it is easy to see that in fact $\Omega=\left\{x \mid f(x) H_{f}(x) \neq 0\right\}$ (the first assertion would be wrong if $\partial^{\circ} f=2$)

[^1]: ${ }^{2}$ It seems that this equivalence is true in general, that is even for non-parabolic PV's, from classification arguments (T. Kimura, private communication). It would be nice to have a direct proof.

