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In this paper we study the asymptotic behaviour of a nonlocal nonlinear parabolic equation governed by a parameter. After giving the existence of unique branch of solutions composed by stable solutions in stationary case, we gives for the parabolic problem L ∞ estimates of solution based on using the Moser iterations and existence of global attractor. We finish our study by the issue of asymptotic behaviour in some cases when t → ∞.

Introduction

The non-local issues are important in studying the behavior of certain physical phenomena and population dynamics. A major difficulty in studying these problems often lie in the absence of well-known properties as maximum principle, regularity and properties of Lyapunov (see [START_REF] Caffarelli | Regularity theory for fully nonlinear integro-differential equations[END_REF], [START_REF] Chang | On some mixed boundary value problems with nonlocal diffusion[END_REF]) and also the difficulty to characterize and determine the stationary solutions associated thus making study the asymptotic behavior of these solutions very difficult. In this paper we study the solution u(t, x) to the nonlocal equation      u t -div(a(l r (u(t)))∇u) = f dans R + × Ω u(x, t) = 0 sur R + × ∂Ω u(., 0) = u 0 dans Ω. [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF] In the above problem u 0 and f are such that

u 0 ∈ L 2 (Ω), f ∈ L 2 (0, T, L 2 (Ω)), (2) 
with T a arbitrary positive number, a is a continuous function such that ∃m, M such that 0 < m ≤ a(ǫ) ≤ M ∀ǫ ∈ R.

The nonlocal functional l r is defined such that l r (.)(x) :

L 2 (Ω) → R, u → l r (u(t))(x) = Ω∩B(x,r)
g(y)u(t, y)dy.

Here B(x, r) is the closed ball of R n with radius r and g ∈ L 2 (Ω).. It is sometimes possible to consider g more generally, especially when one is interested in the study of stationary solutions of (see [START_REF] Ovono | Elliptic equations with diffusion parameterized by the range of nonlocal interactions[END_REF]).

In physical point of view problem [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF] gives many applications especially where g = 1 in population dynamics. Indeed, in this situation u may represent a population density and l r (u) the total mass of the subdomain Ω ∩ B(x, r) of Ω. Hence [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF] can describe the evolution of a population whose diffusion velocity depends on the total mass of a subdomain of Ω. For more details of modelisation we refer the reader to [START_REF] Chipot | Elements of nonlinear analysis[END_REF]. This type of equation can be applied more generally to other models including the study of propagation of mutant gene (see [START_REF] Genieys | Pattern and waves for a model in population dynamics with nonlocal consumption of resources[END_REF], [START_REF] Gourley | Travelling front solutions of a nonlocal Fisher equation[END_REF], [START_REF] Perthame | Concentration in the nonlocal Fisher equation: the Hamilton-Jacobi limit[END_REF]). A very recent study of this propagation was made by Bendahmane and Sepúlveda [START_REF] Bendahmane | Convergence of a finite volume scheme for nonlocal reaction-diffusion systems modelling an epidemic disease[END_REF] in which they analyze using a finite volume scheme adapted, the transmission of this gene through 3 types of people: susceptible, infected and recovered.

In mathematical point of view, when r = d where d is the diameter of Ω problem [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF] has been studied in various forms (see [START_REF] Chang | On some mixed boundary value problems with nonlocal diffusion[END_REF], [START_REF] Chipot | Existence and uniqueness results for a class of nonlocal elliptic and parabolic problems[END_REF], [START_REF] Chipot | On a class of nonlocal nonlinear elliptic problems[END_REF], [START_REF] Siegwart | Asymptotic behavior of some nonlocal parabolic problems[END_REF]).

However when 0 < r < d, several questions from the theory of bifurcations have arisen concerning the structure of stationary solutions including the existence of a principle of comparison of different solutions depending on the parameter r and the existence of branches (local and global) of solutions. A large majority of these issues has been resolved in [START_REF] Ovono | Elliptic equations with diffusion parameterized by the range of nonlocal interactions[END_REF]. It shows that when a is decreasing the existence of a unique global branch of solutions and existence of branch of solutions that are purely local. Some questions may then arise:

(i) The unique branch described in [START_REF] Ovono | Elliptic equations with diffusion parameterized by the range of nonlocal interactions[END_REF] it is composed of stable solutions? (ii) What about stability properties of the corresponding parabolic problem?

The plan for this work is the following. In section 2 we give some existence and uniqueness results. Section 3 is devoted to stationary problem corresponding to [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF]. In particular, we study in a radial case, a generalisation of Chipot-Lovat results about determination of the number of solutions. We also establish that the unique global branch of solutions described in [START_REF] Ovono | Elliptic equations with diffusion parameterized by the range of nonlocal interactions[END_REF] is composed by stable solutions (theorem 3.8). In section 4 firstly we address a L ∞ estimate taking to account L p estimate based on Moser iterations. Secondly we prove existence of absorbing set in H 1 0 , which allows us to prove the existence of a global attractor associated to (1) (see remark 5). Finally we obtain a result of stability properties of the corresponding parabolic problem.

Existence and uniqueness results

In this section we show a result of existence . We set V = H 1 0 (Ω) and V ′ its dual, we take the norm in V , . V such that

u 2 V = Ω |∇u| 2 dx
< ., . > means the duality bracket of V ′ and V.

Then we have

Theorem 2.1. Let T > 0, f ∈ L 2 (0, T, V ′ ) and u 0 ∈ L 2 (Ω), we assume that a is a continuous function and the assumption (3) checked then for every r fixed, r ∈ [0, diam(Ω)], there exists a function u such that

     u ∈ L 2 (0, T, V ), u t ∈ L 2 (0, T, V ′ ) u(0, .) = u 0 in Ω d dt (u, φ) + Ω a(l r (u(t)))∇u∇φdx =< f, φ > in D ′ (0, T ) ∀φ ∈ H 1 0 (Ω). (5) Moreover if a is locally Lipschitz i.e ∀c ∃γ c such that |a(ǫ) -a(ǫ ′ )| ≤ γ c |ǫ -ǫ ′ | ∀ǫ, ǫ ′ ∈ [-c, c], (6) 
then the solution of ( 5) is unique.

Remark 1. Before to do the proof, it is necessary to see that for r = 0 problem ( 5) is linear and the proof follows a well-known result (see [START_REF] Dautray | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF]), it is even when r = diam(Ω) (see [START_REF] Chipot | Elements of nonlinear analysis[END_REF]). We will focus therefore in the following where r ∈]0, diam(Ω)[.

Proof.

For the existence proof we will use the Schauder fixed point theorem. Let w ∈ L 2 (0, T, L 2 (Ω)) we get

t -→ l r (w(t)),
is measurable as a is continuous then

t -→ a(l r (w(t))), is too. The problem of finding u = u(t, x) solution of      u ∈ L 2 (0, T, V ) ∩ C([0, T ], L 2 (Ω)) u t ∈ L 2 (0, T, V ′ ) u(0, .) = u 0 d dt (u, φ) + Ω a(l r (w(t)))∇u∇φdx =< f, φ > in D ′ (0, T ) ∀φ ∈ H 1 0 (Ω), (7) 
is linear, besides (7) admits a unique solution u = F r (w) (see [START_REF] Dautray | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF], [START_REF] Chipot | Elements of nonlinear analysis[END_REF]). Thus we show that the application

w -→ F r (w) = u, (8) 
admits a fixed point. Taking w = u in (7) we get using (3) and the Cauchy-Schwarz inequality 1 2

d dt |u| 2 2 + m u 2 V ≤ |f | ⋆ u V , (9) 
. V is the usual norm in V and |f | ⋆ is the dual norm of f. We take

|u| L 2 (0,T,V ) = T 0 u 2 V dt 1 2 
.

Using Young's inequality to the right-hand side of (9), it follows that 1 2

d dt |u| 2 2 + m 2 u 2 V ≤ 1 2m |f | 2 ⋆ . (10) 
By integrating [START_REF] Dautray | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF] on (0, t) for t ≤ T we obtain

1 2 |u(t)| 2 2 + m 2 t 0 u 2 V dt ≤ 1 2 |u 0 | 2 2 + 1 2m t 0 |f | 2 ⋆ . (11) 
We deduce that there exists a constant C = C(m, u 0 , f ) such that

|u| L 2 (0,T,V ) ≤ C (12) 
Moreover

< u t , v > + < -div(a(l r (u(t)))∇u), v >=< f, v > ∀v ∈ V,
This gives us

|u t | ⋆ ≤ M u V + |f | ⋆ . (13) 
By raising (13) squared and using the Young inequality we have that

|u t | 2 ⋆ ≤ 2M 2 u 2 V + 2|f | 2 ⋆ . (14) 
By integrating ( 14) on (0, t) and assuming [START_REF] Gourley | Travelling front solutions of a nonlocal Fisher equation[END_REF] we obtain

|u t | L 2 (0,T,V ′ ) ≤ C ′ , (15) 
with C ′ = C ′ (m, M, f, u 0 ) and C ′ is independent to w. It follows from ( 12) and ( 15)

|u t | 2 L 2 (0,T,V ′ ) + |u| 2 L 2 (0,T,V ) ≤ R, (16) 
with R = C 2 + C ′2 . From ( 12) and the Poincaré inequality it follows that

|u| L 2 (0,T,L 2 (Ω)) ≤ R ′ , (17) 
By setting

R 1 = max(R ′ , R), (18) 
and associating (17) and ( 18), it follows that the application F maps the ball B(0, R 1 ) of L 2 (0, T, L 2 (Ω)) into itself. Moreover the balls of H 1 (0, T, V, V ′ ) are relatively compact in L 2 (0, T, L 2 (Ω)) (see [START_REF] Dautray | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF] for more details), ( 16) clearly shows us that F (B(0, R 1 ) is relatively compact in B(0, R 1 ) with

B(0, R 1 ) = {u ∈ L 2 (0, T, L 2 (Ω)); |u| L 2 (0,T,L 2 (Ω)) ≤ R 1 }.
In order to apply the Schauder fixed point theorem, as announced, we just need to show that F is continuous from B(0, R 1 ) to itself. This is actually the case and completes the proof of existence. We will now discuss the uniqueness assuming of course that assumption (6) be verified. Consider u 1 and u 2 two solutions [START_REF] Caffarelli | Regularity theory for fully nonlinear integro-differential equations[END_REF], by subtracting one obtains in

D ′ (0, T ) d dt (u 1 -u 2 , v)+ Ω (a(l r (u 1 (t))∇u 1 (t)-a(l r (u 2 (t)))∇u 2 (t))∇φdx = 0 ∀φ ∈ H 1 0 (Ω). (19) Since a(l r (u 1 (t)))∇u 1 -a(l r (u 2 (t)))∇u 2 (t) = (a(l r (u 1 (t))) -a(l r (u 2 (t)))∇u 1 (t) + a(l r (u 2 (t)))∇(u 1 (t) -u 2 (t)), (20) 
we get

d dt (u 1 -u 2 , v)+ Ω a(l r (u 2 (t)))∇(u 1 (t) -u 2 (t))∇φdx = - Ω (a(l r (u 1 (t))) -a(l r (u 2 (t)))∇u 1 ∇φdx ∀φ ∈ H 1 0 (Ω). ( 21 
) Moreover u 1 , u 2 ∈ C([0, T ], L 2 (Ω)) there exist z > 0 such that l r (u 1 (t)), l r (u 2 (t)) ∈ [-z, z]. (22) 
Taking v = u 1 -u 2 in (21), it comes easily by Cauchy-Schwartz inequality and ( 6)

1 2 d dt |u 1 -u 2 | 2 2 + m u 1 -u 2 2 V ≤ γ|l r (u 1 (t)) -l r (u 2 (t))| u 1 V u 1 -u 2 V . (23) We get in [3] |l r (u(t)) ≤ C|B(x, r) ∩ Ω| 1 n∨3 |g| 2 |u(t)| 2 ≤ |Ω| 1 n∨3 |g| 2 |u(t)| 2 , (24) 
where C a constant, |Ω| represents the measure of Ω and n ∨ 3 the maximum between the dimension n of Ω and 3. By using ( 24), ( 23) and the Young inequality

ab ≤ 1 2m b 2 + m 2 a 2 .
We deduce

d dt |u 1 -u 2 | 2 2 + m u 1 -u 2 2 V ≤ p(t)|u 1 -u 2 | 2 2 , (25) 
with

p(t) = 1 m (γC |Ω| 1 n∨3 |g| 2 u 1 V ) 2 ∈ L 1 (0, T ), which leads to d dt |u 1 -u 2 | 2 2 ≤ p(t)|u 1 -u 2 | 2 2 . (26) 
Multiplying ( 26) by e -t 0 p(s)ds it follows that

e -t 0 p(s)ds d dt |u 1 -u 2 | 2 2 -p(t)e -t 0 p(s)ds |u 1 -u 2 | 2 2 ≤ 0. ( 27 
) Hence d dt {e -t 0 p(s)ds |u 1 -u 2 | 2 2 } ≤ 0. ( 28 
)
This shows that t -→ e

- t 0 p(s)ds |u 1 -u 2 | 2 2 is nonincreasing. Since for t = 0, u 1 (0, .) = u 2 (0, .) = u 0 .
This function vanishes at 0 and nonnegative, we conclude that it is identically zero. This concludes the proof.

Stationary solutions

Consider the weak formulation to the stationary problem associated to (1)

(P r ) -div(a(l r (u))∇u) = f dans Ω u ∈ H 1 0 (Ω).
(29)

The case r = d

By taking φ the weak solution of the problem

-∆φ = f dans Ω φ ∈ H 1 0 (Ω), (30) 
we get due to a Chipot-Lovat [START_REF] Chipot | Existence and uniqueness results for a class of nonlocal elliptic and parabolic problems[END_REF] results that Theorem 3.1. Let a be a mapping from R into (0, ∞). The problem (P d ) has many solutions as the problem in R

µ a(µ) = l d (φ), ( 31 
)
with µ = l d (u d ).
Remark 2. Theorem 3.1 allows us to see where a is increasing that the problem P d admits a unique solution and determine for a given a the exact number of solutions (P d ). However it is difficult or impossible to adapt the proof of the theorem 3.1 in case 0 < r < d.

The case 0 < r < d

As announced in the introduction we focus our study to the case of radial solutions of (P d ). We will assume Ω is the open ball of R n with radius d/2 centered at zero. We set

L 2 r (Ω) = {u ∈ L 2 (Ω) ∃ũ ∈ L 2 (]0, d/2[) such that u(x) = ũ( x )
}, and we also assume that

f ∈ L 2 r (Ω) g ∈ L 2 r (Ω) a ∈ W 1,∞ (R), inf R a > 0 f ≥ 0 a.e in Ω g ≥ 0 a.e in Ω. (32) 
We start by giving in some sense in a linear case a result that will be used later to explain the asymptotic behavior.

Proposition 3.2. Let A, B ∈ C(Ω) be positive radial functions such that A ≤ B in Ω and also f, h ∈ L 2 (Ω) two positive radial functions. Let u ∈ H 1 0 (Ω) the radial solution to -div(A(x)∇u) = f in Ω, ( 33 
)
and -div(B(x)∇u) = h in Ω. ( 34 
)
Then f ≤ h a.e in Ω.

Proof. We proved in [START_REF] Ovono | Elliptic equations with diffusion parameterized by the range of nonlocal interactions[END_REF] that if u is a the radial solution of (33) then for a.e t in [0, d/2],

ũ′ (t) = - 1 Ã(t) t 0 ( s t ) n-1 f (s) ds. (35) 
From ( 33), ( 34) and ( 35) we obtain

B(t) Ã(t) t 0 ( s t ) n-1 f (s) ds = t 0 ( s t ) n-1 h(s) ds. Since A ≤ B in Ω and f, h ≥ 0 with f ≡ 0, h ≡ 0 hence f ≤ g.
In a nonlocal case, some results of existence of radial solutions and comparison principle between u r , u d and u 0 has been demonstrated in [START_REF] Ovono | Elliptic equations with diffusion parameterized by the range of nonlocal interactions[END_REF]. It is also proved that if we set for all r ∈ [0, d]

I r := [inf Ω l r (φ), sup Ω l r (φ)]. ( 36 
)
Here φ denotes the solution of

-∆φ = f dans Ω φ ∈ H 1 0 (Ω). (37) 
By the inclusion or not of I r at an interval of R we somehow generalize the theorem 3.1. 

I r ⊂ [m 1 a(m 1 ), m 2 a(m 2 )]. ( 39 
)
Then (P r ) admits a radial solution u and

m 1 ≤ l r (u) ≤ m 2 a.e in Ω. (40) 
For the proof, we refer the reader to [START_REF] Ovono | Elliptic equations with diffusion parameterized by the range of nonlocal interactions[END_REF]. Generalizing this construction type of the diffusion coefficient a we obtain

Proposition 3.4. Let r ∈ [0, d].
Assume that (32) holds true and there exist an odd integer n 1 and n 1 + 1 positive real numbers {m i } i=0...n1 , with m 0 = 0 and for all i ∈ {0, . . . , n 1 -1} we have m i < m i+1 . Moreover

a(m i ) = max [mi,mi+1] a; a(m i+1 ) = min [mi,mi+1] a ∀i ∈ {0, 2, . . . , n 1 -3, n 1 -1} I r ⊂ i=0,2,...,n1-3,n1-1 [m i a(m i ), m i+1 a(m i+1 )] (41) 
Then (P r ) admits at least n1+1 2 radial solutions {u i } i∈{0,2,...,n1-1} such that

m i ≤ l r (u i ) ≤ m i+1 ∀i ∈ {0, 2, . . . , n 1 -3, n 1 -1}.
Proof. The proof here is by induction. Indeed we set 41) is satisfied then(P r ) admits at least n 1 + 1 2 solutions.} By using lemma 3.3 with m 1 = 0 and m 2 = m 1 , it is easy to prove for n 1 = 1 that P n1 is true. For n 1 > 1, This procedure can be repeated to prove that if P n1-2 holds true then P n1 holds too. In the representation of a we have deliberately left, on solid line parts of the curve satisfying the conditions of proposition 3.4 and dotted line one without constraints. This situation are explain in the figure 1. Remark 3. As previously announced, the proposition 3.4 generalizes a certain point of view Theorem 3.1. However it does not accurately determine the exact number of solutions of (P r ) and the bifurcation points of branch of solutions. We have shown in [START_REF] Ovono | About the counting stationary solutions of a nonlocal problem by revisiting the Krein-Rutman theorem[END_REF] way to solve this problem by using the linearized problem, the principle of comparisons obtained in [START_REF] Ovono | Elliptic equations with diffusion parameterized by the range of nonlocal interactions[END_REF] and the Krein-Rutman theorem.

P n1 = { If condition (

Stable solutions of (

P r ) Definition 3.5. Given a domain Ω ⊂ R n , a solution u r ∈ H 1 0 (Ω) of (P r ) is stable if: ∀φ ∈ H 1 0 (Ω) G ur (φ) := Ω a(l r (u r ))|∇φ| 2 - Ω a ′ (l r (u r ))l r (φ)∇u r ∇φ ≥ 0. ( 42 
) Definition 3.6. Given u : [0, d] → H 1 0 (Ω), the graph of u is called a (global) branch of solutions if (i) u ∈ C([0, d], H 1 0 (Ω)), (ii) u(r) is solution to (P r ) for all r in [0, d].
u is called a local branch if it's defined only on a subinterval of [0, d] with positive measure.

Before concluding this section, we will focus into the case a nonincreasing to prove the stability of the global branch of solutions. Assume for all r ∈ [0, d], u r is a solution to (P r ) and 0 ≤ l r (u r )(x) ≤ µ d for a.e x ∈ Ω.

(43)

Assume that there exists a solution µ d to (31) such that

a(µ d ) = min [0,µ d ]
a and a(0

) = max [0,µ d ] a. (44) 
We prove in [START_REF] Ovono | Elliptic equations with diffusion parameterized by the range of nonlocal interactions[END_REF] Theorem 3.7. Assume (32), ( 43), ( 44) and (31) holds. Assume in addition that a ∈ W 1,∞ (R) and for some positive constant ǫ, it holds that

C 1 |g| 2 |f | 2 |a ′ | ∞,[-ǫ,µ d +ǫ] 1 a(µ d ) 2 < 1, ( 45 
)
where C 1 is a constant dependent to Ω. Then (i) For all r in [0, d], (P r ) possesses a unique radial solution u r in [u 0 , u d ];

(ii) {(r, u r ) : r ∈ [0, d]} is a branch of solutions without bifurcation point;

(iii) it is only global branch of solutions;

(iv) if in addition, a is nonincreasing on [0, µ d ] then r → u r is nondecreasing.

Remark 4. It is very difficult to obtain property (iv) for any a. However when a is nonincreasing provide us important information for studying the stability of this branch of solutions.

Corollary 3.8. Let u 1 d the smallest solution to (P d ). Assume ( 32) and ( 31) holds true and there exists a solution µ d to (31) satisfied (44). Assume in addition that a ∈ W 1,∞ (R), u 1 d satisfied ( 43) and for some positive constant ǫ, it holds that

C 1 |g| 2 |f | 2 |a ′ | ∞,[-ǫ,µ d +ǫ] 1 a(µ d ) 2 < 1, ( 46 
)
where 

C 1 is a constant dependent to Ω. Then {(r, u r ) : r ∈ [0, d]}
|f | 2 |a ′ | ∞,[-ǫ,µ2+ǫ] 1 a(µ2) 2 < 1.
In this case, using theorem 3.7 we get (P r ) possesses a unique radial solution u r in [u 0 , u 2 d ] and the mapping r → u r is nondecreasing. By continuity of this mapping, we can find a r 0 ∈]0, d[ such that u r0 = u 1 d for a.e x ∈ Ω. This means that u 1 d is a solution of (P r0 ). This gives us an absurdity and concludes the proof.

We are now able to prove: Proposition 3.9. Under assumptions and notation of corollary 3.8, the global branch of solutions described in theorem 3.7 is composed by stable solutions.

Proof. For all r ∈ [0, d], let u r be a solution belonging to the global branch of solutions described in theorem 3.7. By using the linearized problem of (P r ), we get ∀φ ∈ H 1 0 (Ω)

Ω a(l r (u r ))|∇φ| 2 - Ω a ′ (l r (u r ))l r (φ)∇u r ∇φ ≥ inf Ω a(l r (u r ))|∇φ| 2 2 -C |g| 2 |a ′ | ∞,[-ǫ,µ1+ǫ] |∇u r | 2 |∇φ| 2 2 . (47) 
Taking into account that

|∇u r | 2 ≤ C(Ω) |f |2 inf Ω a(l r (u r ))
where C(Ω) designed the Poincaré Sobolev constant. We obtain

Ω a(l r (u r ))|∇φ| 2 - Ω a ′ (l r (u r ))l r (φ)∇u r ∇φ ≥ |∇φ| 2 2 inf Ω a(l r (u r )) -C 1 |g| 2 |a ′ | ∞,[-ǫ,µ1+ǫ] |f | 2 inf Ω a(l r (u r )) . (48) 
Moreover by assumptions ( 43) and (44) we get a(µ 1 ) ≤ inf Ω a(l r (u r )).

Thus (46) becomes

C 1 |g| 2 |f | 2 |a ′ | ∞,[-ǫ,µ d +ǫ] 1 inf Ω a(l r (u r )) 2 < 1. (49) 
We deduces

Ω a(l r (u r ))|∇φ| 2 - Ω a ′ (l r (u r ))l r (φ)∇u r ∇φ ≥ 0. ( 50 
)
This concluded the proof. In what follows we obtain L ∞ estimate of the solution (1) from L q estimate. The method we use is based on iterations Moser type, for more details on the method see [START_REF] Quittner | Superlinear parabolic problems[END_REF]. We get Theorem 4.1. Let n ≥ 3 and u a classical solution of ( 1) defined on [0, T ).

Assume that p > 1 and q > 1 such that 1 p + 1 q = 1. Suppose further that

U q = sup t<T |u(t)| q < ∞, f ∈ L ∞ (0, ∞, L q (Ω)). If p < n n-2 then U ∞ < ∞.
To prove this theorem we need the following proposition: Lemma 4.2. Consider u a classical solution of ( 1) on [0, T ), r ≥ 1 and p > 1 such that 1 p + 1 q = 1 with p < n n-2 . We take

Ũr = max{1, |u 0 | ∞ , U r = sup t<T |u(t)| r } and let σ(r) = p(n + 2) 2[r(2p -pn + n) + np] .
Then there exists a constant

C 2 = C 2 (Ω, m) such that Ũ2r ≤ [C 2 f L ∞ (0,∞,L q (Ω)) ] σ(r) r σ(r)
Ũr .

Proof. Multiplying (1) by u 2r-1 and then using the Hölder inequality yields 1 2r

d dt Ω u 2r dx + m 2r -1 r 2 Ω |∇(u r )| 2 dx ≤ |f | q |u 2r-1 | p . (51) 
As

|u 2r-1 | p = |u r | 2r-1 r p 2r-1 r , (52) 
by taking w = u r in (51) and (52), we get easily 1 2r

d dt |w| 2 2 + m 2r -1 r 2 |∇w| 2 2 ≤ |f | q |w| α αp , (53) 
with α = 2r-1 r . Let β such that

1 αp = β + 1 -β 2 ⋆ , (54) 
with 2 ⋆ = 2n n-2 . We claim that β ∈ (0, 1). In fact β = 2nr -(n -2)(2r -1)p (n + 2)(2r -1)p .

Since p < 2r

2r-1 n n-2 then β > 0. As well as (n+2)(2r-1)p > 2nr-(n-2)(2r-1)p implies that β < 1 this prove that β ∈ (0, 1).

Using an interpolation inequality (see [START_REF] Quittner | Superlinear parabolic problems[END_REF]) in ( 53) and (54), we get 1 2r

d dt |w| 2 2 + m 2r -1 r 2 |∇w| 2 2 ≤ |f | q |w| β 1 |w| 1-β 2 ⋆ α . (55) 
Applying Sobolev injections in (55), we have 1 2r

d dt |w| 2 2 +m 2r -1 r 2 |∇w| 2 2 ≤ |f | q 2r m α(1-β) 2 |w| βα 1 C (1-β)α m 2r α(1-β) 2 |∇w| (1-β)α 2 ,
(56) and also 1 2r

d dt |w| 2 2 +m 2r -1 r 2 |∇w| 2 2 ≤ |f | q 2r m α(1-β) 2 |w| βα 1 C (1-β)α m 2r |∇w| 2 2 α(1-β) 2 
.

(57) Since β ∈ (0, 1) and α 2 ∈ (0, 1) it is clear that α(1-β) 2 ∈ (0, 1). Applying Young's inequality to (57) with α(1-β)

2 + 1 -α(1-β) 2 = 1. We obtain 1 2r d dt |w| 2 2 +m 2r -1 r 2 |∇w| 2 2 ≤ δ |f | 1 δ q 2r m α(1-β) 2δ |w| βα δ 1 C 2 δ + α(1 -β) 2 m 2r |∇w| 2 2 , (58) with δ = 1 -α(1-β) 2 .
Joining the fact that α(1-β) 2 ∈ (0, 1) and δ < 1 to (58), we deduce 1 2r

d dt |w| 2 2 + m 3r -2 2r 2 |∇w| 2 2 ≤ |f | 1 δ q 2r m α(1-β) 2δ |w| βα δ 1 C 2 δ . (59) 
We set

2rσ(r) -1 = α(1 -β) 2δ and 2ρ(r) = βα δ , (59) 
becomes 1 2r

d dt |w| 2 2 + m 3r -2 2r 2 |∇w| 2 2 ≤ |f | 1 δ q 2r m 2rσ(r)-1 |w| 2ρ(r) 1 C 2 δ . ( 60 
)
This gives us taking into account that 3r-2 r > 1

d dt |w| 2 2 + m|∇w| 2 2 ≤ |f | 1 δ q 2r m 2rσ(r) |w| 2ρ(r) 1 m C 2 δ . (61) 
By a calculation we can verify that

ρ(r) = 2nr -(n -2)(2r -1)p 2r(p(n + 2) + n) -2n(2r -1)p ,
and also that ρ(r) ∈ (0, 1). Using the Poincaré Sobolev inequality and that ρ(r) < 1 in (61), yields

d dt |w| 2 2 + m C 1 (Ω) |w| 2 2 ≤ |f | 1 δ q 2r m 2rσ(r) |w| 2 1 m C 2 δ , (62) 
where C 1 (Ω) designed the Poincaré Sobolev constant. Noticing that

e -m C 1 (Ω) t d dt e m C 1 (Ω) t |w| 2 2 = d dt |w| 2 2 + m C 1 (Ω) |w| 2 2 ≤ |f | 1 δ q 2r m 2rσ(r) |w| 2 1 m C 2 δ . (63) 
and integrating (63) on [0, t) we get

|w(t)| 2 2 ≤ |w(0)| 2 2 + f 1 δ L ∞ (0,∞,L q (Ω)) 2r m 2rσ(r) m C 2 δ |w| 2 1 . ( 64 
) Since |w(0)| 2 2 = Ω w(0) 2 dx = Ω u(0) 2r dx ≤ |Ω||u(0)| 2r ∞ ≤ |Ω| Ũ 2r r , (65) 
(64) and (65) gives us

Ũ 2r 2r ≤ |Ω| Ũ 2r r + f 1 δ L ∞ (0,∞,L q (Ω)) 2r m 2rσ(r) m C 2 δ Ũ 2r r . ( 66 
) Whereas 1 δ > 1, 2rσ(r) > 0 and σ(r) = 1 2rδ it follows that Ũ2r ≤ C σ(r) 2 f σ(r) L ∞ (0,∞,L q (Ω)) r σ(r) Ũr , (67) 
with C 2 = C 2 (Ω, m). This completes the proof of Lemma.

We have also Ũ2r ≤ [C 2 f L ∞ (0,∞,L q (Ω)) ] σ(r) r σ(r) Ũr .

By iterating this equation by taking r = h, r = 2h, r = 2 2 h, etc, we obtain

Ũ2 k+1 h ≤ [C 2 f L ∞ (0,∞,L q (Ω)) ] λ1 2 λ2 h λ1 Ũh , with λ 1 := σ(h) + σ(2h) + σ(2 2 h) + .. + σ(2 k-1 h) + σ(2 k r) et λ 2 := σ(2h) + 2σ(2 2 h) + 3σ(2 3 h) + ... + (k -1)σ(2 k-1 h) + kσ(2 k r).
To complete the proof we just need to show that λ 1 , λ 2 < +∞. Indeed by lemma 4.3 Hence u ∈ L ∞ (t 0 , +∞, H 1 0 (Ω)). By using (73) and the classical Gronwall lemma it is easy to see that u ∈ L ∞ (0, t 0 , H 1 0 (Ω)). This completes the proof of the theorem.

λ 1 ≤ k µ=0 α µ σ(h) ≤ ∞ µ=0 α µ σ(h) = σ(h) (1 -α) < ∞. Noting also that σ(2 k h) ≤ θ k-1 σ(2h) ∀k ∈ N ⋆ ,
Remark 5. This theorem show us the existence of absorbing set in H 1 0 (Ω). By considering S(t) the semigroup associated to the equation ( 1) defined by

S(t) : L 2 (Ω) → L 2 (Ω) u 0 → u(t),
with u(t) a solution of [START_REF] Ambrosetti | A primer of nonlinear analysis[END_REF]. As a result of the theorem 4.4 and the compact embedding of H 1 0 (Ω) into L 2 (Ω) we deduce that the semigroup S(t) possesses a global attractor. Indeed it is easy to show the existence of absorbing set in L 2 (Ω), the main difficulty here is to show that S(t) is such that ∀B ⊂ L 2 (Ω) bounded, ∃t 0 = t 0 (B) such that t≥t0 S(t)B is relatively compact in L 2 (Ω).

(78)

This property known as S(t) is uniformly compact for t large can be proved by using theorem 4.4 and the compact embedding of H 1 0 (Ω) into L 2 (Ω).

Asymptotic behaviour

In this part we are interested in asymptotic behaviour of a weak solution of (1).

Our main interest here is the radial solutions. By radial solutions we means ũ(t, |x|) = u(t, x). As in the stationary case Ω is a open ball of R n . Remember that L 2 r (Ω) = {v ∈ L 2 (Ω) ∃ṽ ∈ L 2 (]0, d/2[) such that v(x) = ṽ( x )}.

In order to not make confusion between u 0 the solution to (P 0 ) and the initial value of (1), we will take u 0 the initial value of (1).

Theorem 4.5. Assume that f, g ∈ L 2 r (Ω), a is a continuous function and the assumption (3) checked then (1) admits a radial solution.

Proof. Let w ∈ L 2 (0, t, L 2 r (Ω)) it is clear that l r (w) is radial and also a(l r (w)). Thus by (8) F r maps L 2 (0, t, L 2 r (Ω)) into itself. The proof now follows by using arguments similar to those used in theorem 2.1.

Lemma 3 . 3 .

 33 Let r ∈ [0, d]. Assume that (32) holds true and there exist 0 ≤ m 1 ≤ m 2 such that a(m 1 ) = max [m1,m2]

Example 1 .

 1 Let us see a function a satisfying proposition 3.4. For this, we consider the case n 1 = 3 and r ∈ (0, d]. Considering (32) and the strong maximum principle we get min I r > 0. Taking m 1 := 2 max I r a(0) , a(m 1 ) := a(0) 2 with a(0) > 0 and also a decreasing on [0, m 1 ] then we prove lemma 3.3 conditions. By repeating this process with m 2 > m 1 and setting a(m 2 ) := min I r m 2 , m 3 := 2 max I r a(m 2 ) with a(m 3 ) := a(m2) 2 and also a is decreasing on [m 2 , m 3 ]. This shows the existence of such a.

Figure 1 :

 1 Figure 1: The case n 1 = 3

  Figure 2: case of 2 solutions

Figure 3 :

 3 Figure 3: Branch of solutions

Lemma 4 . 3 . 2 , c 2 =

 4322 Let r > 1, n ≥ 3, p < n n-2 and σ(r) = p(n+2) 2[r(2p-pn+n)+np] then we get σ(2 k r) ≤ θ k σ(r) ∀k ∈ N,with θ ∈ (0, 1).Proof. By askingc 1 = p(n+2) (2p -pn + n) and c 3 = np yields σ(r) = c1 rc2+c3 with c 1 , c 2 , c 3 ∈ R ⋆ + .By taking θ = 1 -c2 2c2+c3 the proof of this lemma is deduced by reasoning by induction. Returning now to the proof of the theorem, by lemma 4.2 we get Proof.

  is the only global branch of solutions starting to u 1 d . Proof. The fact that {(r, u r ) : r ∈ [0, d]} is the only global branch of solutions results from theorem 3.7. We will now show that this unique branch of solutions is stable and start at r = d by u 1 d . For this we consider without loss of generality (P d ) admits two solutions u 1 d and u 2 d such that u 1 d ≤ u 2 d . We denote by µ 1 and µ 2 respectively solutions of (31) corresponding to u 1 d and u 2 d (see figure2). It is easy to see that µ 1 and µ 2 satisfied (44).

Assume {(r, u r ) : r ∈ [0, d]} is the only global branch of solutions starting to u 2 d . Then we get C 1 |g| 2

it follows

This completes the proof of the theorem.

Uniform estimate in time

We prove in what follows an estimate of u in L ∞ (R + , H 1 0 (Ω)). We get

Taking a spectral basis related to the Laplace operator in the Galerkin approximation (see [START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF]) we find that -∆u can be regarded as test function in L 2 (0, T, L 2 (Ω)) for all T > 0. By multiplying (1) by -∆u(t) and integrating over Ω (u t , -∆u)

and also 1 2

(69) Here (., .) is the usual scalar product on L 2 (Ω). Taking to account

where K is a constant depending of Ω. It comes

Now from ( 71) and (69) we have 1 2

By using Young's inequality ab

In order to apply the uniform Gronwall lemma to (73) we start with a small estimate. Remember that

where λ is the principal eigenvalue of the Laplacian operator with Dirichlet boundary conditions. By integrating on [t, t 0 ) we get

Assume now

with u 0 the initial value to (1) and u 0 and u d respectively the solution of (P 0 ) and (P d ).

We can now give a stability result assuming that (1) admits a unique solution.

Theorem 4.6. Assume (79) and f, g ∈ L 2 r (Ω). Let u, u d and u 0 respectively the solution of ( 1), (P d ) and (P d ). If

It is easy to prove that S contains 0 (see 80). By setting

By continuity of the mapping t → l d (u(t)), we get

By using (1) and (P d ) we get in D(0, t ⋆ )

Applying Poincarr Sobolev inequality we get 1 2

this prove

In the same way we can also prove u 0 ≤ u ∀t ∈ [0, t ⋆ ]. It follows

To finish we just need to prove that t ⋆ is very large, this is typically the case.

From ( 79) and (90) we deduce

Due to the uniqueness of (1), we deduce that t = ∞. This shows that

and achieve the proof.

Remark 6. The fact that |u(t)| 2 2 is not a Lyapunov function that is to say decreases in time, makes very complex the study of certain asymptotic properties of our problem. Indeed under our study it is tempting to show that for r fixed

where u is the solution of ( 1) and u 1 r the solution belonging to the stable global branch described previously. A numerical study would be a great contribution to try to carry out some of our theoretical intuitions.