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EXACT AVERAGE MESSAGE COMPLEXITY VALUES FOR DISTRIBUTED ELECTION ON BIDIRECTIONAL RINGS OF PROCESSORS *

Consider a distributed system of n processors arranged on a ring. All processors are labeled with distinct identity-numbers, but are otherwise identical. In this paper, we make use of combinatorial enumeration methods in permutations and derive the one and the same exact asymptotic value, lJ2nH,,+O(n), of the expected number of messages in both probabilistic and deterministicbidirectional variants of Chang-Roberts distributed election algorithm. This confirms the result of Bodlaender and van Leeuwen (1986) that distributed Ieader finding is indeed strictly more efficient on bidirectional rings of processors than on unidirectional ones.

l. Introduction

We consider the problem of finding a leader on an asynchronous bidirectional ring of processors. Each site (processor) is distinguished by a unique identification number (its "identity"). There is no central controller and every processor only has local information about the network topology, namely it only knows its direct neighbours in the distributed system. The problem is to design a distributed algorithm that elects a unique processor as the leader (e.g. the largest numbered one) using a minimum number of messages. Note that the problem is equivalent (up to O(n) extra messages) to the problem of determining the identity of the largest processor on the ring.

We assume that the processors work fully asynchronously and cannot use clocks or timeouts. Hence, we can assume that the algorithms are message-driven: except for the initialization-phase of an election, any processor can only perform actions upon receipt of a message. We also assume the processors and the communication subsystem to be error-free and that links operate in a FlFO-manner.

As to the terminology, a message is any information device which travels around the ring, from one processor to one another, whether they are neighbours or not.

An elementary message, which is a message between two neighbour-sites on the ring will also be called a message. Finally, pip wlll denote the traversal delay of one elementary message (we assume here that all message delay times are equal).

Much work has already been done to obtain good upper and lower bounds for different variants of the problem, both in the worst and in the average case. Tight upper and lower bounds for bidirectional variants of Chang-Roberts decentralized extrema-finding algorithm were presented in [3]. These bounds were established for the probabilistic algorithm given in [12] and [18] (Algorithm P) and for a deterministic version of the same algorithm (Algorithm D). Up until now, these bounds were the best approximation of the average number of messages required by Algorithm P and Algorithm D. In this paper, we derive the exact asymptotic value of the average number of messages required both in Algorithm P and Algorithm D: |J2nH,,+ O(n). This value is obtained by using techniques and results from theory of permutations (inversion tables mainly), average-case analyses involving generating functions (e.g. generating function of Eulerian numbers), and asymptotic techniques (e.g. Stirling formula and Euler-Maclaurin summation formula).

The result confirms the positive answer (given in [3]) to the question (first posed by Pachl, Korach and Rotem) of whether distributed leader finding can be solved more efficiently on bidirectional rings than on unidirectional rings.

The paper is organized as follows. In Section 2, some definitions and preliminary results from the theory of permutations are given. Sections 3 and 4 are devoted to the analysis of the exact asymptotic value of the expected number of messages used in Algorithm P and Algorithm D, respectively: trJ2nH^+O(n). In Section 5, we present the results of experimental tests, achieved on a bidirectional circular configur- ation of 1000 up to 50 000 processors. The experimental values thus obtained may be considered to be in good agreement with the preceding theoretical average value. Tables 1 and2 present an overview of the existing known upper bounds for the leader finding problem, in rings where the size n is unknown to all the processors, and (a priori) without sense of direction on the ring, in the bidirectional variant of the problem. Le Lann (1977) Chang and Roberts (1919) Peterson (1982) Dolev, Klawe and Rodeh (1982) For most of the quoted bidirectional algorithms, the existence of a global sense of direction (i.e. each processor has the consistent global knowledge of the left and right direction on the ring) is unnecessary, although this is of course not the case for the algorithm of Dolev et al. Thus, the average message complexity of Algorithm P or Algorithm D is the same on a ring with or without a global sense of direction. (1984) Bodlaender and van Leeuwen ( 1986) Algorithm P ( 1986) Algorithm D Van Leeuwen and Tan (1985) Moran, Shalom and Zaks (1985) Dolev, Klawe and Rodeh (1982) with sense of direction This paper (1988) The existence of a sense of direction on a bidirectional ring does not actually shrink the auerage message complexity of distribtted extrema-finding algorithms, although this is a priori not the case for any bidirectional distributed election algorithm.

The average lower bound of )nH, on bidirectional rings (with sense of direction, n unknown), derived by Bodlander in [2], displays the existing gap between the coefficients â and ïJ2 to, the average message complexity of the bidirectional distributed leader finding problem (with or without sense of direction on the ring).

Inversion tables

Let n:(orc2 ...an)e e, be a permutation of size n. Associated with z', define its inuersion table t: t1t.> . . . tn such that r, is the number of elements (in rr) to the left of o; larger than o, (1<t<n). Hence, 0s/,<i for all l(1<i<n), and the correspondence between a permutation and its inversion table is one to one.

Lemma2.l (Vuillemin [19]). Theleft-to-rightmaxima (orupperrecords) of apermuta- tion n e 6 n correspond to the occurrences of the ualue zero in the inuersion tables of rr.

Example 2.2. Let n:(236517 a)Greér). The (bold) (ii) The notation l*rlf(*), with/(x) :Lufrxk, reads as "the coefficient of xk in f(x)". Definition 2.3 (Feller [5,p. 48]). The unsigned Stirling number of first kind, s,,.1, are such that s,,,1:Jxk]x(x+t)(x+2)...(x+n-l); and the enumerating poly- nomial of s,,,1 is Ir s,,,rxk:x(x+1)(x +2)...(x+ n-l). Lemma 2.4 (Vuillemin t19]). The auerage number of zero elements in an inuersion table of size n is H,,. The number of inuersion tables of size n hauing k zeros is the unsigned Stirling number of first kind s,,.1,.

The unsigned Stirling number of first kind, s,,.p, iS proved to count at the same time: the permutations rr €. é,, with k upper records, the permutations zr e 6,, with k cycles, and the inversion tables of size n such that l{il1<t{n,ti:O}l :k (see [19, p.23rD.

Therefore, an immediate consequence of Lemmas 2.1 and 2.4 is the following.

Corollary 2.5. The auerage number of left-to-right maxima (upper records) of a permutation ir e 6,, is H,,.

Lemma 2.6. Let r: (o1o, . . . t,,). The auerage distance to the first left-to-right maximum (upper record) of r is H,,-1.

This well-known result occurs repeatedly in the theory of permutations f5,17,11,19,3]. However, this result may be obtained with very direct proofs, using two arguments involving different properties of r e 9,, [13, p. A2|

Proof. On the one hand, it represents nothing indeed but the average number of left-to-right maximaof rr, wheneverwe assume its first element o, to be an upper record. Hence, since the first upper record of rr(ar) is not counted in the enumeration, the average distance to the first upper record, difterent from a,, is the average number of occurrences of the value zero in the inversion tables of size n, minus l: i.e. H^l.

On the other hand, the average distance to the first upper record of zr may simply be derived as the direct solution of a linear recurrent equation. Let D,, be the distance to the first upper record of n, then D,, satisfies the recurrence Dn: Dn-t*@-l)Dn_l+(n-l)!, subject to D,:9

(since o, is the first left-to-right maximum). Now the average value of D" is D^/ n!: D^-r/(n -1)l* lf n, subject to D, : 0; from which we obtain the solution D,, -r.l :=-: S

)Lt n!

)<i<n l/i: H,, -1. f Proposition 2.7. The probability n,,U) that a permutation n e 6 ^ has exactly j upper records ( j > 2), with the leftmost one in position a (a > l) and the rightmost in position Fis il,,U) -[ xj-2J F@-1)(p-1)

Proof. Let G^(x) denote the generating polynomial of permutations ?r e 6, with exactly j upper records (j > 2),the leftmost one being in position a and the rightmost one in position É, so that G,,(x) is conditioned over the values a and B. Let us first consider all the positions of the j left-to-right maxima of o (j > 2) in an inversion table of size n (the leftmost in a, the rightmost in B). Let us then write down all the monomials corresponding to the possible upper records of n.

Positions r23

.(ct-r)a(a+l)... ...(P-r)PG+r) ...n Monomials I 1 2... (a-2)x(x+a)(x* a*1) ... (x+ F -2)x(Ê+1)... n.

The corresponding generating polynomial G,,(x) is derived from the above terms as the product of all the stated monomials, divided by the product of all the positions in an inversion table of size n. Namely, (2.3) Thus, n"U) is the coefficient of xi-2 in G,(x), for ip < o < B <2a; and the value of II"(j) follows. n

Gn(x) - G,, (x) 

Analysis of Algorithm P

We know from [12] that Algorithm P (Fig. l) requires an expected number of messages of at most lnH^+O(n). This value is only an upper bound, because of possible effects of higher ôrder upper records which remain ignored in this evalu- ation. The detailed proof of correctness of the algorithm may be found in [3], or [16].

In the following, we assume that all processors start the algorithms simultaneously (at time 0), otherwise the first message a processor receives serves to wake it up and trigger its Stage 1, before it actually processes the message. For the analyses, we also assume throughout the paper that the processors operate synchronously, and that the algorithms can deal with the case when a processor receives two messages (from both neighbours) at the same moment. Furthermore, we ignore the Algorithm P [3] Each processor f keeps the largest identity (identification number) it has seen in a local variable MAXr (l < i< n). Each processor P; goes through the following stages.

Stage 1 (initialization) MAX,:: o,;

choose a direction d e {left, right} with probability }; send message (o,) in direction d on the ring;

Stage 2 (election) repeat the following steps, until the end of the election is signaled by receipt of a (!) message:

if two messages are received from the left and the right simultaneously, then ignore the smaller message and proceed as if only the larger message is received; if message (o,) is received from a neighbour, then if oi> MAX, then MAX,:: oj; pass message (a;) on else if a,:MAX; then send message (!) on the ring /*Pihas won the electionx/ fi;

Stage 3 (inauguration) if a message ( !) is received, the election is over and MAX, holds the identity of the leader; if this processor was elected in Stage 2 then the inauguration is over, otherwise pass message ( !) on and stop. time necessary for possible internal computations within the processors. These assumptions enable us to have asynchronous, message-driven algorithms, running on a synchronous ring with a fully deterministic behaviour [3]; however, similar results can be proved when weaker assumptions hold.

3.1. Exact eualuation of the expected number of messages Consider a ring of n processors Pr,. .. , P, with identities a, through on. Without loss of generality, we may assume each o, to be an integer between I and n. And thus, r: (o1o2. . . un) is a permutation of 6". Assuming also that the permutations of 6, are equally likely, we can make use of the preceding results to analyse Algorithm P.

First, set i:1; the message (ot) is sent to the right or to the left with probability j. Thus, the expected number of elements in zr visited by (a,) is i(n" -1) whenever P, sends its message (ar) to the right, and â I+H"J whenever P, sends its message (ot) to the left, since from Lemma 2.6, Hn -I is the average distance to the first left-to-right maximum in zr. Accumulating the sum of these two quantities for all (a,)-messages (l < i < n), which are independent random variables, yields the known upperbound of lnH^+O(n) for the average number of messages required by Algorithm P. Now taking also into account the effect of higher order upper records, the exact average value can be determined. Proposition 3.1. The auerage number of (o1)-messages propagated by Algorithm P is exactly f,n,-I,..u(o-iplc"(r+o(1), fo, Lrp(a( 812a, where G^(x) is the generating polynomial defined in (2.2).

Proof. Let vr, u2,.. . , be random variables denoting the position of the first, second, and higher order upper records. We may consider the z;s as independent random variables conditioned over the values a and B; without loss of generality let (o,) be sent to the right. If processors P. to Pu-, randomly choose to send their message to the right while Pp sends its message to the left,thenthe (a,)-message is annihilated by the (oB)-message if the messages meet before P, is reached; i.e. at position l+ li|), prooided F <2o. Otherwise, the (o,)-message is simply annihilated, at P,.

Let rr denote the permutation (o, . . .r.n) € 6, ; then the number of positions in z- visited by message (or) is exactly d-(1 +LàP)), with ip<o<p<2a. Recall now formulae (2.2) and (2.3), and the definition of probability II^("t) and consider the effect of all upper records of r. The average number of (o1)-messages propagated by Algorithm P is N, -+(H"-t) + +L+H") The following asymptotic analysis of S,, in [6], makes use and Euler-Maclaurin (one-dimensional) summation formula techniques). Forpe N define C. Lauault |H,,-iI("-iplc,,(t)+o(t), iB<o12o'.

(3.2) a,B "-lil) -l to "-*F produces indeed an o(r) error rerm; besides, +p+l to F -1, and B ranges from 2 to n. tr Note that the identity Lj=o2-i {lxilf@)I : fG) is obvious, since f (, :L1=of12-i , whenever f(x):L1=of,xi. The coefficient i in (l.Z) comes precisely from the fact that we have here [x/-'1G,,(*) instead of [xi] G,(x). Proof. Accumulating in (3.2) the quantity lr, for all the n (o,)-messages (l < i< n) which are independent random variables yields the exact average number of messages, namely ^/-inH,,-n à@ -iB)G,,(+)+o(n), The sum S,, may then be rewritten with ,;-;Fv; \, +o (;)) , iB < a < B

If we now set a:tF, where "t" ranges between j and I by steps of 1/B, then u(il:âh#;}(,+o(â)),

and by approximation of the discrete sum by an integral (Euler-Maclaurin summa- tion formula), one obtains the asymptotic expression u(il:â{ I,' $}dr+o (;)}, which is uniform in B. And at last, u(il:â {, -zl2+" (;)} of messages used in and (3.5) gives rise to the expression ualue of the -0.707 106 . .

o( n).

S,, fro m (3.4) (Ë) Algorithm P is probabilistic, and hence does not constitute in itself a proof that distributed leader finding can be achieved strictly more efficiently in bidirectional rings than in unidirectional rings. To solve the problem, a deterministic version of Algorithm P is described in [3] in which Stage I is replaced by a fully deterministic stage. The idea is to let each processor P; send its (*a,)-message in the direction of the smallest neighbour and thus get rid of all the smaller neighbours from the outset (Fig. 2).

Stage 1x requires exactly 2n messages and leaves at most [jn] processors active or candidate in the election,viz. the peaks of the permutation îr: (ar ... cn),which clearly pass on to the next stage. The other llnl remaining processors, the "non- peaks" af r, thus stay in the state defeated after Stage l*. By pairing every permutation of G, with one in which the neighbours of P, are interchanged, one can see that Pi sends its (to,)-message to the left or to the right with probability j (averaged over all the permutations of 9,).

Algorithm D [3] Similar to Algorithm P except that for each processor P,, Stages I and 2 are replaced as follows:

Stage 1* send message (*o,) to both neighbours on the ring; wait for the message (*o,-t) and (xa,*,) of both neighbours (with the indices " i -l" and " i * I " interpreted in the usual circular sense as indices of the left and right neighbour, respectively); MAXi:: Distributed election on bidirectional rings of proce.ssor.s For the analysis of Algorithm D, our assumptions (emphasized in Section 3) still hold in the following analysis. [START_REF] Comtet | Analyse Combinatoire, 2 Tomes[END_REF].1. Auerage number of peaks, rises and auerage length of rises and falls

In order to obtain an exact asymptotic estimation of the average number of messages sent by the active processors that pass on to Stage 2* in Algorithm D, we need to know the average number of these active processors (the peaks) and the average distance between two of them. This we obtain thanks to combinatorial average-case results about permutations, namely the expected number of peaks and rises of n, and the expected length of the rises and falls of zr. Lemma 4.1. The expected number of peaks of rr€ G,, it P": j(n + l).

Following is a simple proof of Lemma 4.1, originally proved by Bienaymé in Il].

Proof. Let { denote the (binary) tournament tree associated to the permutati orr ir, and let 7, and T6 denote the left and the right subtree of 9, respectively. It is easily seen that the number of, peaks of r is the number of leaves of I l7l. Let ^lgl denote the number of leaves of î, then Ilgl: ô1v-1.r + À t 4ll gl+ Ilrollgl: 61rtt+ 2lgl^[Tl.

Thus, the ordinary generating function (ogf) of the expectation of À is A(z):L Anz" which leads to the first-order differential equation (1-ù+ A(z)-2A(z) -r-z oz with the solution ,z3z ^(z):+#+;; and, since A(z):+ I @-2)2"+ I zn The expected number of peaks of zr is then [ : Ifu+ 1). The central timit theorem applies; however, since the variance is of order n3 (and whence the standard deviation of order nt/2), it cannot be used to derive the distribution of p^. x Define the set En of "subexceeding functions" on U, nf [8], to be the set of functions f on [1, n] such that"f(t)< i for all i in Il,nf. Then there exists a one to one mapping between the set E" and Gn which may be seen as the correspondence between the crossed squares of the inversion table of a permutation (recall Lemma 2.1)andthecorrespondingvalue/(r)-1(forall 1<i<n),fbeingthenasubexceeding function (see [8, 14] for a more detailed argumentation).

En may be described by means of the formal (non-commutative) polynomial F(xr, ...,xn):x,(x, *x)... (x, *x,r*. . .+x,), from which we can obtain the generating polynomial Fi(t): U-1)l(t+ j -1)...(t+ n-l), of subexceeding func- tions on [1, n] according to the number of times when value j is reached: {(r) corresponds to the length of a rise or a fall of rr. By summing 4Q), j ranging from I to n, one obtains the generating polynomial of the total length of rises and falls of permutations zr, provided that the constant term in 4(r) has value zero.Let a(t):

(4.4) be this generating polynomial. From (4.4),

AO):n.n!-nI+-n:t n!, 22 Q', (l): n p-l 
p'+n! I ptI 1-n P:l 0 Hence, the expected length of rises and falls of ir is L^: @'(l)/@(t): 2n/(n+r). n

Note that the variance is 2n(n + 3) / (n + 1)' -t4/ (n + l)1H,, and the central limit theorem shows that L,,, when normalized, converges to the normal distribution.

Exact asymptotic estimation of the expected number of messages

At the end of Stage 1*, there remain J(n + 1) active processors on average (the peaks of n). The remaining active peak-processors are at least one position apart, and the independence of their choice of direction for sending messages around the ring (left or right) is a priori not guaranteed for all of them. Indeed, for an arbitrary pair i and j, the random variables for the directions of the peaks' messages ((*cr,) and (xa;)) are in general not independenf. However, as proved in the following lemma, these random variables satisfy a condition weaker than independence as they are pairwise independent, in the sense of Feller [5,p. The permutations of 6, are assumed equally likely, and also the order type of the resulting configuration of the peaks of zr is again assumed to be random at the end of Stage 1*.

Let dt dp(l<p<l,n/z)) be the sequence of p random variables denoting the directions towards which the peak-processors' messages (*a,), . . . , (* c.ol are sent Example 4.6. As an example, we may consider the permutation z € G,, with (bold) peakslO,7,ll,6,and12:zr:(8 9 10 1 7 4 11 2 3 6 5 12).Accord- ing to the Stage 2* in Algorithm D, the choice of direction of processors Pro, Pr, Prr, P6 and Pt2 only depends on the respective identities of their (immediate) right and left neighbours on the ring (Fig. 3). P,o sends its (*10)-message clockwise (towards Pt), and so does P,, (towards Pz); whereas Pr,Pu and Pr2 send their respective messages anticlockwise (towards P, , P, and Pr, respectively) around the ring.

This "weak" form of dependence is illustrated in the fact that P6 and P,2 on the one hand, Pt6 and P., on the other hand, are pairwise consecutive peak-processors which send their messages in the same direction around the ring for the first pair, whereas the peak-processors of the second pair send their messages in opposite directions.

In other words, this is an example in which no three consecutiue random variables of the sequence dr,. . . , d, are independent. Hence, the 4s are pairwise independent ((4.5) or (4.6) are verified) without being mutually independent, and the distribution of the messages' directions does not depend on the placement of pairwise peak- processors, even in the case where the latter are exactly one position apart on the ring (Pro and Pr, or Pu and Prz).

Theorem 4.7. The asymptotic ualue of the expected number of messages used in Algorithm D is l'D.nHn*o(n) :0.707106... nln n*o(n).

Proof. Denote by n* : +(n+ 1) the average number of peak-processors, and bV T" the average distance between two consecutive peak-processors.

We know from Lemma 4.3that the average length of rises and falls of ne6, is L:2n/(n + 1). Now, Ç also represents the average distance between two consecu- tive peaks and thus, the average distance between two consecutive peak-processors in the ring. Moreover, it follows from Lemma 4.5, that fortunately, every message within Stage 2* travels along the ring in a direction which is irrespective of the pairwise positions of peak-processors. N, only varies from 0.945 to 0.994. Moreover, the ratios are all sharply close to I (up to 0.6% at best), and the mean ratio of 0.9725...differs less than 2.75% from 1. However, all ratios remain strictly smaller than 1.

The remarks which arise from this sample of tests, though it is certainly too limited an experiment, are twofold. First, the tight experimental values obtained seem to confirm the equality N: ÀL. Secondly, the ratios distribute too systemati- cally below l.

Yet, a conclusion may be drawn from these limited simulations and the apparent contradiction arising from the latter remarks. Indeed, we know that the simulations performed do not bring enough control over the factor O(n) (in spite of the subtraction of 3n from the enumeration), and that the variations in the message transmission delays are not really taken into account in the above tests. This, together with the help of the very full and accurate empirical analysis completed by Mattern in [15], actually enables us to explain the fact that the ratios so systematically distribute below 1: Mattern's experimental results show that the asymptotic value LJl of the coefficient of nH,, is approximated very slowly.

Thus, both the simulation results in Table 3 and Mattern's own empirical analysis of Algorithm P and Algorithm D confirm very strongly the mathematical analysis of the present paper. Therefore, we may conclude that the experimental analyses in [15] and the simulation tests results in Table 3 are in good agreement with the theoretical result obtained in Theorems 3.3 and Theorem 4.7. 

Conclusions

We have presented a detailed analysis which shows that the probabilistic algorithm Algorithm P as well as the deterministic algorithm Algorithm D have the same asymptotic average message complexity for the extrema-finding problem on a C. Lauault bidirectional ring, while requiring nearly the same amount of "time". Besides, the simulation results obtained in the experimental tests show good agreement with the asymptotic constant's value jJ2.

Furthermore, this result is a confirmation of the fact (already proved in [3]) that distributed leader finding can be solved more efficiently on bidirectional rings than on unidirectional rings by a deterministic algorithm. Indeed, combinatorial enumeration and analytic methods (e.g. generating func- tions) prove powerful and general enough to provide efficient tools and cope with most average-case analyses of distributed algorithms and distributed data structures. However, the bidirectional variants of distributed election algorithms seem surpris- ingly harder to analyse on average, and it is still an open problem to find an exact expression forthe variance of Algorithm P and Algorithm D, as well as to characterize the distribution of asymptotic constants for other bidirectional distributed election algorithms [15].

In f2], Bodlaender has shown that any bidirectional leader finding algorithm on rings (with sense of direction, n unknown) requires at least LnH,+ O(n) on average (see Section 1). The gap between the coefficients j and iJ2 rcises the question whether the bidirectional variant of the Chang-Roberts algorithm is average-case optimal. This result also raises the question of determining the average message complexity of other bidirectional distributed election algorithms, and possibly finding average-case optimal election algorithms (with respect to Bodlaender's lowerbound of inH^).

  l'r'2'...'(a -2)'x.(x* a).(x+ a*r). ... .(x+ B -2).x.(B + 1). ... .n l'2'3' . . .'( a -1).a.( a +1). . . . .(P )

Fig. l.

  Fig. l.

2 .

 2 n,u) -2-i {l*i -2lGn(x)} 2-' {l*t JG,(x)} -IG^(t), Asymptotic analysis of 5,,

Corollary 3 . 2 .

 32 The auerage number of messages required by Algorithm p is exactly |nH,flï,,+ O(n), where s,, 2<B<n p(a-lXp-r)

  -lXp-r) which gives the exact average number of messages: |nH,, -nS,, + O( n). t + +Xr + o1). . . ..(l ++) \ 2p/ means of Stirling's formula for la o(r/p)-of Stirling's (see f7l for formula similar 3'5'7' . . . .(2p * l)-_(2p + l)1. . and, by term of 2'4.6.....(2p) p, we have Q, * 22p(pI)t, 2'[p /tG, with an error Distributed election on bidirectional rings of proce.s.çor'.s

  , S,., being uniform in p,

  -'' (o -lB) -lEt

  , -nâ(3 -2'n) +'nnH,+ O (n).

Fig. 2 .

 2 Fig. 2.

  127 and p.220].

Fig. 3 .

 3 Fig. 3.

Table 1

 1 Distributed election algorithms for unidirectional ring
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 2 Distributed election algorithms for bidirectional rings

	63

  An inversion table can thus be pictured as a "staircase": put a cross in each column, the left-to-right maxima are corresponding to the lower crosses (the zeros).

	3.	
	Now using variables to denote the values 0, 1 , (e.g. xr, x2	n -I in the inversion table r of
	tions in G,, is fully described by the polynomial	
	xo(xo*x,)(xo*xl+ x)...(xo*xr+. . .+ xn-t) 1 11 lst column 2nd column 3rd column	(2.1)
	Itlotation	
	(i) The nth harmonic number is denoted by	
	expansion H,,-ln n+y+in-t+o(n-2) ^-0.693 .	
	Euler's constant); ln n is the neperian logarithm of	

upper records of r are 2 3 6 517 4.

C. Lauault and the inversion table of n is such that t:0

  the following steps, until the end of the election is signaled by receipt of a (!) message: if two messages are received from the left and the right simultaneously, then ignore the smaller one and proceed as if the larger message is received; if message (*o,) is received from a neighbour then

	max{*û;-r,*ti, *o,*,}; if MAXi -*o, then if *o,-, 1*6,*, then send message (*o,) to the left
	else send message (*o,) to the right
	fi	
	fi;	
	Stage 2* (election)
	il *o,> MAX, then MAX,;-*o.i .,
	pass message (*ar) on else if *oj:MAXi and *o,:*o; then send message (!) on the ring
		/* P, has won the electionx/ else if *o;: MAX, and *o; #*o, then pass message (*o;) on
	fi;	/xthe neighbour of P, will win the electionx/

repeat (Stage 3 remains unchanged)

Table 3

 3 Average number of messages Àf used in Algorithm D, and ratio Àf/ N

	Number n	N-+'n.nH,+O(n)	lW-average number	Ratio nll lf '
	of processors		for 70 tests	
	20 000	r40 056.46	r37 290.687	0.98
	30 000	2r8 685.9	2r8 355.758	0.966
	40 000	299 718.09	288 9s5.7	0.964
	50 000	382 536 .929	378747.r	0.994
			(for 50 tests)	
	l 000	4884.5	47 33 .2	0.945
	5000	30 112.825	29 7 35.5	0.985
	10 000	65 126.94	637 4	0.97 7
	a The mean ratio, 0.9725		
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Proof. Louis Comtet, for example in [4], shows that the eulerian numbers A(n, k) count the number of permutations rr e 9, with k rises. The bivariate exponential generating function (bgfl of eulerian numbers, U(t,z):l+I A(n,H+f-l n,k n! has the value (see 14, p. 63, T. 1]) U(t, z): =,1;J et(r-l)_l'

Hence, developing (4.1) with regard to (t -1), /\/ u(t,z)4 r znf +(1-r){ r +r")*(1:r)2 \,,21 / \"!z 2 /

Considering the bgf U (t, z) and its derivatives in tlr"lU (t, z)t, _t -I A(n, k) :

The mean &: (4.3)/(4.2)+ 1: \(n+ 1), and the variance var(R,,):(n+1)/12 are easily derived from the above identities. In this case, the standard deviation being of order Ji,the central limit theorem shows that R,,, when normalized, converges to the normal distribution.

Note that the expected number of falls of zr is then j(n -t). f Lemma 4.3. The expected length of rises and falls of rr e g, is h:2n/(n + 1).

Proof. Let us first recall the fundamental one to one correspondence (due to J.

Françon and G. Viennot [9, 10]) between permutations of É, and weighted paths, with n -1 steps, from altitude 0 to altitude 0 with possibility functions: posr(k):

k+l,pose(k):2(k+1)andpos-,(k):k+ 1(recallthattheinitialandfinalelements of a permutation re6n are recognized by notationally placing azero at both ends of n; whereas in a circular configuration of processors, we assume that of course the "first" and "last" elements of n are the same).

(n-2)(3n-s)

I2 n! on the ring, and direction on the the following.

C. Lauault let this sequence of variables be such that d, equals the left or right ring for the message (*o,).From [5, p. 127 andp.220f, we have Definition 4.4. The p random variables dr, . . . , dn are pairwise independent if they are not mutually independent though their distributions and joint distributions verify the identitv Pr{di:l,d -r}: Pr{di:l}.Pr{d -r}, foranarbitrarypair i and j (1<i,j<p). (ii) In the case where two consecutiue peak-processors are exactly one position apart on the ring, the directions d, , . . . , d, at the end of Stage l* are not mutually independent random uariables, but satisfy the weaker (and sufficient) property of being pairwise independent, according to identity @.5) of Definition 4.4.

Proof. The first claim of Lemma 4.5 is straightforward, since the direction of messages at the end of Stage 1* cannot depend on the respective placement of consecutive peak-processors which are at least two positions apart around the ring t3l.

The proof of the claim (ii) of Lemma 4.5 is a little more involved. Let us consider two consecutive peak-processors .( and P, which are exactly one position apart around the ring and the directions d, and d;, r€spectively (1 < t <p). Suppose di: r and dr: /, for example; the following equalities hold:

Pr{d, -r}: Pr{*o,-, 1*o,*r}: tr, Pr{dt -/}: Pr{*o;*r < *a;-,}: } (i-1, i* 1, etc. being taken modulo n). Now, -Pr{di:r} 'Pf{di:l}, and the above identities (a.6) still hold for d,: l, dj: r, or d,: di: l, etc. But the p identically distributed random variables d, d, are not mutually independent whenever at least two of them correspond to peak-processors which are exactly one position apart on the ring. In such a case indeed, the distributions and joint Therefore, the probability that a message is sent to the right or to the left is j, and we are brought back to the average-case analysis of Algorithm P. In this case, Algorithm P revisited, the asymptotic expected number of messages is |,D.n* H,-+ iJ2n* I-"Hn*O(n), when accumulating the average distance Ç for all the n* peak-processors. And since 2n\--.^, r ,/x(n+l)/-.2n\--)J2r* (l+,,+r ) n,.+o(n):tJ7ï(t*fr) ,"*o(n),

the asymptotic expected number of messages propagated in Algorithm D is iJ2iG"+t)H^+o(n) : lJ2nH,, +o(n) n

In the case when s ( n starters/initiators start Algorithm P and Algorithm D, the previous results remain basically valid; namely, the expected number of messages propagated in both algorithms is then iJ2nH,+O(n).

Note however that we assumed (Section 3) that all the processors start the election "simultaneously" and work synchronously. The first assumption allows us not to consider the case when there exists s < n initiators, and the second assumption (together with the first one) yields an O(n) "time" complexity for both Algorithm P and Algorithm D: viz. in the best case, n + )n and n+ I + jn pips, respectively; in the worst case, 3n and 3n*l pips, respectively; 2n and 2n * 1 pips on average, respectively ("pip" is the elementary delay time defined in the Introduction). In this case, the in pips applies to the delay time elapsed for the inauguration of the leader.

As to the worst-case message complexity of Algorithm P and Algorithm D, note that Bodlaender and van Leeuwen proved in [3] that the maximum number of messages is )n2 and lnz, respectively.

Experimental tests

In the following tests, the basic theoretical number of messages which is considered is the expected message complexity,LJ2nlnn of Algorithm P. The number of messages computed by the sequent machine (a 12 processors PRAM) is the total number of messages propagated during the processing simulations of Algorithm D minus 3n. The implemented algorithm is actually quasi-synchronous, since the minimum and maximum message delay times range between 1 and 2, respectively (some tests performed with message transmission delays ranging from 1 to 100 do not apparently alter the preceding results). All the n processors which participate in the election have distinct (pseudo-random) identification numbers, randomly drawn from a 9-digits decimal generator.

In the 70 experimental tests performed (with 1000 to 50 000 processors), the ratio lW/N of the average number of simulated messages to the theoretical average value Distributed electiort on bidirectional rings of proces.sors