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1. Introduction

In the sequel, we consider the problem of finding a leader in an asynchronous bidirectional ring of
processors. Each processor is distinguished by a unique identification number (its "identity"). There is no
central controller and every processor has only locai information about the network, namely it only knows
its direct neighbours in the distributed system. The problem is to design a distributed algorithm that elects
a unique processor as the leader (e.g., the largest numbered one) in using a minimum number of messages.

We assume that the processors work fully asynchronously and cannot use clocks or time-outs. Hence,
we can assume that the algorithms are message-driven: except for the initialization phase of an election,
any processor can only perform actions upon receipt of a message. We also assume the processors and the
communications system to be error-free.

As to the terminology, a message is any information device which travels around the ring, from one
processor to one another, whether they are neighbours or not. An elementary message, which is a message

between two neighbour sites in the ring will also be called a message. Finally, one pip will denote the
traversal delay of one elementary message.

Much work has already been completed to obtain good upper, lower and average bounds for different
variants of the problem. In [1], tight upper and lower bounds for distributed leader-finding in bidirectional
rings are presented. These bounds are exhibited for the probabilistic algorithm given in [8,12] (Algorithm
P) and for a derived deterministic version of the latter (Algorithm D). Up to now, this result was the best
approximation of the average number of messages required in Algorithm P (an upperbound of
0.7075...nHn+O(n) and a lower bound of 0.7033...nHn+O(n)) and Algorithm D (previous upper
bound).

In this paper, we derive the exact asymptotic average value of the number of messages required in
Algorithm P and Algorithm D. This value is obtained by use of considerations from the theory of
permutations and combinatorial enumeration arguments. The main result of this paper asserts that both
Algorithm P and Algorithm D have the same asymptotic average message complexity o12-1/2nHn + O(n).
The result leads to a positive answer to the question (first posed by Paclrl, Korach and Rotem) whether
distributed leader-finding can be solved more efficiently in bidirectional rings than in unidirectional rings
by a deterministic algorithm (this actually follows from the results in [1]).
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2. Inversion tables (cf. Vuiltemin ll3l)

*xn-t)
A
I

(n - l)st column

Therefore, an immediate consequence of Lemm ata z.r

2.4. Corollary. The auerage number of left-to-right maxima

2.5. L,emrna. Let îr : (oror. . - or). The auerage distance to
,rT is H, - 1.

LeT n: (ofz ' ' ' o) c 6n be a permutation of size n. Associated with n., define its inuersion tablet: ttt2 "' l, such that ti is the number of elements (in zr) to the left of o, that are larger than o, for all i
(1 <t<n).Hence,0</,<iforallt(1 <i<n),andthecorrespondencebetweenapermutationandits
inversion table is one-to-one.

2'1' Lemma (Vuillemin [13]). The left-to-right maxima (or upper records) of a permutation r e @,
correspond to the occurences of the ualue zero in the inuersion tablà of n.

Ifoneusesvariablestodenotethevalues0, 1,...,n-lintheinversiontableIofapermutationrî(e.g.,
x1. x2;...,xn-t), then the set of all inversion tables corresponding to all permutations of size n is fully
described by the polynomial

xo ("0 * xr) ("0 * xl + xz)
111

lst column 2nd column 3rd colurln

("0*xr+
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(2 r)

Notation. (i) The nth harmonic number is grven by H,:Li:l/i, with asymptotic expansion IIn:
ln n*y+ in+O(n,-z)-0.693... lg n (wheie y:O.Sli'... is Euler,s consrànri; ln, is the Neperian
logarithm of n and lg n denotes the logarithm taken to the base 2.

(ii) The notation [ro]f(r), with /(x) :L*fr,xk, reads as.,the coefficient of xk in 11x1,,.

2-2. Definition (12, p. 481).The unsigned Stirling numbers of the first kind, s,.1,, àtE such that

sn,k: fxklx(x+ 1)(x + Z) ... (" + n - 7);

thus the enumerating polynomial of s,,o isLosn.oxk:x{x+ 1)(x +z)...(x+ n-r).
2'3. Lemma- The auerage number of zero elements in an inuersion table of size n is H,. The number of
inuersion tables of size n hauing k zeros is the unsigned Stirling number of the first kind s^','0.

Proof. The unsigned Stirling number of the first kind, sn,o, is proved in [13] to count both the
permutations ?7c6, with k upper records and the inversion tables of size n such that l{i 11<i çn,tt:0jl:k. D

and 2.3 is the following corollary.

{upper records) of a permutation ,rT e g , is Hn.

the first left-to-right moximum (upper record) ,f

Proof. This well-known result repeatedly occurs in the theory of permutations; see [13,1] for example; and
[9,10] for a more direct proof of this result. n

2.6.Proposition.Theprobabilityn,U)thatapermutation,rTe6nhasexactlyjupperrecords(j>2),with
the leftmost one in position a (a > l) and the rightmost in position B is

nn(i) - [xi-zf

168

B@- 1)(p - 1) (2 2)



Volume 30, Number 4 INFORMATION PROCESSING LETTERS 2l February 1989

Proof. Let G,(x) denote the generating polynomial of permutations , e 6 n with exactly / upper records
( j >- 2), the leftmost one being in position a and the rightmost one in position B: G,(x) depends on the
values u and B.

Inthefirstplace,letconsiderallthe positions of theT left-to-rightmaxima of rr (j22)in aninversion
table of stze n (the leftmost in a, the rightmost in B). Let us then write down all the monomials, each
corresponding to the possible upper records of z':

Positions:

123 (a-1)"(a+1)
Monomials:

772 (a-z)x(x+a)(x+a+1) (x+B-z)x(B+t) n.

The corresponding generating polynomial G,(x) is derived from the above terms as the product of all
the stated monomials, divided by the product of all the positions in an inversion table of size r. Namely,

G"(r): r.'-2...(a -2)-*.('+cr)'("*c* 1)... Q+ B-z)-x-(P+ r).-."

and

x2
G,(x ) : Ê("-1xp-1)

Secondly, expressing the generating polynomial G,(x)
n n( j), we get

nn(,r) xi - x2 n,(,t) xi-z. Q.3)

G,(x) for TP . a <2a and the value of nn(,r) follows. nThus, n n( il is the coefficient of x i -2

3. Analysis of Algorithm P

We know from [8,1,12] that Algorithm P requires an expected number of messages of at most
]nH,* O(n). This value is only an upper bound, because the possible effect of higher-order upper records
was ignored in this evaluation.

Algorithm P (Bodlaender and Van Leeuwen [1])
Each processor f, keeps the largest identity (identification number) it has seen in a local variable
MAX' (1 < i < n).
Each processor f; goes through the following stages.
Stage 7 (initialization): MAX;::o;, Ghoose a direction de{left, right} with probability }; send
message (o,) in direction d on the ring;
Stage 2 (election): repeat the following steps, until the end of the election is signaled by receipt of
a (!) message: if two messages are received from the left and the right simultaneously, then ignore
the smaller message and proceed as if only the larger message is received; if message (o,) is
received from a neighbour, then
it o1> MAX,then MAX,::o;, FâSS message (or) on

else if or: MAX, then send message (!) on the ring / * f; has won the election * 7
fi;

(tf-2\
\ p1 )

as the generating function of the probability

T
j >_-2

in

I
j >-'2
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stage 3 (inauguration): if a message (!) is received, the election is over
identity of the leader; if this processor was elected in stage 2, then the
otherwise pass message (!) on and stop.

One easily verifies that a processor { wins the election if and only if its identity succeeds in making a
full round along the ring in a direction chosen in Stage 1. The correctness of the algorithm is proved in
[1,11]. In the following analyses, we assume that all processors start the election simultaneously and that
the processors work synchronously.

3.1. Exact eualuation of the expected number of messages

Consider a ring of n processors P1, . . ., P, with identities o, through o,. Without loss of generality, we
may assume each o, to be an integer between 1 and n. Thus, n:(oro2...o,) is a permutation of 6,.
Assuming also that the permutations of 6 n are equally likely, we can make use of the preceding results to
analyse Algorithm P.

First, set i: 1; the message (or) is sent to the right or to the left with probability ]. Hence, the
expected number of elements in z visited ("r) rs l1tt,- 1) whenever P, sends its message (or) to the
right, and +L+H") whenever P, sends its message (or) to the left since, from Lemma 2.5, H,-1is the
average distance to the first left-to-right maximum in z. Accumulating the sum of these two quantities for
all (or)-messages (1 <tçn), which are independent random variables, yields the known upper bound of
]nH,* O(n) for the average number of messages required by Algorithm P. Now taking also into account
the effect of higher-order upper records leads to the exact avera1e value.

3.1. Proposition. The auerage number of (or)-messages propagated by Algorithm P is exactly

]n,- I ("- +p)G^(i) +o(r), .fo, lB."<B<2o,
a,B

where G,(x) is the generating polynomial defined in (2.2).

Proof. Let vr, vr,. . . be random variables denoting the position of the first-, second-, and higher-order
upper records. We may consider the z, as independent random variables conditioned over the values a and
B, and suppose (ot) is sent to the right without loss of generality. If processors P" to Pp-1 randomly
choose to send their message to the right as well, but Po sends its message to the left, then the
(ot)-message is annihilated by the (or)-message if the messages meet before { is reached; i.e., at position
1+[+Bl, prouided Ê<2o. Otherwise, the (or)-message is simply annihilated at po. Hence, let zr denote
the permutation (o, ' . . on) e 6,i the number of positions in z visited by message (o1) is exactly
c - (1 + [+PJ), with ]B < d < B <2a. Recall now formulae (2.2) and,(2.3), and the definition of probabil-
ity n,,(i) and let us examine the effect of all upper records of rr. The average number of (or)-messages
propagated by Algorithm P is

27 February 1989

and MAX, holds the
inauguration is over,

I 2-i{[r1-2]c,(")]: + I 2-i{[''fG,(")]
j >2 j >-2

*G,(+ ),

I (a - Li Bl - t) rr,(., )
arB

(3 1)

(3.2)

and, since

I2-jnn(,r)
j >-2

:
have

I[- ]u,- *I(a- +p)G"(+) +o(1) (ïB<a <zcy).
arB

we

na
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Note that the identity L,,r92,l{!rive)}:f(+) is obvious, since /(}):Lirof,z-t, whenever f(x):
\irofi*t. The coefficient ] in (3.2) comes precisely from the fact that we have'tieié'pi-,1G^(x) insiead of
fxr]G"(x). !
3.2- Corollary The auerage number of messages required by Atgorithm P is exactly |nH, - nS, + O(n), where

"t: r r +- 7 1,,1\t 't \ / 1 \

2<É'<n urr?,.paBG-lxp-1) l,t* 2 )\1 
+ ù+1/ (t. TË4)

Proof. Accumulating in (3.2) the quantity { for all the n (o,)-messages (1 < i < n), which are independent
random variables, yields the exact average number of messages, namely

ft:|nHn-n I I à("-i1yc,(])+o(n).
2<É<" B/2<e<B

Now,

G,(+): .---i,-='fr * l)lr * ^ | ^ ) ft * =j . ).B@-1XB-1)\^ 2a)\- 2ai-2l \'- 2p-4)'
and summing respectively over B (2 < É < n) and a (+p < d < p),

p : ]nH.- n uL+i#fu(' . *)(' . rir) (' . ;4) * o,,,

(3.3)

whence we obtain (3.3) the exact average number of messages: ]nH, - nsn + o(n). tl

The remaining calculations concern the asymptotic behaviour of s,.

3.2. Asymptotic analysis of S, (cf Flajolet [4J)

The following asymptotic analysis of S" makes use of Stirling's formula and the Euler-Maclaurin
(one-dimensional) summation formula. For p e N, define

Qo: (7+ +)(1 + *) " (t * :) : 3'-s'.7'-" (2P+]) : (Vp +t)''/\ -/ \- 2pl z-4-6...(zp) zrr(pt)'
and, bymeans of Stirling's formula for large p,wehave Qo-ZtElG with an error term of O(1). The
sum S, may then be written with the Or's as follows:

.s:lrQp-t' ("-à€)__1 r / r g==,("=;.{).'} 
(3.4)vn 

a ?o Q" B@_ 1XB _ 1) - 4 ,â=,\urr|.u O" pclnÉrt/
Denote by u(B) the inner sum (with index c). For B large enough, by Stirling's formula,

u(P)-n#rt* GB.o.É)

If we now set a: /B, where t ranges between ] and 1 by steps of I/8, then

r 1'- (,_ à) .1\u(P)-pv tfr pl'

177
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and by approximation of the discrete sum by an integral (Euler-Maclaurin summation formula), one gets
the asymptotic expression

u(P): 1 t t'r (t - +) )

Ft{,Édr+o(1 /P)}

which is uniform in p. And at iast,

,( B)

which yields the following theorem.

(3.5)

3.3. Theorem. The asymptotic ualue of the expected number of messages used in Algorithm P is nHn/ tE +
O(n) : 0.707106... n ln n + O(n).

Proof. From 1:.:;, F: |nH,- rS, + O(n). The exact computation of S, from (3.4) and (3.5) gives rise to
the expression

S,,: 1r *r 3 -2,/1)+47p\- o(1);

and since LO(I/P): O(1) (S" being uniform itr É), we have

N:lnH,-nQ-?'/')I* *o(,): *nr,+o(n). !.+ sp ,/Z

4. Analysis of Algorithm D

Algorithm P is probabilistic, and hence does not constitute in itself a proof that distributed leader-find-
ing can be achieved strictly more efficiently for bidirectional rings than for unidirectional rings. To solve
the problem, a deterministic version of Algorithm P is described in [1] in which Stage 1 is replaced by a
fully deterministic stage. The idea is to let each processor P, send its (*o,)-message in the direction of the
smallest neighbour and thus get rid of all the smaller neighbours from the outset.

Algorithm D (Bodlaender and Van Leeuwen [1])
Similar to Algorithm P except that for each processor f;, Stages 1 and 2 are replaced as follows:
Stage 1*: send message (*o,) to both neighbours on the ring: wait for the message (*o,_.,) and
(*o,*r) of both neighbours; MAX,': maX{ *o,-.,, *o1, *o;a1}i

if MAX,: *oi then if *o,_., 1*o,*-, then send message (*o,) to the left
else send message (*o,) to the right

fi
fi;
Stage 2" (election): repeat the following steps, until
of a (!) message: if two messages are received from

172

the end of the election is signaled by receipt
the left and right simultaneously, then ignore



Volume 30, Number 4 INFORMATION PROCESSING LETTERS 27 Febru ary 1989

the smaller one and proceed as if the larger message is received; if message (*o,) is received from
a neighbour, then
if *oi > MAX, then MAX, ,- * oi pass message ( *or) on

else if o7: MAX, ând *o,: *6-

then send message (!) on the ring / * E has won the election * /
else if *o;: MAX' and *o,+ *o, then pass message (*or) on /" the neighbour of

I willwin the election * ,/
fi;
(Stage 3 remains unchanged).

Stage 1* requires exactly 2n messages and leaves at most []nl processors active or candidate in the
election, viz. the peaks of the permutation r': (o, . . . o,,), which clearly pass on to the next stage. The
other ln remaining processors, the "non-peaks" of z, thus stay in the defeated state after Stage 1*. By
pairing every permutation of 6, with one in which the neighbours of P, are interchanged, one can see that

{ sends its (*o,)-message to the left or to the right with probability } (averaged over all the permutations
of 6,).

4.1. Auerage number of peaks, rises and aûerage length of rises andfalls

In order to obtain an exact asymptotic estimate of the average number of messages sent by the active
processors that pass on to Stage 2* in Algoirthm D, we need to know the average number of these active
processors (the peaks) and the average distance between two of them. This we obtain thanks to
combinatorial average-case results about permutations, namely the expected number of peaks and rises of
r, and the expected length of the rises and falls of r.

4.1. Lemma. The expected number of peaks of n e 6 , is \: ]1n + f ;.

Proof. To derive Pn, we use combinatorial enumeration methods developed by Flajolet (e.g., in fafi. Let î
denote the (binary) tournament tree associated to the permutation rz, and let Q and 7o denote the left and
the right subtree of. I respectively. It is easily seen that the number of peaks of zr is the number of leaves

of .7. Let )tf.Tl denote the number of leaves of. î; then

t l.s i : 6tutJ* À[4] |s | +^lrdll.r l: ô1v,|,r + zls| À[r].
The ordinary generating function of the expectation of À is thus

A(r) : LA,r^ : z * 2 ['1'Q)J+, 
^(o) 

:o" J6 ' 'L-x

which leads to the first-order differential equation

(t-z)lurl-zA(z\:r-z'oz
with solution

1r37

^('):ira+T:z;
and, since A(z) : IL^, ,(n - 2) + Ln >rzn (ordinary generating function of A(z) obtained from the above .

solution),

An: lt^ ]^( z): ifu - 2) * 1 :
The expected number of peaks of îr is then

+ 1).

I@+1). D

iU
1-
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Note that, as a consequence, one obtains a well-known result in the theory of permutations: the average
number of peaks and valleys of r is i@ + 7).

4.2.læmma. The expected number of rises of n e.6 n is R,: à@ + 7).

Proof. Comtet, for example in [2], shows that the Eulerian numbers, A(n, k) count the number of
permutations z€6, with k rises. The exponential generating function of Eulerian numbers U(t, z1:1
*L,.rA(n, k)(2"/nl)tk-l has the value

(t(t, z) : ,';,'
ez(t-1) - I'

Whence, by developing (4.1) with regard to (r - 1) we obtain

u(t, z):( f ,'\*(1 -,)( y n -rr z') * (1 
;t)'f I\n>1 I \n>-2 t I t \n>3

Considering U(t, z) and its derivatives in /: 1, we obtain

f z"l(I(t, z) | ,:r: )o(", k) : n!,

â

lt"f tu 
r-t(t, z) l,:1 : I( k-l)A(n, k): l@ - 1)r,.,

72
l"t"] ^ , LI(t, z) l,:1: I( k- 1X k-2)A(n, k) -dt' k

(4.1)

(n-2)(3n-5)
T2

,")+

(4.2)

(4.3)

(n-2)(3n-5)
T2

n!.

The mean 4: (4.3)/(4.2) + l: I@ + 1), and the variance var(R") :J, + l)/12 are easily derived from
the above identities. In this case, the standard deviation is of order ,/n . -|he central limit theorem shows
that R,, when normalszeô, converges to the normal distribution. E

4.3. Lemma. The expected length of rises and falls of n e 6 n is L,:Zn/(n + 7).

Proof. Let us first recall the fundamental one-to-one correspondence (due to Françon and Viennot [5])
between permutations of 6, and weighted paths [6].

Besides, define the set ,8, of "subexceeding functions" on [1, n] to be the set of functions / on [1, n]
such that /(t) < i for all i in [1, n]. Then there exists a one-to-one mapping between the set En and 6,
which may be pictured as the correspondence between the crossed squares of the inversion table of a
permutationandthecorrespondingvalue/(i)-1(foralll<i<n),/beingthenasubexceedingfunction
(see [10] for a more detailed argumentation). .8" may be described by means of the polynomial

F(*r,..., xn) :"r(", + x2)... (", * x2* ... +*,),

from which we can obtain

IU): (j- 1)!(r+j- 1)...(r+ n-r),

the generating polynomial of subexceeding functions on [1, r] according to the number of times when
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value / is reached: {(/) corresponds to the length of a rise or a fall of r. By summing up 4(/) on index 7
from 1 to n, one gets the generating polynomial of the total length of rises and falls of permutations z. Let

n-I
d(t): I {it(t+i).e .(r+n-

-/:0

be this generating polynomial. From (4.4)

1))-nrÇ

@(1) : n.nt. - aL;! : L#nt, and
LL

n- lr n n P-l
@'(1): I,r! I p-'+"tLp-'L:n.nt.

whence ,: *'rrr)*ir:::;r. rl, ,n" *0.*"i tength or rises and ralls or n. n
Note that the variance is 2n(n + 3)/(n + 1)2 - (/(n + l))H,, and the central limit theorem shows that

2,, when normalized, converges to the normal distribution.

4.2. Exact asymptotic estimation of the expected number of messages

At the end of Stage 1*, there remain à(n + 1) active processors on the average (the peaks of r). We
know from Lemma 4.3 that the average length of rises and falls of n e 6" is Ç: Zn7çn + 1). Now, f
also represents the average distance between t'wo consecutive peaks, and thus, the average distance
between two consecutive peak-processors in the ring.

4.4. Theorem. The asymptotic ualue of the expected number of messages used in Algorithm D * nH,/ tE +
O(n):0.707706... n ln n+O(n).

Proof. Denote by ,* : *(" + 1) the average number of peak-processors and by Ç the average distance
between two consecutive peak-processors.

At the end of Stage 1*, the remaining active peak-processors are at least one position apart, and'the
independence of their choice of direction in sending their messages around the ring (left or righQ is a priori
not guaranteed for all of them. Indeed, for an arbitrary pair I and J, the random variables for the
directions of the peaks'messages ((*o,) and (*or)) are in general not independent.However, as proved in
ïI2, pp. 580-5821, these random variables satisfy a condition weaker than independence as they are
pairwise uncorrelated. Instead of having independent identically distributed random variables, we may
claim that their process is stationary.In other words, the distribution of the messages'directions does not
depend on the placement of the peak-processors (the proof is given by Breiman in [2, Chapter 6, p. 105
and p. 120-Problems 14 and 151).

Hence from [2] andfl2l, fortunately, every message within Stage 2* travels along the ring in a direction
irrespective of the pairwise positions of peak-processors (this "weak" form of dependence is illustrated in
[10]). Therefore, the probability that a message is sent to the right or the left is ], and v/e are brought back
to the average case analysis of Algorithm P.

In this case then (Algorithm P revisited), the asymptotic expected number of messages is n*H,*/ A +
n*Çn,7rlI *O(n), when accumulating the average distances \for all the n* peak-processors. And
since

(4.4)

#"-('. *h)ur *o(n): h9+('. *h)r,*o(n),
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the asymptotic expected number of messages propagated in Algorithm D is

27 February 1989

1 3n*1
trïHn*o(n): #trH,

+O(n). u

Note that we assumed that all the processors start the election "simultaneously" and work synchro-
nously. The first assumption allows us not to consider the case when there exist p < n initiators, and the
second assumption (together with the first one) yields an O(n) "time" complexity for both Algorithm P
and Algorithm D: viz. in the best case, n + ln and n * 7 * ]n pips respectively; in the worst case, 3n and
3n*! pips respectively; on the average 2n and2n*I pips respectively. In this case, the ]n pips applies
to the delay time elapsed for the inauguration of the leader. As to the worst-case message complexity of
Algorithm P and Algorithm D, Bodlaender and Van Leeuwen proved in [1] that the maximum number of
messages is lnz and, f,n2 respectively.

5. Conclusions

We have presented a detailed analysis which shows that the probabilistic algorithm Algorithm P as well
as the deterministic algorithm Algorithm D have the same asymptotic average message complexity for the

election problem in a bidirectional ring. The present result is a confirmation of the tight bounds derived in
[1] and of the proof in I1l that distributed leader-finding can be solved strictly more efficiently in
bidirectional rings than in unidirectional rings by a deterministic algorithm.

Indeed, combinatorial enumeration and analytic methods (e.g., generating functions) prove powerful
and general enough to provide efficient tools and to cope with most average-case analyses of distributed
algorithms and distributed data structures.

However, the bidirectional variants of distributed election algorithms seem surprisingly hard to analyse
on the average, and it is still an open problem to find an exact expression for the variance of Algorithm P

and Algorithm D, as well as to characterize the distribution of asymptotic constants for other bidirectional
distributed election algorithms.
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