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Abstract

A Stochastic Differential Equation (SDE) appearing in mathematical finance is consid-

ered in random environment by assuming that its two parameters are switched by an

unobserved continuous-time Markov chain whose states represent the states of the mar-

ket environment. A Dirichlet process is placed as a prior on the space of the sample paths
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2 1 INTRODUCTION

of this chain, leading to a hierarchical Dirichlet model whose estimation is done both on

simulated data and on a real data set from the Indian market.

Keywords: Dirichlet process, Markov regime switching, random environment, Stochastic

Differential equation, Geometric Brownian motion, Asset price.

1 Introduction

Models in which parameters move between a fixed number of regimes with switching con-

trolled by an unobserved stochastic process, are very popular in a great variety of domains

(Finance, Biology, Meteorology, Networks, etc.). This is notably due to the fact that this

additional flexibility allows the model to account for random regime changes in the environ-

ment. In this paper we consider the estimation problem for a model described by a stochastic

differential equation (SDE) with Markov regime-switching (MRS), i.e., with parameters con-

trolled by a finite state continuous-time Markov chain (CTMC). Such a model was used, for

example, in Deshpande and Ghosh (2008) to price options in a regime switching market.

In such a setting, the parameter estimation problem poses a real challenge, mainly due to

the fact that the paths of the CTMC are unobserved. A standard approach consists in us-

ing the celebrated EM algorithm (Dempster, Laird, Rubin, 1977) as proposed for example

in Hamilton (1990). Elliott, Malcolm and Tsoi (2003) study this problem using a filtering

approach.

In the present paper, our estimation approach is Bayesian, the aim being to find a pair (pa-

rameters, CTMC path) with likelihood as large as possible. approach. We refer the reader

to Schnatter (2006) for a wider discussion on Markov switching models and the comparative

advantages of the Bayesian approach. Standard priors are placed on the parameters space

but, as the CTMC paths are unobserved, a large number of paths are drawn from a Dirichlet

process placed as a prior on the path space of the CTMC. The complete model then appears
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as a Hierarchical Dirichlet Model (HDM), as in Ishwaran, James and Sun (2000) and Ish-

waran and James (2002). The estimation procedure for the model considered in this paper

requires some rather nontrivial computations of posterior distributions due to the tempo-

ral level induced by the specific SDE and the CTMC. Using the well-known stick-breaking

approximation, each set of iterations selects the pair with largest likelihood and then the

Dirichlet process is updated in order to look for other paths which can further improve the

likelihood.

The considered SDE is that of a geometric Brownian motion, a popular model for asset prices

in mathematical finance which depends on two parameters, namely the drift and volatility.

It is considered in the extended MRS setting so that the CTMC transitions correspond to

regime changes in the market.

The rest of the paper is structured as follows. In Section 2 we present the stock price SDE

with MRS and the complete HDM. Section 3 is devoted to the posterior computations. The

estimation algorithm is described in Section 4. Numerical results are presented in Section 5

for one simulated data and on a data from the Indian market. We conclude with a summary

in the last Section.

2 Markov regime switching with Dirichlet prior

Our model is specified in a mathematical finance setting but can be extended similarly to

many similar models. We model the stock price using a geometric Brownian motion with drift

and variance depending on the state of the market, the latter being modeled by a continuous

time Markov chain. In what follows, the notation σ will be used to denote the variance rather

than the standard deviation.

The following notations will be adopted:
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1. n will denote the number of observed data and also the length of an observed path.

2. M will denote the number of states of the Markov chain.

3. The state space of the chain will be denoted by S = {i : 1 ≤ i ≤M}.

4. N will denote the number of simulated paths.

5. Given a path of the CTMC, m will denote the number of distinct states in that path.

We now describe the model:

• Let (Xt) be a CTMC taking values in the set S = {i : 1 ≤ i ≤M} which represents M

possible states of the market. The transition probabilities of this chain are denoted by

pij , i, j ∈ S and the transition rate matrix is Q = (qij)i,j∈S with

λi > 0, qij = λipij if i 6= j, and qii = −
∑
j 6=i

qij , i, j ∈ S.

• The stock price follows the following SDE:

dSt
St

= β(Xt)dt+
√
σ(Xt)dBt, t ≥ 0,

where Bt is a standard Brownian motion. By Ito’s formula, the process Zt = log(St)

satisfies the SDE,

dZt = µ(Xt)dt+
√
σ(Xt)dBt, t ≥ 0,

where µ(Xt) = β(Xt) − 1
2σ(Xt). Let the observed data be denoted by Z0, Z1, . . . , Zn,

and define the log-returns as, Yt = Zt − Zt−1 = log(St/St−1), t = 1, 2, . . . , n. Given the

path X = {Xs, 0 ≤ s ≤ n}, let Tj(t) be the time spent by the path X in state j in the

time interval [t− 1, t]. Define

µ(t) :=
M∑
j=1

µjTj(t); σ(t) :=
M∑
j=1

σjTj(t), (1)
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were (µj , σj), are the drift and volatlity in regime j, j = 1, . . . ,M .Then, conditional

on the path X, the random variables Yt ∼ N (µ(t), σ(t)), t = 1, 2, . . . , n, and are

independent. Here N (µ, σ) denotes a Normal distribution with mean µ and variance σ.

• For each i = 1, 2, . . . , M, let the priors on µi and σi are given by

µi
ind∼ N (θ, τµ), with θ ∼ N (0, A), A > 0, (2)

σi
ind∼ Γ(ν1, ν2), (3)

where Γ(ν1, ν2) denotes a Gamma distribution with shape parameter ν1 and scale pa-

rameter ν2.

• We now place a Dirichlet prior D(α H), (see Ferguson, 1973) on the path space of

the CTMC (Xt), with precision parameter α > 0 and mean H which is a proba-

bility measure governing a CTMC on the path space D([0, ∞), S), the set of cad-

lag functions. The initial distribution according to H is the uniform distribution

π0 = (1/M, . . . , 1/M), and the transition matrix is P0 with pij = 1/(M − 1), i 6= j and

λi = λ > 0, i, j = 1, . . . ,M . Thus the Markov chain under H will spend an exponen-

tially distributed time with mean 1/λ in any state i and then jump to state j 6= i with

probability 1/(M − 1).

A realization of the Markov chain from the above prior is generated as follows: Generate

a large number of paths Xi = {xis : 0 ≤ s ≤ n}, i = 1, 2, . . . , N, from H. Generate the

vector of probabilities (pi, i = 1, . . . , N) from a stick-breaking scheme with parameter

α (see Sethuraman, 1994). Then draw a realization of the Markov chain from the

distribution

p =
N∑
i=1

piδXi , (4)

The parameter λ is chosen to be small so that the variance is large and hence we obtain
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a large variety of paths to sample from at a later stage. The prior for α is given by,

α ∼ Γ(η1, η2). (5)

3 Estimation

Roughly speaking, estimation will be done by simulating a large number of paths of the

Markov chain, selecting one path according to a probability vector generated by stick-

breaking, and then using the blocked Gibbs sampling technique. This technique requires

the posterior distribution of the each parameter conditioned on the current values of the

other parameters.

We denote by µ and σ, the current values of the vectors (µ1, µ2, . . . , µn) and (σ1, σ2, . . . , σn),

respectively. Let Y be the vector of observed data (Y1, . . . , Yn). Given the current path

X = (xs, 0 ≤ s ≤ n) of the Markov chain, let X∗ = (x∗1, . . . , x
∗
m) be the distinct values in X.

3.1 Modifying the observed data set

In order to obtain the conditional distribution of the parameters, we first need to extract the

change in the log-returns between the jump times of the Markov chain. Let 0 = t0 < t1 <

t2 < . . . < tJ be the times at which the path X changes state. Define the log-returns between

the jump times, Wk = log(Stk/Stk−1
), k = 1, 2, . . . , J. To obtain realizations of the Wk from

the observed Y process, we need to simulate Gaussian random variables conditioned on their

sums.

Consider any t ∈ {0, 1, . . . , n} for which the chain changes state atleast once in the time

interval [t− 1, t]. So for some p, k we have tk−1 < t− 1 ≤ tk < . . . < tk+p ≤ t < tk+p+1. Let

V 1
t = log(Stk/St−1) and V 2

t = log(St/Stk+p). Then,

Yt = V 1
t +

p∑
i=1

Wk+i + V 2
t . (6)
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Suppose that the chain X is in state ji in the time interval [tk+i−1, tk+i), i = 0, 1, . . . , p+ 1.

Set s0 = tk − (t− 1), si = tk+i − tk+i−1, i = 1, 2, . . . , p, and sp+1 = t− tk+p. Let mj = µjisi

and vj = σjisi, i = 0, 1, . . . , p + 1. Recall that Yt ∼ N (µ(t), σ(t)), where µ(t), σ(t) are as

defined in (1). It is easy to see that the joint conditional density of (V 1
t ,Wk+1, . . . ,Wk+p)

given Yt = y will be

f(u0, u1, . . . , up) = C

p∏
i=0

exp

(
−1

2
vi + vp+1

vi vp+1

(
ui −

vp+1mi + vi(y −mp+1)
vi + vp+1

)2
)
, (7)

where C is a constant that depends on y and the parameters. Thus, one can simulate the

variables V 1
t ,Wk,Wk+1, . . . ,Wk+p from independent Gaussian distributions and then obtain

V 2
t using (6).

Using the above procedure, we can obtain a realization for all Wk for which [tk−1, tk] ⊆

[t − 1, t], for some t ∈ {0, 1, . . . , n}. Now for any k for which there is a q ≥ 0, such that

t− 1 ≤ tk−1 < t < t+ 1 < . . . < t+ q ≤ tk < t+ q + 1, we can obtain Wk using the relation

Wk = V 2
t +

q∑
i=1

Yt+i + V 1
t+q+1. (8)

Note that the W values depend on the path X and the parameter values µ, σ and hence are

to be computed in each iteration of the Gibbs sampling procedure which we describe next.

3.2 Gibbs sampling procedure

We are now ready to estimate the posterior distributions of the parameters using Gibbs

sampling. The procedure consists of two nested iterations. The outer loop is initiated using

the parameters chosen for the priors. Each iteration of the outer loop consists of a large

number of iteratons of the inner loop in which a sample is drawn recursively for each parameter

conditioned on the current values of the other parameters and the data. At the end of an

iteration of the inner loop we obtain one realization of the parameters from their approximate

posterior distribution.
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We now derive the conditional distribution for each parameter conditioned on the other

parameters and the data. Recall the X∗ is the set of distinct values observed in the path X

of the CTMC.

• Conditional for µ. For each j ∈ X∗ draw

(µj |θ, τµ, σ, X, W ) ind∼ N (µ∗j , σ
∗
j ), (9)

where

µ∗j = σ∗j

 ∑
k:Xtk−1

=j

Wk

σj(tk − tk−1)
+

θ

τµ

 ,

σ∗j =
(
nj
σj

+
1
τµ

)−1

,

and nj being the number of times j occurs in X. For each j ∈ X \X∗, independently

simulate µj ∼ N (θ, τµ).

• Conditional for σ. For each j ∈ X∗ draw

(σj |µ, ν, X, W ) ind∼ Γ(ν1 +
nj
2
, ν∗2, j), (10)

where

ν∗2, j = ν2, j +
∑

k:Xtk−1
=j

(Wk − µj(tk − tk−1))2

2(tk − tk−1)
.

Also for each j ∈ X \X∗, independently simulate σj ∼ Γ(ν1, ν2).

• Conditional for parameters of H

The reestimation of the initial distribution and the transition matrix from a given path

Xi can be done by any standard MLE procedure for CTMC.

• Conditional for X.

(X|p) ∼
N∑
i=1

p∗i δXi , (11)
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where

p∗i ∝
m∏
j=1

( ∏
{k:xi,∗

ti
k−1

=j}

1
(2πσj(tk − tk−1))1/2

e
− 1

2σj
(W i

k−µj(tk−tk−1))2
)
pi, (12)

where (xi,∗1 , . . . , xi,∗m ) denote the current m = m(i) unique values of the states and tik,

W i
k are as defined in subsection 3.1 for the path Xi, i = 1, . . . , N.

• Conditional for p.

p1 = V ∗1 , and pk = (1− V ∗1 ) · · · (1− V ∗k−1)V ∗k , k = 2, 3, . . . , N − 1, (13)

where

V ∗k
ind∼ β

(
1 + rk, α

)
,

rk equal 1 if i = k and 0 otherwise.

• Conditional for α.

(α|p) ∼ Γ

(
N + η1 − 1, η2 −

N−1∑
i=1

log(1− V ∗i )

)
,

where the V ∗ values are those obtained in the simulation of p in the above step.

• Conditional for θ.

(θ|µ) ∼ N (θ∗, τ∗), (14)

where

θ∗ =
τ∗

τµ

M∑
j=1

µj ,

and

τ∗ =
(
M

τµ
+

1
A

)−1

.

Proof.
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(a) The computations of the posterior distributions for µ, σ and θ follow in the same manner

as in Ishwaran and James (2002) and Ishwaran and Zarepour (2000). Here, Xt = s

means that the class variable is equal to s.

(b) Conditional for X:

P{X = Xi | p, µ, σ, W} = P{W | p, σ, X = Xi, µ}P{X = Xi | σ, µ, p}P{µ, σ}

∝
m∏
j=1

( ∏
{k:xi,∗

ti
k−1

= j}

1
(2πσj(tk − tk−1))1/2

e
− 1

2σj
(W i

k−µj(tk−tk−1))2
)
pi

where Xi = (xi1, . . . , x
i
n) and (xi,∗1 , . . . , xi,∗m ) denote the current m unique values in the

path Xi.

(c) Conditional for p : The Sethuraman stick-breaking scheme can be extended to the

two-parameter Beta distributions, see Walker and Muliere (1997, 1998):

Let Vk
ind∼ β(ak, bk), for each k = 1, . . . , N . Let

p1 = V1, and pk = (1− V1) · · · (1− Vk−1)Vk, k = 2, 3, . . . , N − 1.

We will write the above random vector, in short as

p ∼ SB(a1, b2, . . . , aN−1, bN−1).

By Connor and Mosimann (1969), the density of p is

(N−1∏
k=1

Γ(ak − bk)
Γ(ak)Γ(bk)

)
pa1−1
1 . . . p

aN−1−1
N−1 p

bN−1−1
N ×

×(1− P1)b1−(a2−b2) . . . (1− PN−2)bN−2−(aN−1−bN−1),

where Pk = p1 + . . .+ pk.
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From this, it easily follows that the distribution is conjugate for multinomial sampling,

and consequently the posterior distribution of p given X, when ak = 1 and bk = α for

each k, is

SB(a∗1, b
∗
2, . . . , a

∗
N−1, b

∗
N−1),

where

b∗k = α

a∗k = 1 + rk,

and rk equal 1 if i = k and 0 otherwise, k=1,. . . , N-1. 2

4 Implementation

The algorithm presented in the previous section was implemented in C language. The imple-

mentation includes:

- functions that simulate standard probability distributions: Uniform, Normal, Gamma, Beta,

Exponential.

- a function that returns an index ∈ {1, . . . , n} according to a vector of probability p1, . . . , pn.

- a function that simulates a probability vector according to stick-breaking scheme.

- a function that simulates n paths of a Markov chain.

- a function that records the number of times a state appears in a path.

- a function that chooses one of the paths according to a vector of probability.

- a function that modifies the parameters of prior distributions according to the formulas of

the above posteriori distributions.

We first simulated a large number of paths given π0 and Q0. Then at each iteration a path

is selected according to the weights drawn by a stick breaking scheme and the parameters

are updated using posteriori formulas. The pair (parameters, path) is saved if it improves
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the likelihood. After a large number of iteration we use the pair with maximum likelihood to

re-estimate π and Q0 from the corresponding path. The above procedure is repeated a large

number of times expecting an improvement of the likelihood.

4.1 Simulated data

We fit the model, using the algorithm developed above, to a simulated series of length n = 480,

M = 4 regimes, the mean and variance in each state being chosen as follows:

(µ1, σ1) = (−1.15, 0.450)

(µ2, σ2) = (−0.93, 0.450)

(µ3, σ3) = (−0.60, 0.440)

(µ4, σ4) = (1.40, 0.500).

We carry out the estimation procedure for the series simulated using the above parameters

with number of states M = 10, number of paths N = 100 and run it for 25,000 iterations. It

was observed that the algorithm was able to put most of the mass (in terms of the stationary

distribution of the MC) on 4 regimes, which are close to the ones chosen above.

At the end of the iterations we compute a confidence interval for the mean and for the variance

in each regime. The confidence intervals for the mean and the variance are given below.

Regime 1:

Im = [−1.208, −1.12423] and Iv = [0.431, 0.4738].

Regime 2:

Im = [−0.9351, −0.9296] and Iv = [0.442, 0.4538].

Regime 3:

Im = [−0.63446, −0.5140] and Iv = [0.4319, 0.4491].

Regime 4:

Im = [1.30114, 1.43446] and Iv = [0.4949, 0.5081].
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Based on the confidence intervals given above, we can conclude that the algorithm is able to

identify the parameters of the simulated data set.

4.2 Bombay Stock Exchange Data

We applied our algorithm to the daily closing prices of the mid-cap index of the Bombay

stock exchange from 21/12/2006 to 15/11/2007 (www.bseindia.com). For this data set we

have, n = 250, and we run our algorithm with N = 100 paths and choose a Gamma(2, 4)

distribution as the prior for α.

With the above choice, we obtain 5 regimes for which the estimates for the mean, variance

and stationary probabilities are given in Table 1.

R 1 R 2 R 3 R 4 R 5

µ -0.001 0.001 -0.003 0.001 -0.003

σ 0.1982 e-4 1.0917e-4 2.9624e-4 0.6382e-4 1.0502e-4

π 0.21 0.12 0.1 0.43 0.12

Table 1. Estimated drift, volatility and stationary probabilities of the regimes.

The corresponding Markov chain path with best likelihood, its parameters λis and the matrix

of transition probability (pi,j)i,j=1,...,5,i 6=j are given in Tables 2,3 respectively.

λ1 λ2 λ3 λ4 λ5

0.03 0.03 0.05 0.02 0.06

Table 2. Estimated reciprocal mean sojourn times in the regimes.



14 5 CONCLUSION



0.5 0.2 0 0.3

0.43 0.14 0.22 0.21

0.55 0.45 0 0

0.18 0.27 0.17 0.38

0 0.17 0.08 0.75


Table 3. Estimated transition probability matrix.

We may classify the regimes on the basis of volatility as low (R1), moderate (R2, R4, R5)

and high (R3). Observe that in the high volatility state, the index has a negative drift as is

usually observed in analysis of empirical data. The moderate volatility regime (R4) is most

persistent with an average sojourn time of 50 days whereas the high volatility regime persists

on average for 20 days. The high volatility state R3 is followed almost always by the states

R1 or R2.

A by-product of our algorithm is the distribution of the current state of the volatility, which

is required to compute the price of an option (see [2] and references therein).

5 Conclusion

A Bayesian approach to estimation for a regime switching geometric Brownian motion is

proposed. The algorithm while being computationally intensive is able to segregate the

different regimes based on the drift and volatility, thus giving useful insights into the behavior

of the market. It has been observed empiricaly that markets fluctuate between periods of high,

moderate and low volatilities. The above estimation procedure provides a clear quantitative

picture of the number of regimes and an estimate of the drifts and volatilities in these regimes.

Estimation of current market state is also easier using the algorithm proposed compared to

models using continuous stochastic volatility models. Given an estimate of the regime, the



REFERENCES 15

algorithm also gives an idea of likely duration for which the regime is likely to persist and

the distribution of the regimes that may follow.

Acknowledgment: We would like to thank Chiranjit Mukhopadhyay for sharing his data

with us.
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