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Scaling limits of Markov branching trees

with applications to Galton-Watson and random unordered trees ∗

Bénédicte Haas† and Grégory Miermont‡

Abstract

We consider a family of random trees satisfying a Markov branching property. Roughly, this
property says that the subtrees above some given height are independent with a law that depends
only on their total size, the latter being either the number of leaves or vertices. Such families
are parameterized by sequences of distributions on partitions of the integers, that determine
how the size of a tree is distributed in its different subtrees. Under some natural assumption
on these distributions, stipulating that “macroscopic” splitting events are rare, we show that
Markov branching trees admit the so-called self-similar fragmentation trees as scaling limits in
the Gromov-Hausdorff-Prokhorov topology.

Applications include scaling limits of consistent Markov branching model, and convergence
of Galton-Watson trees towards the Brownian and stable continuum random trees. We also
obtain that random uniform unordered trees have the Brownian tree as a scaling limit, hence
extending a result by Marckert-Miermont and fully proving a conjecture made by Aldous.
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1 Introduction and main results

We discuss the scaling limits of a model of random trees satisfying a simple Markovian branching
property, that was considered in [25], and considered in different forms in a number of places
[15, 4, 12]. Markov branching trees are natural models of random trees, defined in terms of discrete
fragmentation processes. The laws of these trees are indexed by an integer n giving the “size”
of the tree, which leads us to consider two distinct (but related) models, in which the sizes are
respectively the number of leaves and the number of vertices. We fix the notations

N = {1, 2, 3, . . .} , Z+ = {0} ∪N , [n] = {1, 2, . . . , n} , n ∈ N ,

and give a first, slightly informal description of our results, leaving a more formal approach to the
rest of this introduction.

Let q = (qn, n ≥ 1) be a family of probability distributions, respectively on the set Pn of
partitions of the integer n, i.e. of non-increasing integer sequences with sum n. We assume that qn
does not assign mass 1 to the trivial partition (n). It is convenient for our construction to add an
extra “cemetery partition” ∅ ∈ P1.

One constructs a random rooted tree Tn with n leaves according to the following device. Start
from a collection of n indistinguishable balls, and with probability qn(λ1, . . . , λp), split the collection
into p sub-collections of λ1, . . . , λp balls. Note that there is a chance qn((n)) < 1 that the collection
remains unchanged during this step of the procedure. Then, re-iterate the splitting operation
independently for each sub-collection using this time the probability distributions qλ1 , . . . , qλp . If
a sub-collection consists of a single ball, then it can remain single with probability q1((1)) or get
wiped out with probability q1(∅). We continue the procedure until all the balls are wiped out. There
is a natural genealogy associated with this process, which is a tree Tn with n leaves consisting in
the n isolated balls, and rooted at the initial collection of n balls. See Figure 1 for an illustration.

This construction can be seen as the most general form of splitting trees of Broutin & al.[12],
and was referred to as trees bearing the so-called Markov branching property in [25]. There is also
a variant of this construction that constructs a random tree with n vertices rather than n leaves,
which is obtained by first removing one ball before splitting at each step of the construction.

While most papers so far have been focusing on families of trees having more structure, such
as a consistency property when n varies [4, 25, 15] (with the notable exception of Broutin & al.
[12]), the main goal of the present work is to study the structure of Tn as n→ ∞ in a very general
situation. The main assumption that we make is that, as n→ ∞,

macroscopic splitting events of the form n → (ns1, ns2, . . .) ∈ Pn for a non-increasing
sequence s = (s1, s2, . . .) with sum 1 and s1 < (1 − ε), for fixed ε ∈ (0, 1), are rare
events, occurring with probability of order n−γν(ds) for some γ > 0, where ν is a
σ-finite “intensity” measure.
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Figure 1: A sample tree T11. The first splitting arises with probability q11(4, 4, 3).

Under this assumption, formalized in hypothesis (H) below, we show that the tree Tn, considered
as a metric space by viewing its edges as being real segments of lengths of order n−γ , converges in
distribution towards a limiting structure Tγ,ν, the so-called self-similar fragmentation tree of [23]:

1

nγ
Tn −→ Tγ,ν .

The latter can be seen as the genealogical tree of a continuous model for mass splitting, in some
sense analogous to the Markov branching property described above. The above convergence holds in
distribution in a space of measured metric spaces, endowed with the so-called Gromov-Hausdorff-
Prokhorov topology. This result contrasts with the situation of [12], where it is assumed that
macroscopic splitting events occur at every step of the construction. In that case, the height of Tn
is of order log n, and no interesting scaling limit exists.

This general statement allows to recover and improve many results of [25, 26, 32, 14] dealing
specifically with Markov branching trees. It also applies to models of random trees that are not
a priori directly connected to our study. In particular, we recover the results of Aldous [3] and
Duquesne [17] showing that the so-called Brownian and stable trees [1, 27, 18] are universal limits
for conditioned Galton-Watson trees. We also prove that uniform unordered trees with n vertices
and degree bounded by some integer m + 1 ∈ [3,∞] admit the Brownian continuum random tree
as a scaling limit. This was conjectured by Aldous [2] and proved in the particular case of a binary
branching, m = 2, in [28], using completely different methods from ours. The rest of this section is
devoted to the formalization of our results.

1.1 Discrete trees

We briefly introduce some formalism for trees. Set N0 = {∅}, and let

U =
⋃

n≥0

N
n .

For u = (u1, . . . , un) ∈ U , we denote by |u| the length of u, also called the generation of u. If
u = (u1, . . . , un) with n ≥ 1, we let pr(u) = (u1, . . . , un−1), and for i ≥ 1, we let ui = (u1, . . . , un, i).
More generally, for u = (u1, . . . , un) and v = (v1, . . . , vm) in U , we let uv = (u1, . . . , un, v1, . . . , vm)
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be their concatenation, and for A ⊂ U and u ∈ U , we let uA = {uv : v ∈ A}, and simply let
iA = (i)A for i ∈ N. We say that u is a prefix of v if v ∈ uU , and write u � v, defining a partial
order on U .

A plane tree is a non-empty, finite subset t ⊂ U (whose elements are called vertices), such that

• If u ∈ t with |u| ≥ 1, then pr(u) ∈ t,
• If u ∈ t, then there exists a number cu(t) ∈ Z+ (the number of children of u) such that ui ∈ t

if and only if 1 ≤ i ≤ cu(t).
Let ∂t = {u ∈ t : cu(t) = 0} be the set of leaves of t. If t(1), . . . , t(k) are plane trees, we can define
a new plane tree by

〈t(1), . . . , t(k)〉 = {∅} ∪
k⋃

i=1

it(i) .
A plane tree has a natural graphical representation, in which every u ∈ t is a vertex, joined to

its cu(t) children by as many edges. But t carries more information than the graph, as it has a
natural ordered structure. In this work, we will not be interested in this order, and we present one
way to get rid of this unwanted structure. Let t be a plane tree, and σ = (σu, u ∈ t) be a sequence
of permutations, respectively σu ∈ Scu(t). For u = (u1, . . . , un) ∈ t, let

σ(u) =
(
σ∅(u1), σ(u1)(u2), σ(u1,u2)(u3), . . . , σ(u1,...,un−1)(un)

)
,

and σ(∅) = ∅. Then the set σt = {σ(u) : u ∈ t} is a plane tree, obtained intuitively by shuffling
the set of children of u in t according to the permutation σu. We say that t, t′ are equivalent if
there exists some σ such that σ(t) = t′. Equivalence classes of plane trees will be called (rooted)
unordered trees, or simply trees as opposed to plane trees, and denoted by lowercase letters t.

When dealing with a tree t, we will freely adapt some notations from plane trees when dealing
with quantities that do not depend on particular plane representatives. For instance, #t,#∂t will
denote the number of vertices and leaves of t, while ∅, c∅(t) will denote the root of t and its degree.

We let T be the set of trees, and for n ≥ 1,

T∂
n = {t ∈ T : #∂t = n} , Tn = {t ∈ T : #t = n}

be the set of trees with n leaves, resp. n vertices. The class of {∅} is the vertex tree • ∈ T1 = T∂
1 .

Heuristically, the information carried in a tree is its graph structure, with a distinguished “root”
vertex corresponding to ∅, and considered up to root-preserving graph isomorphisms — it is not
embedded in any space, and its vertices are unlabeled.

It is a simple exercise to see that if t(i), 1 ≤ i ≤ k are trees, and t(i) is a choice of a plane
representative of t(i) for each i, then the class of 〈t(i), 1 ≤ i ≤ k〉 does not depend on the particular
choice for t(i). We denote this common class by 〈t(i), 1 ≤ i ≤ k〉. Note that j(t) := 〈t〉 can be
seen as the tree t whose root has been attached to a new root by an edge, and jl(t), for l ≥ 0, is
tree t whose root has been attached to a new root by a string of l edges. For instance, jl(•) is the
line-tree consisting of a string with length l, rooted at one of its ends. Finally, for trees t(1), . . . , t(k)

and l ≥ 1 we let
〈t(1), . . . , t(k)〉l = jl(〈t(1), . . . , t(k)〉) ,

so jl(•) = 〈•〉l with these notations.

1.2 Markov branching trees

A partition of an integer n ≥ 1 is a sequence of integers λ = (λ1, . . . , λp) with λ1 ≥ . . . ≥ λp ≥ 1
and λ1 + . . .+ λp = n. The number p = p(λ) is then called the number of parts of the partition λ,
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and the partition is called non-trivial if p(λ) ≥ 2. We let Pn be the set of partitions of the integer
n. For λ ∈ Pn and 1 ≤ j ≤ n, we define

mj(λ) = #{i ∈ {1, 2, . . . , p(λ)} : λi = j} ,

the multiplicity of parts of λ equal to j.
By convention, it is sometimes convenient to set λi = 0 for i > p(λ), and to identify the sequence

λ with the infinite sequence (λi, i ≥ 1). Such identifications will be implicit when needed. It is also
convenient to allow an extra element ∅ to P1, so that P1 = {(1), ∅}.

1.2.1 Markov branching trees with a prescribed number of leaves

In this paragraph, the size of a tree t ∈ T is going to be the number #∂t of its leaves.
Let q = (qn, n ≥ 1) be a sequence of probability distributions respectively on Pn,

qn = (qn(λ), λ ∈ Pn) ,
∑

λ∈Pn

qn(λ) = 1 ,

such that
qn((n)) < 1 , n ≥ 1 . (1)

Consider a family of probability distributions Pq
n, n ≥ 1 on T∂

n respectively, such that

1. P
q
1 is the law of the line-tree 〈•〉G, where G has a geometric distribution given by

P(G = k) = q1(∅)(1 − q1(∅))k , k ≥ 0 ,

2. for n ≥ 2, Pq
n is the law of

〈T (i), 1 ≤ i ≤ p(Λ)〉 ,
where Λ has distribution qn, and conditionally on the latter, the trees T (i), 1 ≤ i ≤ p(Λ) are
independent with distributions Pq

Λi
respectively.

Alternatively, for n ≥ 2, Pq
n is the law of 〈T (i), 1 ≤ i ≤ p(Λ)〉G where G is independent of Λ and

geometric with
P(G = k) = (1− qn((n)))qn((n))

k , k ≥ 1 ,

and conditionally on Λ with law qn(· | Pn \ {(n)}), the trees T (1), . . . , T (p(Λ)) are independent with
distributions PΛi respectively. A simple induction argument shows that there exists a unique family
P
q
n satisfying the properties 1 and 2 above.
A family of random trees Tn, n ≥ 1 with respective distributions Pq

n, n ≥ 1 is called a Markov
branching family. The law of the tree Tn introduced in the beginning of the Introduction to describe
the genealogy of splitting collections of n balls is Pq

n.

1.2.2 Markov branching trees with a prescribed number of vertices

We now consider the following variant of the above construction, in which the size of a tree t is
the number of its vertices. For every n ≥ 1, let again qn be a probability distribution on Pn. We
do not assume (1), rather, we make the sole assumption that q1((1)) = 1. For every n ≥ 1, we
construct inductively a family of random trees Tn respectively in the set Tn of trees with n vertices,
by assuming that for λ = (λ1, . . . , λp) ∈ Pn−1, with probability qn−1(λ), the n− 1 vertices distinct
from the root vertex are dispatched in p subtrees with λ1 ≥ . . . ≥ λp vertices, and that, given these
sizes, the p subtrees are independent with same distribution as Tλ1 , . . . , Tλp respectively.

Formally,
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1. let Qq
1 be the law of •, and

2. for n ≥ 1, let Qq
n+1 be the law of

〈T (i), 1 ≤ i ≤ p(Λ)〉 ,

where Λ has distribution qn, and conditionally on the latter, the trees T (i), 1 ≤ i ≤ p(Λ) are
independent with distributions Qq

Λi
respectively.

By induction, these two properties determine the laws Qq
n, n ≥ 1 uniquely.

The construction is very similar to the previous one, and can in fact be seen as a special case,
after a simple transformation on the tree; see Section 4.5 below.

1.3 Topologies on metric spaces

The main goal of the present work is to study scaling limits of trees with distributions Pq
n,Q

q
n, as n

becomes large. For this purpose, we need to consider a topological “space of trees” in which such
limits can be taken, and define the limiting objects.

A rooted1 metric space is a triple (X, d, ρ), where (X, d) is a metric space and ρ ∈ X is a
distinguished point, called the root. We say that two rooted spaces (X, ρ, d), (X ′ , ρ′, d′) are isometry-
equivalent if there exists a bijective isometry from X onto X that sends ρ to ρ′.

A measured, rooted metric space is a 4-tuple (X, d, ρ, µ), where (X, d, ρ) is a rooted metric
space and µ is a Borel probability measure on X. Two measured, rooted spaces (X, d, ρ, µ) and
(X, d′, ρ′, µ′) are isometry-equivalent if there exists a root-preserving, bijective isometry φ from
(X, d, ρ) to (X, d′, ρ′) such that the push-forward of µ by φ is µ′. In the sequel we will almost
always identify two isometry-equivalent (rooted, measured) spaces, and will often use the shorthand
notation X for the isometry class of a rooted space or a measured, rooted space, in a way that
should be clear from the context. Also, if X is such a space and a > 0, then we denote by aX the
space in which the distance function is multiplied by a.

We denote by M the set of equivalence classes of compact rooted spaces, and by Mw the set
of equivalence classes of compact measured spaces.

It is well-known (this is an easy extension of the results of [20]) that M is a Polish space
when endowed with the so-called pointed Gromov-Hausdorff distance dGH, where by definition the
distance dGH((X, ρ), (X

′, ρ′)) is equal to the infimum of the quantities

δ(φ(ρ), φ′(ρ′)) ∨ δH(φ(X), φ′(X ′))

where φ, φ′ are isometries from X,X ′ into a common metric space (M, δ), and where δH is the
Hausdorff distance between compact subsets of (M, δ). It is elementary that this distance does not
depend on particular choices in the equivalence classes of (X, ρ) and (X ′, ρ′). We endow M with
the associated Borel σ-algebra. Of course, dGH satisfies a homogeneity property, dGH(aX, aX

′) =
adGH(X,X

′) for a > 0.
We also need to define a distance on Mw, that is in some sense compatible with the Gromov-

Hausdorff distance. Several complete distances can be constructed, and we use a variation of the
Gromov-Hausdorff-Prokhorov distance developed in [29]. The induced topology is the same as that
introduced earlier in [21]. The reader should bear in mind that the topology used in the present
paper involves a little variation on the two previous references, since we are interested in pointed
spaces. We let dGHP((X, d, ρ, µ), (X

′ , d′, ρ′, µ′)) be the infimum of the quantities

δ(φ(ρ), φ′(ρ′)) ∨ δH(φ(X), φ′(X ′)) ∨ δP(φ∗µ, φ′∗µ′) ,
1usually such spaces are rather called pointed, but we prefer the term rooted which is more common when dealing

with trees
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where again φ, φ′ are isometries from X,X ′ into a common space (M, δ), φ∗µ, φ
′
∗µ

′ are the push-
forward of µ, µ′ by φ, φ′, and δP is the Prokhorov distance between Borel probability measures on
M [19, Chapter 3]:

δP(m,m
′) = inf{ε > 0 : m(C) ≤ m′(Cε) + ε for every C ⊂M closed} ,

where Cε = {x ∈M : infy∈C δ(x, y) < ε} is the ε-thickening of C. A simple adaptation of the results
of [21] and Section 6 in [29] (in order to take into account the particular role of the distinguished
point ρ) shows that:

Proposition 1. The function dGHP is a distance on Mw that makes it a complete and separable
space.

This distance is called the pointed Gromov-Hausdorff-Prokhorov distance. One must be careful
that contrary to dGH, this distance is not homogeneous: dGHP(aX, aX

′) is in general different from
adGHP(X,X

′), because only the distances, not the measures, are multiplied in aX, aX ′.

1.3.1 Trees viewed as metric spaces

A plane tree t can be naturally seen as a metric space by endowing t with the graph distance
between vertices. Namely,

dgr(u, v) = |u|+ |v| − 2|u ∧ v| , u, v ∈ t ,
where u ∧ v is the longest prefix common to u, v. This coincides with the number of edges on the
only simple path going from u to v. The space (t, dgr) is naturally rooted at ∅. We can put two
natural probability measures on t, the uniform measures on the leaves or on the vertices:

µ∂t = 1

#∂t ∑
u∈∂t δ{u} , µt = 1

#t∑
u∈t δ{u} .

If t ∈ T is a tree and t, t′ are two plane representatives of t, then it is elementary that the
spaces (t, dgr,∅, µ∂t) and (t′, dgr,∅, µ∂t′) are isometry-equivalent rooted measured metric spaces.
The same holds with µt, µt′ instead of µ∂t, µ∂t′ . We denote by (t, dgr, ρ, µ∂t) and (t, dgr, ρ, µt) the
corresponding elements of Mw. Conversely, it is possible to recover uniquely the discrete tree (not
a plane tree!) from the element of Mw thus defined.

1.3.2 R-trees

An R-tree is a metric space (X, d) such that for every x, y ∈ X,

1. there is an isometry ϕx,y : [0, d(x, y)] → X such that ϕx,y(0) = x and ϕx,y(d(x, y)) = y, and

2. for every continuous, injective function c : [0, 1] → X with c(0) = x, c(1) = y, one has
c([0, 1]) = ϕx,y([0, d(x, y)]).

In other words, any two points in X are linked by a geodesic path, which is the only simple path
linking these points, up to reparameterisation. This is a continuous analogue of the graph-theoretic
definition of a tree as a connected graph with no cycle. We denote by [[x, y]] the range of ϕx,y.

We let T (resp. Tw) be the set of isometry classes of compact rooted R-trees (resp. compact,
rooted measured R-trees). An important property is the following (these are easy variations on
results by [20, 21]).

Proposition 2. The spaces T and Tw are closed subspaces of (M , dGH) and (Mw, dGHP).
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If T ∈ T and for x ∈ T , we call the quantity d(ρ, x) the height of x. If x, y ∈ T , we say that
x is an ancestor of y whenever x ∈ [[ρ, y]]. We let x ∧ y ∈ T be the unique element of T such that
[[ρ, x]] ∩ [[ρ, y]] = [[ρ, x ∧ y]], and call it the highest common ancestor of x and y in T . For x ∈ T ,
we denote by Tx the set of y ∈ T such that x is an ancestor of y. The set Tx, endowed with the
restriction of the distance d, and rooted at x, is in turn a rooted R-tree, called the subtree of T
rooted at x. If (T , d, ρ, µ) is an element of Tw and µ(Tx) > 0, then Tx can be seen as an element
of Tw by endowing it with the measure µ(· ∩ Tx)/µ(Tx).

We say that x ∈ T , x 6= ρ, in a rooted R-tree is a leaf if its removal does not disconnect T .
Note that this always exclude the root from the set of leaves, which we denote by L(T ). A branch
point is an element of T of the form x∧ y where x is not an ancestor of y nor vice-versa. It is also
characterized by the fact that the removal of a branch point disconnects the R-tree into three or
more components (two or more for the root). We let B(T ) be the set of branch points of T .

1.4 Self-similar fragmentations and associated R-trees

Self-similar fragmentation processes are continuous-time processes that describe the dislocation of
a massive object as time passes. Introduce the set of partitions of a unit mass

S↓ :=
{
s = (s1, s2, . . .) : s1 ≥ s2 ≥ . . . ≥ 0,

∑

i≥1

si ≤ 1
}
.

This space is endowed with the ℓ1-metric d(s, s′) =
∑

i≥1 |si − s′i|, which makes it a compact space.

Definition 1. A self-similar fragmentation is an S↓-valued Markov process (X(t), t ≥ 0) which
is continuous in probability and satisfies the following fragmentation property. For some a ∈ R,
called the self-similarity index, it holds that conditionally given X(t) = (s1, s2, . . .), the process
(X(t + t′), t′ ≥ 0) has same distribution as the process whose value at time t′ is the decreasing
rearrangement of the sequences siX

(i)(sai t
′), i ≥ 1, where (X(i), i ≥ 1) are i.i.d. copies of X.

Bertoin [8] and Berestycki [6] have shown that the laws of self-similar fragmentation processes are
characterized by three parameters: the index a, a non-negative erosion coefficient, and a dislocation
measure ν on S↓. The idea is that every sub-object of the initial object, with mass x say, will
suddenly split into sub-sub-objects of masses xs1, xs2, . . . at rate xaν(ds), independently of the
other sub-objects. Erosion accounts for the formation of zero-mass particles that are continuously
ripped off the fragments.

For our concerns, we will consider only the special case where the erosion phenomenon has no
role and the dislocation measure does not charge the set {s ∈ S↓ :

∑
i si < 1}. One says that ν is

conservative. This motivates the following definition.

Definition 2. A dislocation measure is a σ-finite measure ν on S↓ such that ν({(1, 0, 0, . . .)}) = 0
and

ν
({∑

i≥1

si < 1
})

= 0 ,

∫

S↓

(1− s1)ν(ds) <∞ . (2)

We say that the measure is binary when ν({s1 + s2 < 1}) = 0. A binary measure is characterized
by its image ν(s1 ∈ dx) through the mapping s 7→ s1.

A fragmentation pair is a pair (a, ν) where a ∈ R is called the self-similarity index, and ν is a
dislocation measure.

Fragmentation pairs (a, ν) therefore characterize the distributions of the self-similar fragmen-
tations we are focusing on. When a = −γ < 0, small fragments tend to split faster, and it turns
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out that they all disappear in finite time, a property known as formation of dust. Using this prop-
erty, it is shown in [23] how to construct a “continuum random tree” encoding the process with
characteristic pair (−γ, ν). This tree is a random element of Mw,

Tγ,ν = (T , d, ρ, µ) ,

such that (T , d) is a random R-tree, and such that a.s.

1. the measure µ is supported on the set L(T ) of leaves of T

2. µ has no atom,

3. for every x ∈ T \ L(T ), it holds that µ(Tx) > 0.

Proposition 3 (Theorem 1 and Proposition 1 in [23]). The law of Tγ,ν is characterized by properties
1, 2, 3 above, together with the fact that if t ≥ 0 and Ti(t), i ≥ 1 are the connected components of
the open set {x ∈ T : d(ρ, x) > t}, then the process ((µ(Ti(t)), i ≥ 1)↓, t ≥ 0) of the non-increasing
rearrangement of the µ-masses of these components has the same law as the S↓-valued self-similar
fragmentation with characteristic pair (−γ, ν).

The previous proposition is not really constructive, and we postpone a more detailed description
of Tγ,ν to Section 3.2.

It was shown in [23] that one can recover the celebrated Brownian and stable continuum random
trees [1, 27, 18] as special instances of fragmentation trees. The precise choices for the indices and
dislocation measures corresponding to these situations will be recalled in our applications, Sections
2.1 and 2.2.

1.5 Main results

Let (qn(λ), λ ∈ Pn), n ≥ 1 satisfy (1). With it, we associate a finite non-negative measure qn on
S↓, defined by its integral against measurable f : S↓ → R+ as

qn(f) =
∑

λ∈Pn

qn(λ)f
(λ
n

)
.

Note that in the left-hand side, we have identified λ/n with an element of S↓, in accordance with
our convention that λ is identified with the infinite sequence (λi, i ≥ 1). We make the following
basic assumption.

(H) There exists a fragmentation pair (−γ, ν), with γ > 0, and a function ℓ : (0,∞) →
(0,∞) slowly varying at ∞, such that we have the weak convergence of finite non-
negative measures on S↓:

nγℓ(n)(1− s1)qn(ds)
(w)−→

n→∞
(1− s1)ν(ds) . (3)

Theorem 1. Assume q = (qn(λ), λ ∈ Pn), n ≥ 1 satisfies assumption (H). Let Tn have distribution
P
q
n, and view Tn as a random element of Mw by endowing it with the graph distance and the uniform

probability measure µ∂Tn on ∂Tn. Then we have the convergence in distribution

1

nγℓ(n)
Tn

(d)−→
n→∞

Tγ,ν ,

where the topology is the rooted Gromov-Hausdorff-Prokhorov topology.
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There is a similar statement for the trees with laws Qq
n. Consider a family (qn(λ), λ ∈ Pn), n ≥ 1

with q1((1)) = 1.

Theorem 2. Assume q = (qn(λ), λ ∈ Pn), n ≥ 1 satisfies assumption (H), with

• either γ ∈ (0, 1), or

• γ = 1 and ℓ(n) → 0 as n→ ∞.

Let Tn have distribution Q
q
n. We view Tn as a random element of Mw by endowing it with the

graph distance and the uniform probability measure µTn on Tn. Then we have the convergence in
distribution

1

nγℓ(n)
Tn

(d)−→
n→∞

Tγ,ν ,

where the topology is the rooted Gromov-Hausdorff-Prokhorov topology.

Theorem 2 deals with a more restricted set of values of values of γ than Theorem 1. This comes
from the fact that, contrary to the set T∂

n which contains trees with arbitrary height, the set Tn of
trees with n vertices has elements with height at most n − 1. Therefore, we cannot hope to find
non-trivial limits in Theorem 2 when γ > 1, or when γ = 1 and ℓ(n) has limit +∞ as n→ ∞. The
intermediate case where ℓ(n) admits finite non-zero limiting points cannot give such a convergence
with a continuum fragmentation tree in the limit either. The reason being that the support of the
height of a continuum fragmentation tree is unbounded, whereas the heights of Tn/nℓ(n) are all
bounded from above by 1/ infn(ℓ(n)), which is finite under our assumption.

Note that Theorem 1 (resp. Theorem 2) implies that any fragmentation tree Tγ,ν is the con-
tinuous limit of a rescaled family of discrete Markov branching trees with a prescribed number of
leaves (resp. with a prescribed number of vertices, provided γ < 1), since we have the following
approximation result.

Proposition 4. For every fragmentation pair (−γ, ν) with γ > 0, there exists a family of distribu-
tions (qn, n ≥ 1) satisfying (1) and such that (3) holds, with ℓ(x) = 1 for every x > 0.

After some preliminaries gathered in Section 3, we prove Theorems 1 and 2 and Proposition 4 in
Section 4. Before embarking in the proofs, we present in Section 2 some important applications of
these theorems to Galton-Watson trees, unordered random trees and particular families of Markov
branching trees studied in earlier works. Of these applications, the first two actually involve a
substantial amount of work, so that the details are postponed to Section 5 and 6.

2 Applications

2.1 Galton-Watson trees

A natural application is the study of Galton-Watson trees conditioned on their total number of
vertices. Let ξ be a probability measure on Z+ such that ξ(0) > 0 and

∑

k≥0

kξ(k) = 1 . (4)

The law of the Galton-Watson tree with offspring distribution ξ is the probability measure on the
set of plane trees defined by

GWξ({t}) =∏
u∈t ξ(cu(t)) ,

for t a plane tree. That this does define a probability distribution on the set of plane trees comes
from the fact that a Galton-Watson process with offspring distribution ξ becomes a.s. extinct in
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finite time, due to the criticality condition (4). In order to fit in the framework of this paper, we
view GWξ as a distribution on the set of discrete, rooted trees, by taking its push-forward under
the natural projection from plane trees to trees.

In order to avoid technicalities, we also assume that the support of ξ generates the additive
group Z. This implies that GWξ({#t = n}) > 0 for every n large enough. For such n, we let

GW
(n)
ξ = GWξ(· | {#t = n}), and view it as a law on Tn.
We distinguish two different regimes.

Case 1. The offspring distribution has finite variance

σ2 =
∑

k≥0

k(k − 1)ξ(k) <∞ .

Case 2. For some α ∈ (1, 2) and c ∈ (0,∞), it holds that ξ(k) ∼ ck−α−1 as k → ∞. In particular,
ξ is in the domain of attraction of a stable law of index α.

The Brownian dislocation measure is the unique binary dislocation measure such that

ν2(s1 ∈ dx) =

√
2

πx3(1− x)3
dx1{1/2≤x<1} .

Otherwise said, for every measurable f : S↓ → R+,

∫

S↓

ν2(ds) f(s) =

∫ 1

1/2

√
2

πx3(1− x)3
dx f(x, 1− x, 0, 0, . . .) .

We also define a one-parameter family of measures in the following way. For α ∈ (1, 2), let
∑

i≥1 δ∆i

be a Poisson random measure on (0,∞) with intensity measure

1

αΓ
(
1− 1

α

) dx

x1+1/α
1{x>0} ,

with the atoms ∆i, i ≥ 1 labeled in such a way that ∆1 ≥ ∆2 ≥ . . .. Let T =
∑

i≥1 ∆i, which is
finite a.s. by standard properties of Poisson measures. In fact, T follows a stable distribution with
index 1/α, with Laplace transform

E[exp(−λT )] = exp(−λ1/α) , λ ≥ 0 .

It can be seen as a stable subordinator evaluated at time 1, its jumps up to this time being the atoms
∆i, i ≥ 1). The measure να is defined by its action against a measurable function f : S↓ → R+:

∫

S↓

να(ds) f(s) =
α2Γ(2− 1/α)

Γ(2− α)
E

[
T f
(∆i

T
, i ≥ 1

)]
.

Because E[T ] = ∞, this formula defines an infinite σ-finite measure on S↓, which turns out to
satisfy (2).

Theorem 3. Let ξ satisfy (4), with support that generates the additive group Z. Let Tn be a random

element of Tn with distribution GW
(n)
ξ . Consider Tn as an element of Mw by endowing it with the

graph distance and the uniform probability measure µTn on Tn. Then we have, in distribution for
the Gromov-Hausdorff-Prokhorov topology,

Case 1 :
1√
n
Tn

(d)−→
n→∞

2

σ
T1/2,ν2 ,

Case 2 :
1

n1−1/α
Tn

(d)−→
n→∞

(
α(α− 1)

cΓ(2− α)

)1/α

T1−1/α,να .
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This result will be proved in Section 5 below, by first showing that GW
(n)
ξ is of the form Qq

n for
some appropriate choice of q.

The trees appearing in the limit are important models of continuum random trees, called re-
spectively the Brownian Continuum Random Tree and the stable tree with index α. The Brownian
tree is somehow the archetype in the theory of scaling limits of trees. The above theorem is very
similar to a result due to Duquesne [17], but our method of proof is totally different. While [17]
relies on quite refined aspects of Galton-Watson trees and their encodings by stochastic processes,
our approach requires only to have some kind of global structure, namely the Markov branching
property, and to know how mass is spread in one generation. We do not claim that our method is
more powerful than the one used in [17] (as a matter of fact, the limit theorem of [17] holds in the
more general case where µ is in the domain of attraction of a totally asymmetric stable law with
index α ∈ (1, 2]). However, our method has some robustness, allowing to shift from Galton-Watson
trees to other models of trees. Our next example will try to illustrate this.

2.2 Uniform unordered trees

Our next application is on a different model of random trees, which is by nature not a model of
plane or labelled trees, contrary to the previous examples. Namely, for 2 ≤ m ≤ ∞, we consider the

set T
(m)
n ⊂ Tn of trees with n vertices, in which every vertex has at most m children. In particular,

we have T
(∞)
n = Tn. The sets T

(m)
n are harder to enumerate than ordered sets of trees, like Cayley

trees or plane trees, and there is no closed expression for the numbers #T
(m)
n . However, Otter [30]

(see also [22, Section VII.5]) derived the asymptotic enumeration result

#T(m)
n ∼

n→∞
κm

(ρm)n

n3/2
, (5)

for some m-dependent constants κm > 0, ρm > 1. This can be achieved by studying the generating
function

ψ(m)(x) =
∑

n≥1

#T(m)
n xn ,

which has a square-root singularity at the point 1/ρm. The behavior (5) indicates that a uniformly

picked element of T
(m)
n should converge as n → ∞, once renormalized suitably, to the Brownian

continuum random tree. We show that this is indeed the case for any value of m. To state our
result, let

T̃(m)
n = {t ∈ T(m)

n : c∅(t) ≤ m− 2} .

In particular, T̃
(2)
n = ∅ for n ≥ 2, while T̃

(∞)
n = T

(∞)
n for all n. Let

ψ̃(m)(x) =
∑

n≥1

#T̃(m)
n xn ,

and define a finite constant cm by

cm =

√
2

√
πκmψ̃(m)(1/ρm)

.

Note that ψ̃(2)(x) = x for every x, while ψ̃(∞)(1/ρ∞) = 1 [22, Section VII.5]. Therefore, we get

c2 =

√
2ρ2√
πκ2

, c∞ =

√
2√

πκ∞
.
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Theorem 4. Fix m ∈ {2, 3, . . .} ∪ {∞}. Let Tn be uniformly distributed in T
(m)
n . We view Tn as

an element of Mw by endowing it with the measure µTn, then

1√
n
Tn

(d)−→
n→∞

cmT1/2,ν2 .

The proof of this result is given in Section 6. We note that this implies a similar, maybe more
natural, statement for m-ary trees. We say that t ∈ T is m-ary if every vertex has either m children
or no child, and we say that the vertex is internal in the first case, i.e. when it is not a leaf. Summing
over the degrees of vertices in an m-ary tree with n internal vertices, we obtain that #t = mn+1,
and #∂t = (m− 1)n + 1.

Assume now that m <∞. Starting from an m-ary tree t with n internal vertices, and removing

the leaves — equivalently, keeping only the internal vertices — gives an element φ(t) ∈ T
(m)
n . The

mapping φ is inverted by attaching m− k leaves to each vertex with k children, for an element of

T
(m)
n . Moreover, we leave as an easy exercise that dGHP(at, aφ(t)) ≤ a for every a > 0, when the

trees are endowed with the uniform measures µt, µφ(t) on vertices. Theorem 4 thus implies:

Corollary 1. Let m ∈ {2, 3, . . . , } and T
[m]
n be a uniform m-ary tree with n internal vertices,

endowed with the measure µ
T

[m]
n

. Then

1√
n
T [m]
n

(d)−→
n→∞

cmT1/2,ν2 .

The problem of scaling limits of random rooted unlabeled trees has attracted some attention in
the very recent literature, see [13, 28, 16]. For m = 2, Corollary 1 readily yields the main theorem
of [28], which was derived using a completely different method. Indeed, it is based in a stronger way

on combinatorial aspects of T
(2)
n . Here, we really make use of a fragmentation property satisfied

by the laws P
(m)
n . In fact, we will see that these laws are not laws of Markov branching trees.

Nevertheless, they can be coupled with laws of Markov branching trees in a way that the coupled
trees are close in the dGHP metric. In the general case m 6= 2, Theorem 4 and Corollary 1 are
new, and were implicitly conjectured by Aldous [2]. In [16], the authors prove a result on the
scaling limit of the so-called profile of the uniform tree for m = ∞, which is related, but is not a
direct consequence of our results. Finally, we note that the problem of the scaling limit of unrooted
unordered trees is still open, although we expect the Brownian tree to arise again as the limiting
object.

2.3 Consistent Markov branching models

Considering again in a more specific way the Markov branching models, we stress that Theorem
1 also encompasses the results of [25], which hold for particular families (qn, n ≥ 1) satisfying a
further consistency property. In this setting, it is assumed that qn((n)) = 0 for every n ≥ 1, so
that the trees Tn do not have any vertex having only one child. The consistency property can be
formulated as follows:

Consistency property. Starting from Tn with n ≥ 2, select one of the leaves uniformly
at random, and remove this leaf as well as the edge that is attached to it. If this removal
creates a vertex with only one child, then remove this vertex and merge the two edges
incident to this vertex into one. Then the random tree thus constructed has same
distribution as Tn−1.

A complete characterization of families (qn, n ≥ 1) giving rise to Markov branching trees with
this consistency property is given in [25]. Namely, such families can be constructed in terms of
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a pair (c, ν), which is uniquely defined up to multiplication by a common positive constant, such
that c ≥ 0 is an “erosion coefficient” and ν is a dislocation measure as described above (except
that ν(

∑
si < 1) = 0 is not required). The cases where c = 0 and ν(

∑
si < 1) = 0 are the most

interesting ones, so we will assume henceforth that this is the case. The associated distributions
qn, n ≥ 2 are given by the following explicit formula: for λ ∈ Pn having p ≥ 2 parts,

qn(λ) =
1

Zn
Cλ

∫

S↓

ν(ds)
∑

i1,...,ip≥1
distinct

p∏

j=1

s
λj

ij
, (6)

where

Cλ =
n!∏

i≥1 λi!
∏

j≥1mj(λ)!

is a combinatorial factor, the same that appears in the statement of Lemma 5 below, and Zn is a
normalizing constant defined by

Zn =

∫

S↓

ν(ds)
(
1−

∑

i≥1

sni

)
.

Assume further that ν satisfies the following regularity condition:

ν(s1 ≤ 1− ε) = ε−γℓ(1/ε) , (7)

where γ ∈ (0, 1) and ℓ is a function that is slowly varying at ∞. Then

Theorem 5. If ν is a dislocation measure satisfying (2) and (7), and if (qn, n ≥ 1) is the consistent
family of probability measures defined by (6), then the Markov branching trees Tn, viewed as random
measured R-trees by endowing the set of their leaves with the uniform probability measures, satisfies

1

Γ(1− γ)nγℓ(n)
Tn

(d)−→
n→∞

Tγν ,ν ,

for the Gromov-Hausdorff-Prokhorov topology.

This theorem is in some sense more powerful than [25, Theorem 2], because the latter result
needed one extra technical hypothesis that is discarded here. Moreover, our result holds for the
Gromov-Hausdorff-Prokhorov topology, which is stronger than the Gromov-Hausdorff topology
considered in [25]. However, the setting of [25] also provided a natural coupling of the trees
Tn, n ≥ 1 and Tγν ,ν on the same probability space, for which the convergence in Theorem 5 can be
strengthened to a convergence in probability. This coupling is not provided in our case.

Proof. Let s ∈ S↓ be such that
∑

i≥1 si = 1. Let X1, . . . ,Xn be i.i.d. random variables in N

such that P(X1 = i) = si for every i ≥ 1. Call Λ(i)(n) the number of variables Xj equal to i,

and let Λ(s)(n) =
(
Λ(1)(n),Λ(2)(n), . . .

)↓
, where x↓ denotes the decreasing rearrangement of the

non-negative sequence x = (x1, x2, . . .) with finite sum. It is not hard to see that the probability
distributions qn defined by (6) are also given, for λ 6= (n), by

qn(λ) =
1

Zn

∫

S↓

P(Λ(s)(n) = λ)ν(ds).

See for example the forthcoming Lemma 5 in Section 3.2.4. The normalizing constant Zn is regularly
varying, according to the assumption of regular variation (7). Indeed, by Karamata’s Tauberian
Theorem (see [11, Th. 1.7.1’]), we have that

Zn =

∫

S↓


1−

∑

i≥1

sni


 ν(ds) ∼

n→∞

∫

S↓

(1−sn1 )ν(ds) ∼
n→∞

Γ(1−γ)ν(s1 ≤ 1−1/n) = Γ(1−γ)nγℓ(n).
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Now, to get a convergence of the form (3), note that for all continuous non-negative functions
f : S↓ → R,

Zn

∑

λ∈Pn

qn(λ)

(
1− λ1

n

)
f

(
λ

n

)
=

∫

S↓

ν(ds)E

[(
1− Λ

(s)
1 (n)

n

)
f

(
Λ(s)(n)

n

)]

→
n→∞

∫

S↓

ν(ds)(1 − s1)f(s) ,

which follows by dominated convergence, since f is bounded (say by 1) on the compact space S↓

and

E

[(
1− Λ

(s)
1 (n)

n

)
f

(
Λ(s)(n)

n

)]
≤ E

[
1− Λ

(s)
1 (n)

n

]
≤ E

[
1− Λ(1)(n)

n

]
= 1− s1 .

We conclude with Theorem 1.

2.4 Further non-consistent cases: (α, θ)-trees

Another application concerns a family of binary labeled trees introduced by Pitman and Winkel
[32] and built inductively according to a growth rule depending on two parameters α ∈ (0, 1) and

θ ≥ 0. Roughly, at each step, given that the tree Tα,θ,lab
n with n leaves branches at the branch point

adjacent to the root into two subtrees with k ≥ 1 leaves for the subtree containing the smallest
label in Tα,θ,lab

n and n− k ≥ 1 leaves for the other one, a weight α is assigned to the root edge and
weights k − α and n − k − 1 + θ are assigned respectively to the trees with sizes k, n − k. Then
choose either the root edge or one of the two subtrees according with probabilities proportional
to these weights. If a subtree with two or more leaves is selected, apply this weighting procedure
inductively to this subtree until the root edge or a subtree with a single leaf is selected. If a subtree
with single leaf is selected, insert a new edge and leaf at the unique edge of this subtree. Similarly,
if the root edge is selected, add a new edge and leaf to this root edge. We denote by Tα,θ

n the tree
Tα,θ,lab
n without labels.
Pitman and Winkel show that the family (Tα,θ

n , n ≥ 1) is not consistent in general ([32, Propo-
sition 1]), except when θ = 1 − α or θ = 2 − α, and has the Markov branching property ([32,
Proposition 11]) with the following probabilities qn:

• qn ((k, n − k, 0, . . .)) = qα,θ(n− 1, k) + qα,θ(n− 1, n − k), for n− k < k ≤ n− 1

• qn (n/2, n/2) = qα,θ(n− 1, n/2),

where

qα,θ(n, k) =

(
n

k

)
α(n − k) + θk

n

Γ(k − α)Γ(n − k + θ)

Γ(1− α)Γ(n + θ)
, 1 ≤ k ≤ n.

Now consider the binary measure να,θ defined on S↓ by να,θ(s1 + s2 < 1) = 0 and να,θ(s1 ∈ dx) =
fα,θ(x)dx where fα,θ is defined on [1/2, 1) by

fα,θ(x) =
1

Γ(1− α)

(
(α (1− x) + θx)x−α−1(1− x)θ−1 + (αx+ θ(1− x)) (1− x)−α−1xθ−1

)
.

Theorem 6. Endow, as usual, Tα,θ
n with the uniform probability measure on ∂Tα,θ

n . Then,

1

nα
Tα,θ
n

(d)→
n→∞

Tα,να,θ

for the rooted Gromov-Hausdorff-Prokhorov topology.
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This result reinforces Proposition 2 of [32] which states the a.s. convergence of Tα,θ
n , in a

certain finite dimensional sense, to a continuum fragmentation tree with parameters α, να,θ. In
view of Theorem 1, it suffices to check that hypothesis (H) holds, which in the present case states
that for any f : S↓ → R continuous and bounded with |f(s)| ≤ (1− s1),

nα
n−1∑

k=⌈n/2⌉

f

(
k

n
,
n− k

n
, 0, . . .

)
qn ((k, n− k, 0, . . .)) →

∫ 1

1/2
f(x, 1− x, 0, . . .)fα,θ(x)dx .

To prove this, we use that
∫ 1
0 x

a−1(1− x)b−1dx = Γ(a)Γ(b)/Γ(a + b), and rewrite qα,θ(n− 1, k) as

qα,θ(n− 1, k) =

(
n− 1

k

)
α (n− 1− k) + θk

n− 1

Γ(n− 1 + θ − α)

Γ(1− α)Γ(n− 1 + θ)

∫ 1

0
xk−α−1(1− x)n−k+θ−2dx.

Then set for x ∈ [0, 1],

F (x) := f(x, 1− x, 0, . . .)1{x>1/2} + f(1− x, x, 0, . . .)1{x≤1/2}

and note that F (0) = 0 and |F (x)| ≤ (1− x) ∧ x, ∀x ∈ [0, 1]. We have,

n−1∑

k=⌈n/2⌉

f

(
k

n
,
n− k

n
, 0, . . .

)
qn ((k, n − k, 0, . . .)) =

n−1∑

k=0

F

(
k

n

)
qα,θ(n − 1, k)

=
Γ(n− 1 + θ − α)

Γ(1− α)Γ(n − 1 + θ)

∫ 1

0

n−1∑

k=0

(
n− 1

k

)
α (n− 1− k) + θk

n− 1
F

(
k

n

)
xk−α−1(1− x)n−k+θ−2dx

=
Γ(n− 1 + θ − α)

Γ(1− α)Γ(n − 1 + θ)

∫ 1

0
E

[(
α

(
1− Bn−1,x

n− 1

)
+ θ

Bn−1,x

n− 1

)
F

(
Bn−1,x

n

)]
x−α−1(1− x)θ−1dx,

where Bn−1,x denotes a binomial random variable with parameters n − 1, x. Since Bn−1,x/n → x
a.s. and F is continuous and bounded on [0, 1],

E

[(
α

(
1− Bn−1,x

n− 1

)
+ θ

Bn−1,x

n− 1

)
F

(
Bn−1,x

n

)]
→ (α (1− x) + θx)F (x), ∀x ∈ [0, 1].

Moreover,

E

[(
α

(
1− Bn−1,x

n− 1

)
+ θ

Bn−1,x

n− 1

)
F

(
Bn−1,x

n

)]

≤
(
(α+ θ)E

[
Bn−1,x

n

])
∧
(
αE

[
1− Bn−1,x

n− 1

]
+ θE

[
Bn−1,x

n− 1

])

≤ ((α+ θ)x) ∧ (α(1− x) + θx) .

This is enough to conclude by dominated convergence that
∫ 1

0
E

[(
α

(
1− Bn−1,x

n− 1

)
+ θ

Bn−1,x

n− 1

)
F

(
Bn−1,x

n

)]
x−α−1(1− x)θ−1dx

−→
n→∞

∫ 1

0
(α (1− x) + θx)F (x)x−α−1(1− x)θ−1dx

= Γ(1− α)

∫ 1

1/2
f(x, 1− x, . . .)fα,θ(x)dx.

Last, Stirling’s formula implies that

Γ(n− 1 + θ − α)

Γ(n− 1 + θ)
∼

n→∞
n−α,

as wanted.

16



3 Preliminaries on self-similar fragmentations and trees

3.1 Partition-valued self-similar fragmentations

In this section, we recall the aspects of the theory of self-similar fragmentations that will be needed
to prove Theorems 1 and 2. We refer the reader to [9] for more details.

3.1.1 Partitions of sets of integers

Let B ⊂ N be a possibly infinite, nonempty subset of the integers, and π = {π1, π2, . . .} be a
partition of B. The (nonempty) sets π1, π2, . . . are called the blocks of π, we denote their number
by b(π). In order to lift the ambiguity in the labeling of the blocks, we will use, unless otherwise
specified, the convention that πi, i ≥ 1 is defined inductively as follows: πi is the block of π that
contains the least integer of the set

B \
i−1⋃

j=1

πj ,

if the latter is not empty. For i ∈ B, we also let π(i) be the block of π that contains i.
We let PB be the set of partitions of B. This forms a partially ordered set, where we let π � π′

if the blocks of π′ are all included in blocks of π (we also say that π′ is finer than π). The minimal
element is OB = {B}, and the maximal element is IB = {{i} : i ∈ B}.

If B′ ⊆ B is nonempty, the restriction of π to B′, denoted by π|B′ or B′∩π with a slight abuse of
notations, is the element of PB′ whose blocks are the non-empty elements of {B′ ∩π1, B′ ∩π2, . . .}.

If B ⊂ N is finite, with say n elements, then any partition π ∈ PB with b blocks induces
an element λ(π) ∈ Pn with b parts, given by the non-increasing rearrangement of the sequence
(#π1, . . . ,#πb).

A subset B ⊂ N is said to admit an asymptotic frequency if the limit

lim
n→∞

#(B ∩ [n])

n

exists. It is then denoted by |B|. It is a well-known fact, due to Kingman, that if π is a random par-
tition of N with distribution invariant under the action of permutations (simply called exchangeable
partition), then a.s. every block of π admits an asymptotic frequency. The law of π is then given
by the paintbox construction of next section, for some probability measure ν. We let |π|↓ ∈ S↓

be the non-increasing rearrangement of the sequence (|πi|, i ≥ 1). The exchangeable partition π is

called proper if
∑b(π)

i=1 |πi| = 1, which is equivalent to the fact that π has a.s. no singleton blocks.

3.1.2 Paintbox construction

Let ν be a dislocation measure, as defined around (2). We construct a σ-finite measure on PN by
the so-called paintbox construction. Namely, for every s ∈ S↓ with

∑
i≥1 si = 1, consider an i.i.d.

sequence (Ki, i ≥ 1) such that
P(K1 = k) = sk , k ≥ 1 .

Then the partition π such that i, j are in the same block of π if and only if Ki = Kj is exchangeable.
We denote by ρs(dπ) its law. Note that ρs(dπ)-a.s., it holds that |π|↓ = s, and π is a.s. proper
under ρs if and only if s sums to 1. The measure

κν(dπ) :=

∫

S↓

ν(ds)ρs(dπ)

is a σ-finite measure on PN, invariant under the action of permutations. From the integrability
condition (2) on ν, it is easy to check that for k ≥ 2, if

Ak = {π ∈ PN : π|[k] 6= {[k]}}

17



is the set of partitions whose trace on [k] has at least two blocks, then

κν(Ak) =

∫

S↓

ν(ds)
(
1−

∑

i≥1

ski

)
<∞ , (8)

for every k ≥ 2, since 1−∑i≥1 s
k
i ≤ 1− sk1 ≤ k(1− s1).

3.1.3 Exchangeable partitions of finite and infinite sets

In this section, we establish some elementary results concerning exchangeable partitions of [n] or
N. The set of partitions with variable size, namely

P = PN ∪
⋃

n≥1

P[n] ,

is endowed with the distance

dP (π, π
′) = exp(− sup{k ≥ 1 : π|[k] = π′|[k]}) .

In the sequel, convergence in distribution for partitions will be understood with respect to the
separable and complete space (P, dP ). We will use the falling factorial notation

(x)n = x(x− 1) . . . (x− n+ 1) =
Γ(x+ 1)

Γ(x− n+ 1)

for x a real number and n ∈ N, n < x+ 1. When x ∈ N, we extend the notation to all n ∈ N, by
setting (x)n = 0 for n ≥ x+ 1.

Lemma 1. Let π be an exchangeable partition of [n], and let k ≤ n. Then for every B ⊂ [k] with
l elements such that 1 ∈ B,

P
(
[k] ∩ π(1) = B |#π(1)

)
=

(#π(1) − 1)l−1(n−#π(1))k−l

(n− 1)k−1
.

Proof. By exchangeability, the probability under consideration does depends on B only through
its cardinality, and this equal to P

(
i2, . . . , il ∈ π(1), j1, . . . , jk−l /∈ π(1)|#π(1)

)
for any pairwise dis-

joint i2, . . . , il, j1, . . . , jk−l ∈ {2, 3, . . . , n} (note that there are
(
n−1
l−1

)(
n−l
k−l

)
such choices). Conse-

quently,

P([k] ∩ π(1) = B |#π(1)) =

E

[∑
i2,...,il

j1,...,jk−l

1{i2,...,il∈π(1)}1{j1,...,jk−l /∈π(1)}

∣∣#π(1)
]

(
n−1
l−1

)(
n−l
k−l

)

=

(#π(1)−1

l−1

)(n−#π(1)

k−l

)
(n−1
l−1

)(n−l
k−l

) ,

where the sum in the expectation is over indices considered above. This yields the result.

Lemma 2. Let (π(n), n ≥ 1) be a sequence of random exchangeable partitions respectively in P[n].

We assume that π(n) converges in distribution to π. Then π is exchangeable and

#π
(n)
(i)

n

(d)−→
n→∞

|π(i)| ,

the latter convergences holding jointly for i ≥ 1, and jointly with the convergence π(n) → π.
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Proof. The fact that π is invariant under the action of permutations of N with finite support is
inherited from the exchangeability of π(n), and one concludes that π is exchangeable [5].

The random variables (#π
(n)
(i) /n, i ≥ 1) take values in [0, 1], so their joint distribution is tight,

and up to extraction, we may assume that they converge in distribution to a random vector (x(i), i ≥
1), jointly with the convergence π(n) → π. We want to show that a.s. x(i) = |π(i)|, which will
characterize the limiting distribution.

For k ≥ l ≥ 1 fixed, by summing the formula of Lemma 1 over all B ⊂ [k] containing i, with l
elements, we get

P
(
#([k] ∩ π(n)(i) ) = l

∣∣#π(n)(i)

)
=

(
k − 1

l − 1

)(#π
(n)
(i) − 1)l−1(n−#π

(n)
(i) )k−l

(n− 1)k−1

−→
n→∞

(
k − 1

l − 1

)
xl−1
(i) (1− x(i))

k−l ,

which entails that, conditionally on x(i), #([k] ∩ π(i)) − 1 follows a binomial distribution with
parameters (k − 1, x(i)). Therefore,

|π(i)| = lim
k→∞

#([k] ∩ π(i))
k

= x(i) a.s. ,

by the law of large numbers. �

Lemma 3. Let (π(i), 1 ≤ i ≤ r) be a sequence of random elements of PN, which is exchangeable in
the sense that (σπ(i), 1 ≤ i ≤ r) has same distribution as (π(i), 1 ≤ i ≤ r), for every permutation σ
of N. Then for every k ≥ 2,

P
(
2, 3, . . . , k ∈ π

(1)
(1)

∣∣ |π(i)(j)|, 1 ≤ i ≤ r, j ≥ 1
)
= |π(1)(1) |

k−1 .

Proof. Let n ≥ k and set π(i,n) = π(i)|[n], so that (π(i,n), 1 ≤ i ≤ r) is a random sequence of P[n]

that is exchangeable. Then, by using the same argument as in the proof of Lemma 1, it holds that

P
(
2, 3, . . . , k ∈ π

(1,n)
(1)

∣∣#π(i,n)(j) , 1 ≤ i ≤ r, 1 ≤ j ≤ n
)
=

(#π
(1,n)
(1) − 1)k−1

(n− 1)k−1
.

Using Lemma 2, and the fact that (π(i,n), 1 ≤ i ≤ r) converges in distribution to (π(i), 1 ≤ i ≤ r)
as n→ ∞, it is then elementary to get the result by taking limits.

3.1.4 Poisson construction of homogeneous fragmentations

We now recall a useful construction of homogeneous fragmentations using Poisson point processes.
We again fix a dislocation measure ν.

Consider a Poisson random measure N (dtdπdi) on the set R+×PN×N, with intensity measure
dt⊗ κν(dπ)⊗#N(di), where #N is the counting measure on N. We use a Poisson process notation
(π0t , i

0
t )t≥0 for the atoms of N : for t ≥ 0, if (t, π, i) is an atom of N then we let (π0t , i

0
t ) = (π, i), and

if there is no atom of N of the form (t, π, i), then we set π0t = ON and i0t = 0 by convention. One
constructs a process (Π0(t), t ≥ 0) by letting Π0(0) = ON, and given that Π0(s), 0 ≤ s < t has been
defined, we let Π0(t) be the element of PN obtained from Π0(t−) by leaving its blocks unchanged,
except the i0t -th block Π0

i0t
(t−), which is intersected with π0t . Of course, this construction is only

informal, since the times t of occurrence of an atom of N are everywhere dense in R+. However,
using (8), it is possible to perform a similar construction for partitions restricted to [k], and check
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that these constructions are consistent as k varies [9, Section 3.1.1]. The process (Π0(t), t ≥ 0) is
called a partition-valued homogeneous fragmentation with dislocation measure π.

Note in particular that the block Π0
(1)(t) that contains 1 at time t, is given by

Π0
(1)(t) =

⋂

0<s≤t
i0s=1

(π0s)(1) , (9)

and that the trace of measure N on the fiber R+ ×PN ×{1} is Poisson with intensity dt⊗ κν(dπ).
For k ≥ 2, let D0

k = inf{t ≥ 0 : Π0(t) ∈ Ak} be the first time when the restriction of Π0(t)
to [k] has at least two blocks. By the previous construction, it is immediate to see that D0

k

has an exponential distribution with parameter κν(Ak): it is the first time t such that i0t = 1
and π0t ∈ Ak. Moreover, by standard properties of Poisson random measures, conditionally on
D0

k = s, the random variables π0s and (π0t , i
0
t )0≤t<s are independent, and the law of π0s equals

κν(· |Ak) = κν(· ∩ Ak)/κν(Ak), while (π0t , i
0
t )0≤t<s has same distribution as the initial process

conditioned on {(π0t , i0t ) /∈ Ak × {1}, 0 ≤ t < s} = {D0
k ≥ s}, which has probability e−sκν(Ak). It is

also equivalent to condition on {D0
k > s}, since P(D0

k = s) = 0. The next statement sums up this
discussion. By definition, we let X(t ∧ s−) = X(t)1{t<s} +X(s−)1{t≥s} for X càdlàg.

Lemma 4. Let F, f be non-negative measurable functions. Then

E

[
F (Π0(t ∧D0

k−), t ≥ 0)f(π0D0
k
)
]

= κν(f |Ak)

∫ ∞

0
κν(Ak)dsE

[
F (Π0(t ∧ s), t ≥ 0)1{D0

k>s}

]
.

Otherwise said, π0
D0

k
and (Π0(t ∧D0

k−), t ≥ 0), are independent with respective laws κν(· |Ak), and

the law of (Π0(t ∧ e), t ≥ 0) where e is an exponential random variable, independent of Π0, and
with parameter κν(Ak).

3.1.5 Self-similar fragmentations

From a homogeneous fragmentation Π0 constructed as above, one can associate a one-parameter
family of PN-valued processes by a time-changing method. Let a ∈ R. For every i ≥ 1 we let
(τa(i)(t), t ≥ 0) be defined as the right-continuous inverse of the non-decreasing process

∫ t

0
|Π0

(i)(u)|−adu , t ≥ 0 .

For t ≥ 0, let Π(t) be the random partition of N whose blocks are given by Π0
(i)(τ

a
(i)(t)), i ≥ 1.

One can check that this definition is consistent, namely, that for every j ∈ Π0
(i)(τ

a
(i)(t)), one has

Π0
(i)(τ

a
(i)(t)) = Π0

(j)(τ
a
(j)(t)).

The process (Π(t), t ≥ 0) is called the self-similar fragmentation with index a and dislocation
measure ν [9, Chapter 3.3]. We now assume that a = −γ < 0 is fixed once and for all. Let
Dk = inf{t ≥ 0 : Π(t) ∈ Ak}.

Proposition 5. Conditionally given σ{Π(i)(t ∧ Dk) : t ≥ 0, 1 ≤ i ≤ k}, and letting π = Π(Dk),

the random variable (Πi(t + Dk), t ≥ 0)1≤i≤b([k]∩π) has same distribution as (πi ∩ Π(i)(|πi|at), t ≥
0)1≤i≤b([k]∩π), where (Π(i), i ≥ 1) are i.i.d. copies of Π.

Proof. For every i ≥ 1 we let Li = inf{t ≥ 0 : Π(i)(t) ∩ [k] 6= [k]}. Then L = (Li, i ≥ 1) is
a so-called stopping line, i.e. for every i ≥ 1, Li is a stopping time with respect to the natural
filtration of Π(i), while Li = Lj for every j ∈ Π(i)(Li). We let Π(L) be the partition whose blocks
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are Π(i)(Li), i ≥ 1 — by definition of a stopping line, two such blocks are either equal or disjoint.
Note that t+ L = (t+ Li, i ≥ 1) is also a stopping line, as well as t ∧ L = (t ∧ Li, i ≥ 1).

From the so called extended branching property [9, Lemma 3.14], we obtain that conditionally
given σ{Π(t ∧ L), t ≥ 0}, the process (Π(t+ L), t ≥ 0) has same distribution as

({πi ∩Π(i)(|πi|at)), i ≥ 1}, t ≥ 0) ,

where π = Π(L) and (Π(i), i ≥ 1) are i.i.d. copies of Π. The result is then a specialization of this,
when looking only at the blocks of Π that contain 1, 2, . . . , k.

It will be of key importance to characterize the joint distribution of Dk, (Π(i)(Dk), 1 ≤ i ≤ k).
This can be obtained as a consequence of Lemma 4. Recall the construction of Π from Π0, let
τ(i) = τa(i), and define πt = π0τ(1)(t). The latter is equal to π0τ(i)(t) for every i ∈ [k] and t ≤ Dk.

Proposition 6. Let F, f be non-negative, measurable functions. Then

E

[
F (|Π(1)(t ∧Dk−)|, t ≥ 0)f(πDk

)
]

= κν(f |Ak)

∫ ∞

0
duκν(Ak)E

[
|Π(1)(u)|k−1+a1{|Π(1)(u)|>0}F (|Π(1)(t ∧ u)|, t ≥ 0)

]

Proof. By definition, Dk (resp. D0
k) is the first time when [k]∩Π(t) 6= [k] (resp. [k]∩Π0(t) 6= [k]).

It follows that D0
k = τ(1)(Dk), and that the process

Π(1)(t ∧Dk−) = Π0
(1)(τ(1)(t ∧Dk−)) = Π0

(1)(τ(1)(t) ∧D0
k−) , t ≥ 0

is measurable with respect to σ{Π0
(1)(t ∧D0

k−), t ≥ 0}. Lemma 4 implies that

E

[
F (|Π(1)(t ∧Dk−)|, t ≥ 0)f(πDk

)
]

= E

[
F (|Π0

(1)(τ(1)(t) ∧D0
k−)|, t ≥ 0)f(π0D0

k
)
]

= κν(f |Ak)

∫ ∞

0
ds κν(Ak)E

[
F
(
|Π0

(1)(τ(1)(t) ∧ s)|, t ≥ 0
)
1{D0

k>s}

]

= κν(f |Ak)E

[ ∫ ∞

0
duκν(Ak)|Π(1)(u)|aF (|Π0

(1)(τ(1)(t) ∧ τ(1)(u))|, t ≥ 0)1{Dk>u}

]

= κν(f |Ak)E

[ ∫ ∞

0
duκν(Ak)|Π(1)(u)|aF (|Π(1)(t ∧ u)|, t ≥ 0)1{Dk>u}

]
,

where in the third equality, we used successively Fubini’s theorem and the change of variables
s = τ(1)(u), so that ds = |Π(1)(u)|adu. We conclude by using the fact that

P

(
Dk > u

∣∣ |Π(1)(t)|, 0 ≤ t ≤ u
)
= |Π(1)(u)|k−1 , (10)

which can be argued as follows. Let 0 ≤ t1 < t2 < . . . < tr = u be fixed times, then by applying
Lemma 3 to the sequence (Π(ti), 1 ≤ i ≤ r), we obtain that

P

(
Dk > u

∣∣ |Π(1)(ti)|, 1 ≤ i ≤ r
)
= |Π(1)(u)|k−1 .

This yields (10) by a monotone class argument, using the fact that σ{|Π(1)(t)|, 0 ≤ t ≤ u} is
generated by finite cylinder events.
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The last important property of self-similar fragmentation is that the process (|Π(1)(t)|, t ≥ 0)
is a Markov process, which can be described as follows [9]. Let (ξt, t ≥ 0) be a subordinator with
Laplace transform

E [exp(−rξt)] = exp

(
− t

∫ ∞

0

(
1−

∑

i≥1

sr+1
i

)
ν(ds)

)
.

Then (|Π0
(1)(t)|, t ≥ 0) as same distribution as (exp(−ξt), t ≥ 0), and consequently, the process

(|Π(1)(t)|, t ≥ 0) is a so-called self-similar Markov process:

Proposition 7 (Corollary 3.1 of [9]). The process (|Π(1)(t)|, t ≥ 0) has same distribution as
exp(−ξτ(t), t ≥ 0), where τ is the right-continuous inverse of the process (

∫ u
0 exp(aξs)ds, u ≥ 0).

3.2 Continuum fragmentation trees

This section is devoted to a more detailed description of the limiting self-similar fragmentation
tree Tγ,ν [23]. In particular, we will need a new decomposition result of reduced trees at the first
branchpoint.

3.2.1 Trees with edge-lengths and R-trees

We saw in Section 1.3.1 how to turn a tree into a (finite) measured metric space. It is also easy to
“turn discrete trees into R-trees”, viewing the edges as real segments of length 1.

More generally, a plane tree with edge-length is a pair θ = (t, (ℓu, u ∈ t)) where ℓu ≥ 0 for every
u ∈ t, and a tree with edge-lengths is obtained by “forgetting the ordering” in a way that is adapted
from the discussion of Section 1.1 in a straightforward way. Namely, the plane trees with edge-
lengths (t, (ℓu, u ∈ t)) and (t′, (ℓ′u, u ∈ t′)) are equivalent if there exist permutations σ = (σu, u ∈ t)
such that σt = t′ and ℓ′

σ(u) = ℓu, for every u ∈ t. We let Θ be the set of trees with edge-
lengths, i.e. of equivalence classes of plane trees with edge-lengths. There is a natural concatenation

transformation, similar to 〈·〉, for elements of Θ. Namely, if θ(i) = (t(i), (ℓ(i)u , u ∈ t)), 1 ≤ i ≤ k is a
sequence of plane trees with edge-lengths and ℓ ≥ 0, let

〈θ(i), 1 ≤ i ≤ k〉ℓ = (t, (ℓu, u ∈ t)) ,
be defined by t = 〈t(i), 1 ≤ i ≤ k〉 ,
and

ℓ∅ = ℓ , ℓiu = ℓ(i)u , 1 ≤ i ≤ k, u ∈ t(i) .
If we replace each θ(i) by another equivalent plane tree with edge-lengths, then the resulting con-
catenation is equivalent to the first one, so that this operation is well-defined for elements of Θ

Let θ ∈ Θ, and consider a plane representative (t, (ℓu, u ∈ t)). We construct an R-tree T by
imagining that the edge from pr(u) to u has length ℓu. Note that this intuitively involves a new
edge with length ℓ∅ pointing from the root ρ of the resulting R-tree to ∅ (this is sometimes called
planting). Formally, T is the isometry-equivalence class of a subset of Rt endowed with the l1-norm
‖(xu, u ∈ t)‖1 =

∑
u∈t |xu|, defined as the union of segments

⋃

u∈t [∑v≺u

ℓvev,
∑

v≺u

ℓvev + ℓueu

]
,

where (eu, u ∈ t) is the canonical basis of Rt and v ≺ u means that v is a strict ancestor of u int. This R-tree is naturally rooted at 0 ∈ R
t. Of course, its isometry class does not depend on the
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choice of the plane representative of θ, and can be written T (θ) unambiguously. Note that there is
a natural “embedding” mapping ι : t → T (θ) inherited from

ι0 : t → T , ι0(u) =
∑

v�u

ℓvev , (11)

and the latter is an isometry if θ is endowed with the (semi-)metric dθ on its vertices, defined by

dθ(u, v) =
∑

w�uxorw�v

ℓw ,

where xor denotes “exclusive or”.
Conversely, it is an elementary exercise to see that any rooted R-tree T with a finite number of

leaves can be written in the form T = T (θ) for some θ ∈ Θ, which is in fact unique. In the sequel,
we will often identify the tree θ ∈ Θ with the R-tree T (θ). For instance, this justifies the notation
〈T (1), . . . ,T (r)〉ℓ for R-trees T (1), . . . ,T (r) with finitely many leaves and for ℓ ≥ 0, which stands for
the R-tree in which the roots of T (1), . . . ,T (r) have been identified, and attached to a segment of
length ℓ to a new root.

With a discrete tree t , we canonically associate the tree with edge-lengths θ in which all lengths
are equal to 1, and the rooted R-tree T (t) = T (θ). In this case, dθ = dgr is the graph distance.
Using the isometry ι : t 7→ T (t), we get the following statement, left as an exercise to the reader.

Proposition 8. Viewing t ∈ T as the element (t, dgr, ρ, µ∂t) of Mw as in Section 1.3.1, and
endowing T (t) with the uniform probability distribution on L(T (t)), it holds that

dGHP(at, aT (t)) ≤ a , a > 0 .

Due to this statement, in order to prove that the Markov branching tree Tn with law P
q
n

converges after rescaling towards Tγ,ν , it suffices to show the same statement for the R-tree T (Tn).
We will often make the identification of Tn with T (Tn).

3.2.2 Partition-valued processes and R-trees

Let (π(t), t ≥ 0) be a process with values in C ⊂ N, finite or infinite, which is non-decreasing and
indexed either by t ∈ Z+ or t ∈ R+, in which case we also assume that π(·) is right-continuous. We
assume that there exists some t0 > 0 such that π(t0) = IC . Let B ⊆ C be finite. If B = {i}, we let

Dπ
{i} = inf{t ≥ 0 : {i} ∈ π(t)}

be the first time where i is isolated in a singleton block, and for #B ≥ 2, let

Dπ
B = inf{t ≥ 0 : B ∩ π(t) 6= B} .

We can build a tree with edge-lengths (and labeled leaves) θ(π(·), B) by he following inductive
procedure:

1. If B = {i} we let θ(π(·), B) be the tree • with length Dπ
{i}

2. if #B ≥ 2, we let

θ(π(·), B) = 〈θ(π(Dπ
B + ·), B ∩ πi(Dπ

B)), 1 ≤ i ≤ b〉Dπ
B
,

where b is the number of blocks of π(Dπ
B) that intersect B, and which are denoted by

π1(D
π
B), . . . , πb(D

π
B).
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Note that the previous labeling convention for blocks may not agree with our usual convention of
labeling with respect to order of least element.

If (π(t), t ∈ Z+) is indexed by non-negative integers, and satisfies π(0) = OC , there is a similar
construction with trees rather than trees with edge-lengths. Namely, we let tπ(·) be defined by

1. tπ(·) = • if #C = 1, and

2. tπ(·) = 〈tπi(1)∩π(·+1), 1 ≤ i ≤ b〉 otherwise, where b is the number of blocks of π(1), denoted
by π1(1), . . . , πb(1).

It is then easy to see that, with the notations of the previous section,

T (tπ(·)) = T (θ(π(·), C)) , (12)

And one can view θ(π(·), B) as the subtree of tπ(·) spanned by the root and the leaves with labels
in B.

3.2.3 Continuum fragmentation trees

Let (Π(t), t ≥ 0) be the self-similar fragmentation process with index −γ < 0 and dislocation
measure ν. The formation of dust property alluded to in Section 1.4 amounts to the fact that
almost-surely, there exists some time t0 > 0 such that Π(t) = IN for every t ≥ t0. Consequently,
the construction of the previous paragraph applies with C = N, and allows to construct a family
of R-trees

RB = θ(Π(·), B)

indexed by finite subsets B ⊂ N. Recall that a tree θ ∈ Θ has been identified with T (θ) ∈ Tw.
These R-trees have finitely many leaves that are naturally indexed by elements of B. Moreover,
they satisfy an obvious consistency property, meaning that taking the subtree spanned by the root
and the leaves indexed by B′ ⊂ B yields an R-tree with same law as RB′ . This is the key to the
definition of the fragmentation tree Tγ,ν .
Proposition 9 ([23]). Conditionally given Tγ,ν = (T , d, ρ, µ), let L1, L2, . . . be an i.i.d. sequence
of leaves of T distributed according to µ. Then for every finite B ⊂ N, the reduced subtree

R(Tγ,ν , B) =
⋃

i∈B

[[ρ, Li]]

has same distribution as RB.
Moreover, the law of Tγ,ν is the only one having this property, among distributions on Tw that

charge only the set of {(T , d, ρ, µ) ∈ Tw : ∀x ∈ T , x /∈ L(T ) =⇒ µ(Tx) > 0}.
As an easy consequence, we have the following “converse construction” of fragmentations from

Tγ,ν . With the notation of the proposition, for every t ≥ 0, let Π(t) be the partition of N such that
i, j are in the same block of Π(t) if and only if d(ρ, Li ∧Lj) > t. Then (Π(t), t ≥ 0) is a self-similar
fragmentation process with dislocation measure ν and index −γ.

Also, note that the reduced trees R(Tγ,ν , B) rooted at ρ and endowed with the empirical measure

µB =
1

#B

∑

i∈B

δLi ,

converge in distribution as #B → ∞ in Tw towards (T , d, ρ, µ). In fact, the convergence holds a.s.
if B = [k] with k → ∞: this is a simple exercise using the fact that {Li, i ≥ 1} is a.s. dense in L(T )
(by property 3. in the definition of Tγ,ν), and the weak convergence of µ[k] to µ as k → ∞.

The following statement gives a decomposition of the reduced tree R(T , [k]) at its first branch-
point above the root. Recall the notation Dk = inf{t ≥ 0 : Π(t) ∈ Ak}.
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Proposition 10. Let k ≥ 2 and π = Π(Dk), π
′ = π|k, b = b(π′). Then conditionally on {π,Dk},

the reduced tree R(Tγ,ν , [k]) has same distribution as

T
(〈

|πi|γR(T (i), π′i), 1 ≤ i ≤ b
〉
Dk

)
,

where the T (i) are i.i.d. with same distribution as Tγ,ν, independent of σ{π,Dk}.
Moreover, for every i ∈ N, the tree R(Tγ,ν , {i}) has same distribution as the R-tree associated

with the tree (∅,D1) ∈ Θ, i.e. a real segment with length D1 = inf{t ≥ 0 : {1} ∈ Π(t)}.

Proof. The second statement is just a matter of definitions, so we only need to prove the first
one. By Proposition 5, the process Π(Dk + ·), in restriction to the blocks containing at least one
element in [k], has same distribution as the partitions-valued process whose blocks are those of
πi ∩ Π(i)(|πi|−γ ·), 1 ≤ i ≤ b, for i.i.d. copies Π(i), i ≥ 1 of Π, independent on π,Dk. Therefore, one
gets from the definition of RB that

R[k]
(d)
= T 〈θ(Π(i)(|πi|−γ ·), π′i), 1 ≤ i ≤ b〉Dk

,

from which the result follows immediately.

Note that Proposition 6 gives the joint distribution of Dk, |πi|, 1 ≤ i ≤ b, π′ as a special
case, while Proposition 7 characterizes the law of D1, since it is the first time where the pro-
cess (|Π(1)(t)|, t ≥ 0) attains 0. This, together with the previous proposition, allows to characterize
entirely the laws of the reduced trees of Tγ,ν , hence the law of Tγ,ν itself.

3.2.4 Markov branching trees as discrete fragmentation trees

Recall the informal description of Markov branching trees P
q
n in the introduction, relying on col-

lections of balls in urns. Rather than collections of indistinguishable balls that split randomly, it is
convenient to consider instead a collection of balls that are distinguished by a random, exchange-
able labeling. This is achieved by replacing partitions of integers by partitions of sets. We start
with a preliminary lemma.

Lemma 5. Let n ≥ 1 be fixed, as well as a partition λ ∈ Pn with p = p(λ) parts.
(i)There are

Cλ =
n!∏p

i=1 λi!
∏n

j=1mj(λ)!

partitions π ∈ P[n] such that λ(π) = λ.
(ii) If 1 ≤ k ≤ n and π′ ∈ P[k] has b blocks, then for every i1, . . . , ib ∈ {1, 2, . . . , p} pairwise distinct,
there are

Cπ′

λ (i1, . . . , ib) = Cλ
1

(n)k

b∏

j=1

(λij )#π′
j

partitions π ∈ P[n] such that λ(π) = λ, π|[k] = π′ and #πj = λij , 1 ≤ j ≤ b.

Proof. Let p be the number of parts of λ. Then there are p!/
∏n

j=1mj(λ)! sequences (c1, . . . , cp)
whose non-increasing rearrangement is λ. With any such sequence, we can associate

n!∏p
i=1 ci!

=
n!∏p

i=1 λi!

sequences of the form (B1, . . . , Bp) such that {B1, . . . , Bp} is a partition of [n] (beware that the
labeling of the blocks Bi will differ in general from labeling convention described above for the blocks
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of a partition), with #Bi = ci, 1 ≤ i ≤ p. Finally, exactly p! sequences of the form (B1, . . . , Bp)
induce the same partition {B1, . . . , Bp}. Putting things together easily yield the formula for Cλ.

For the second formula, if λ ∈ Pn, π
′ ∈ P[k] and i1, . . . , ib are given with b = b(π′), then any

partition π ∈ P[n] with λ(π) = λ and π|[k] = π′ must have πi|[k] = (π|[k])i = π′i, for 1 ≤ i ≤ b, the
first equality coming from our choice of the labeling of blocks of partitions. The restriction of π
to [k] is thus entirely determined, while the restriction of π to [n] \ [k] is a partition of the latter
set whose block-sizes are given by the sequence λi, i /∈ {i1, . . . , ib}, λij −#π′j, 1 ≤ j ≤ b. A simple
adaptation of point (i) shows that there are

(n − k)!
∏

i/∈{i1,...,ib}
λi!
∏b

j=1(λij −#π′j)!
= Cπ′

λ (i1, . . . , ib)

such partitions.

Going back to Markov branching trees, let B ⊂ N have n ≥ 2 elements. Let q = (qn, n ≥ 1)
satisfy (1), and also assume that q1(∅) = 1. For every π ∈ PB , set

pB(π) =
qn(λ(π))

Cλ(π)
, (13)

where Cλ is the constant appearing in Lemma 5. Given the partition of n that it induces (which
has distribution qn), a pB-distributed partition is thus uniform among possible choices of partitions
of B. In particular, a random partition with distribution pB is exchangeable, i.e. its law is invariant
under the action of permutations of B. By convention, the law pB, if B = {i} is a singleton, is the
Dirac mass at the partition {{i}}.

For every π ∈ PB with blocks π1, π2, . . . , πk say, consider random partitions π̃i, 1 ≤ i ≤ k
of π1, . . . , πk respectively, chosen independently with respective distributions pπ1 , . . . , pπk

. We let
Q(π, ·) be the law of the partition

⋃
1≤i≤k π̃

i ∈ PB . Then Q is the transition kernel of a Markov
chain on PB (for any finite B ⊂ N), that ends at the state IB . It is easily seen that this Markov
chain is exchangeable as a process. Moreover, the chain started from the state {B}, with #B = n
has same distribution as the image of the chain started from [n] under the action of any bijection
[n] → B.

For finite C ⊂ N, we let (ΠC(r), r ≥ 0) be the chain with transition matrix Q and started from
ΠC(0) = OC . Plainly, ΠC is non-decreasing and attains IC in finite time a.s., so the construction
of Section 3.2.2 applies and yields a family θ(ΠC(·), B) ∈ Θ, B ⊆ C, as well as a tree TC :=
tΠC(·). By construction, given that ΠC(1) has blocks π1, . . . , πb, the trees tπi∩ΠC(·+1), 1 ≤ i ≤ b
are independent with same distribution as Tπi , 1 ≤ i ≤ b respectively. Since the law of the non-
increasing rearrangement of #πi, 1 ≤ i ≤ b is q#C , we readily obtain the following statement2.

Lemma 6. The tree TC has law P
q
#C .

In fact, the leaves of the tree TC are naturally labeled by elements of C. We will use it in the
sequel, without further formalizing the notion of trees with labeled leaves.

We will also use the shorthand notation TB
C for the reduced tree θ(ΠC(·), B). Using the above

description, and applying the Markov property for ΠC at time DΠC

B and the particular form of the
Markov kernel Q, we immediately obtain the following, in the particular case B = [k], C = [n].

Proposition 11. Let 2 ≤ k ≤ n. Then, conditionally on DΠ[n]

[k] = ℓ and Π[n](DΠ[n]

[k] ) = π, with

π|[k] = π′, it holds that T
[k]
[n] has same distribution as

〈θ(i), 1 ≤ i ≤ b(π′)〉ℓ ,
2There is one subtlety in this statement, which is in the case C = {i} for some i ∈ N. Indeed, by construction we

have TC = • a.s., and this is the only place where we have to require that q1(∅) = 1.
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Figure 2: An sample tree T[n] for n = 11, with the labeled leaves. The process Π(11) can be easily

deduced: for instance, Π(11)(1) = {{1, 2, 6, 7}, {3, 5, 10}, {4, 8, 9, 11}}. As opposed to Figure 1,
leaves are all connected to vertices with at least 2 children, because of the requirement q1(∅) = 1.

where θ(i), 1 ≤ i ≤ b are independent with respective laws that of T
π′
i

πi , 1 ≤ i ≤ b(π′).

Proof. The only subtle point is that [k]∩πi = π′i, 1 ≤ i ≤ b, since the labeling of the blocks of π, π′

could differ. But since these partitions are respectively of [n] and [k], this cannot be the case. �

4 Proofs of Theorems 1 and 2

Let q = (qn, n ≥ 1) be a sequence of laws on Pn respectively, that satisfies (1) and (H), for some
fragmentation pair (−γ, ν) and some slowly varying function ℓ. In order to lighten notations, we
let an = nγℓ(n).

As we noticed in the introduction, it is easy to pass from the situation where q1(∅) = 1 to the
general situation, by adding independent linear strings with Geometric(q1(∅))-distributed lengths
to the n leaves of Tn. Since geometric distributions have exponential tails, the longest of these n
strings will have a length at most C log n with probability going to 1 as n → ∞, for some C > 0.
If we let T 1

n be the tree for which q1(∅) > 0 and T 2
n the one for which q1(∅) = 1, coupled in the way

depicted above, we easily get, for any γ > 0,

P(dGHP(a
−1
n T 1

n , a
−1
n T 2

n) ≤ Ca−1
n log n) −→

n→∞
1 .

Thus, we can deduce the convergence in distribution of a−1
n T 2

n to Tγ,ν from that of a−1
n T 1

n . Therefore,
from now on and until the end of the present section, we make the following hypothesis, which will
allow us to apply Lemma 6:

(H’) The sequence (qn, n ≥ 1) satisfies (H) and q1(∅) = 1.

4.1 Preliminary convergence lemmas

We now establish a couple of intermediate convergence results for the discrete model. Recall that
the sequence of distributions qn, n ≥ 2 on Pn respectively induce distributions pB on PB for finite
B by formula (13). By convention we set pn = p[n].
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Lemma 7. Let k ≥ 2 and let π′ be an element in P[k] with b blocks, b ≥ 2. Let g : (0,∞)b → R be
a continuous function with compact support. Then, under assumption (H’),

anpn

(
g
(#π1

n
, . . . ,

#πb
n

)
1{π|[k]=π′}

)
−→
n→∞

∫

PN

κν(dπ)g(|π1|, . . . , |πb|)1{π|[k]=π′} ,

where κν is the paintbox construction associated with ν. Note that on the event {π|[k] = π′}, the
quantities #πi/n and |πi| for 1 ≤ i ≤ b that appear above are a.e. non-zero, respectively under pn
and κν.

Proof. For simplicity, we let

An = pn

(
g
(#π1

n
, . . . ,

#πb
n

)
1{π|[k]=π′}

)
.

By the definition of qn and Lemma 5,

An =
∑

λ∈Pn

qn(λ)
∑

i1,...,ib≥1
pairwise distinct

g
(λi1
n
, . . . ,

λib
n

)Cπ′

λ (i1, . . . , ib)

Cλ

=
∑

λ∈Pn

qn(λ)
1

(n)k

∑

i1,...,ib≥1
pairwise distinct

g
(λi1
n
, . . . ,

λib
n

) b∏

j=1

(λij )#π′
j
.

Now, the function

h(s) =
∑

i1,...,ib≥1
pairwise distinct

g(si1 , . . . , sib)
b∏

j=1

s
#π′

j

ij
, s ∈ S↓

is continuous and bounded, because g is compactly supported in (0,∞)b, so that the sum is really
a finite sum. Moreover,

h(s) ≤ K
∑

0≤k1,k2,...<k
k1+k2+...=k

k!∏
j≥1 kj !

∏

j≥1

s
kj
j = K

(
1−

∑

j≥1

skj

)
≤ kK(1− s1) , (14)

where K is an upper-bound of |g|, and for every λ ∈ Pn, it is easily checked that for large n, if
ε > 0 is such that g(x1, . . . , xb) = 0 as soon as min1≤i≤b xi ≤ ε,

(
1− k

εn

)k
h(λ/n) ≤ 1

(n)k

∑

i1,...,ib≥1
pairwise distinct

g
(λi1
n
, . . . ,

λib
n

) b∏

j=1

(λij )#π′
j
≤
( n

n− k

)k
h(λ/n) .

Letting n→ ∞ and applying (H’), which is validated by (14),

lim
n→∞

anAn =

∫

S↓

ν(ds)h(s) =

∫

PN

κν(dπ)g(|π1|, . . . , |πb|)1{π|[k]=π′} ,

the latter equality being a simple consequence of the paintbox construction of Section 3.1.2.

Now, we associate with (qn, n ≥ 1) a family of process (ΠB(r), r ≥ 0) with values in PB , as in
Section 3.2.4. We let Πn = Π[n] for simplicity, and set

Dn
k = DΠn

[k] = inf{r ≥ 0 : [k] ∩Πn(r) 6= {[k]}}

for 2 ≤ k ≤ n, and Dn
1 = DΠn

{1} = inf{r ≥ 0 : {1} ∈ Πn(r)}. Also, for r ≥ 0 we let

Xn(r) = #Πn
(1)(r) .
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Lemma 8. Let n, k ∈ N be fixed, with n ≥ k ≥ 2, and let π′ ∈ P[k] have b ≥ 2 blocks. Let F, f be
measurable non-negative functions. Then

E

[
F
(
Xn

(
· ∧(Dn

[k] − 1)
))
f(#Πn

i (D
n
[k]), 1 ≤ i ≤ b)1{[k]∩Πn(Dn

[k]
)=π′}

]

=
∑

r′>0

E

[
(Xn(r

′ − 1)− 1)k−1

(n− 1)k−1
F
(
Xn(· ∧ (r′ − 1))

)
pXn(r′−1)(f(#πi, 1 ≤ i ≤ b)1{π|[k]=π′})

]

Proof. We first consider an expression of a more general form. For non-negative functions G, g,
we have, using the Markov property at time r′ − 1 in the second step,

E

[
G
(
Πn(· ∧ (Dn

[k] − 1))
)
g
(
Πn

(1)(D
n
[k] − 1) ∩Πn(Dn

[k])
)]

=
∑

r′>0

E

[
G
(
Πn(· ∧ (r′ − 1))

)
1{[k]⊂Πn

(1)
(r′−1)}g

(
Πn

(1)(r
′ − 1) ∩Πn(r′)

)
1{[k]∩Πn(r′)6={[k]}}

]

=
∑

r′>0

E

[
G
(
Πn(· ∧ (r′ − 1))

)
1{[k]⊂Πn

(1)
(r′−1)}pΠn

(1)
(r′−1)(g(π)1{[k]∩π 6={[k]}})

]

Specializing this formula to G depending only on Xn and g(π) = f(#π1, . . . ,#πb)1{π|[k]=π′}, and
using obvious exchangeability properties, we obtain

E

[
F
(
Xn(· ∧ (Dn

[k] − 1))
)
f
(
#Πn

i (D
n
[k]), 1 ≤ i ≤ b

)
1{[k]∩Πn(Dn

[k]
)=π′}

]

=
∑

r′>0

E

[
F
(
Xn(· ∧ (r′ − 1))

)
pXn(r′−1)(f(#πi, 1 ≤ i ≤ b)1{π|[k]=π′})1{[k]⊂Πn

(1)
(r′−1)}

]

All the terms in the expectation depend on (Xn(r), 0 ≤ r ≤ r′ − 1), except the last one which is a
function of Πn

(1)(r
′ − 1). But by Lemma 1 (in fact, the variant used in the proof of Lemma 3),

P
(
[k] ⊂ Πn

(1)(r
′ − 1)

∣∣ (Xn(r), 0 ≤ r ≤ r′ − 1)
)
=

(Xn(r
′ − 1)− 1)k−1

(n− 1)k−1
,

giving the result.

In the sequel, Π(·) will denote a continuous-time self-similar fragmentation with characteristic
pair (−γ, ν), and Dk, k ≥ 1 will be defined as in Section 3.1.5.

Lemma 9. Under assumption (H’), it holds that

(Xn(⌊ant⌋)
n

, t ≥ 0
)

(d)−→
n→∞

(|Π(1)(t)|, t ≥ 0) ,

in distribution for the Skorokhod topology, jointly with the convergence

1

an
Dn

1
(d)−→

n→∞
D1 .

Proof. For n > k ≥ 1, let pn,k = P(Xn(1) = k). Note that the process Xn is a non-increasing
Markov chain started from n, with probability transitions pi,j, 1 ≤ j ≤ i. Then by a simple
exchangeability argument,

pn,k =
∑

π∈P[n]

pn(π)mk(π)
k

n
=
∑

λ∈Pn

qn(λ)mk(λ)
k

n
, 1 ≤ k ≤ n,
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where mk(π) = mk(λ(π)) is the number of blocks of π with size k. Consider the associated
generating function for x ≥ 0

Fn(x) =

n∑

k=1

(
k

n

)x

pn,k =
∑

λ∈Pn

qn(λ)

n∑

k=1

mk(λ)
(k
n

)x+1
=
∑

λ∈Pn

qn(λ)
∑

i≥1

(λi
n

)x+1
.

Hence, 1− Fn(x) = qn(f), where f(s) = 1−∑i≥1 s
x+1
i , and by (H’),

an(1− Fn(x)) −→
n→∞

∫

S↓

(
1−

∑

i≥1

sx+1
i

)
ν(ds) .

This is exactly what we need to use [24, Theorem 1], stating that (n−1Xn(⌊ant⌋), t ≥ 0) converges
in distribution to the self-similar Markov process exp(−ξτ(·)), as defined around Proposition 7.
Moreover, this convergence holds jointly with the convergence of absorption times at 1, so a−1

n Dn
1

converges to the absorption time at 0 of exp(−ξτ(·)). By Proposition 7, the process exp(−ξτ(·)) has
same distribution as (|Π(1)(t)|, t ≥ 0), which reaches 0 for the first time at time D1. Hence the
result.

Finally, the combination of the last two lemmas gives the last of our preliminary ingredients.

Lemma 10. The following joint convergence in distribution holds:
(
Dn

k

an
, [k] ∩Πn(Dn

k ),

(
#Πn

(i)(D
n
k )

n
, i ∈ [k]

))
(d)−→

n→∞

(
Dk, [k] ∩Π(Dk), (|Π(i)(Dk)|, i ∈ [k])

)
.

Proof. Let π′ ∈ Pk have b ≥ 2 blocks, and f, g : (0,∞) → R, h : (0,∞)b → R be continuous
functions with compact support. Then by Lemma 8,

E

[
f
(Dn

k

an

)
g
(Xn(D

n
k − 1)

n

)
h
( #Πn

i (D
n
k )

Xn(Dn
k − 1)

, 1 ≤ i ≤ b
)
1{[k]∩Πn(Dn

k )=π′}

]

=
∑

r′>0

f
( r′
an

)
E

[
(Xn(r

′ − 1)− 1)k−1

(n− 1)k−1
g
(Xn(r

′ − 1)

n

)
pXn(r′−1)

(
h
( #πi
Xn(r′ − 1)

, 1 ≤ i ≤ b
)
1{π|[k]=π′}

)]

=
1

an

∑

r′>0

f
( r′
an

)
E

[
Φ(n,Xn(r

′ − 1))g
(Xn(r

′ − 1)

n

)
Ψ(Xn(r

′ − 1))

]

=

∫ ∞

1/an

f
(⌊anu⌋

an

)
duE

[
Φ(n,Xn(⌊anu⌋ − 1))g

(Xn(⌊anu⌋ − 1)

n

)
Ψ(Xn(⌊anu⌋ − 1))

]

where

Φ(n, x) =
(x− 1)k−1

(n− 1)k−1

an
ax

−→
(n,x/n)→(∞,c)

ck−1−γ ,

and

Ψ(m) = ampm

(
h
(#πi
m

, 1 ≤ i ≤ b
)
1{π|[k]=π′}

)
.

Note that the Potter’s bounds for regularly varying functions [11, Th.1.5.6.] imply that Φ(n, x) ≤
C
(
x
n

)k−1−γ−1
for all n ≥ x ≥ A for some finite positive constants C,A. In particular there exists

some n0 such that supn≥n0,0<x≤nΦ(n, x)g(x/n) <∞ (since g is null in a neighborhood of 0). The
joint use of Lemmas 7 and 9 entails by dominated convergence that the expectation term in the
integral converges to (note that the quantities |πi|, 1 ≤ i ≤ b are all a.e. positive on {π|[k] = π′}
under κν)

E

[
|Π(1)(u)|k−1−γg(|Π(1)(u)|)

∫

PN

κν(dπ)h(|πi|, 1 ≤ i ≤ b)1{π|[k]=π′}

]
,
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and since f, g, h are compactly supported, the whole integral converges to

∫ ∞

0
f(u)duE

[
|Π(1)(u)|k−1−γg(|Π(1)(u)|)

∫

PN

κν(dπ)h(|πi|, 1 ≤ i ≤ b)1{π|[k]=π′}

]
,

which, by Proposition 6, equals

E

[
f(Dk)g(|Π(1)(Dk−)|)h

( |Πi(Dk)|
|Π(1)(Dk−)| , 1 ≤ i ≤ b

)
1{[k]∩Π(Dk)=π′}

]
.

It is now easy to conclude, since a.s. we have |Πi(Dk)| > 0.

4.2 Convergence of finite-dimensional marginals

The first step in the proof of Theorem 1 is the following result on reduced trees TB
C of Section 3.2.4.

Proposition 12. Let B ⊂ N be finite. Under assumption (H’), we have the following convergence
in distribution in Tw:

1

an
TB
[n]

(d)−→
n→∞

R(Tγ,ν , B) .

Proof. We use an induction argument on the cardinality of B. For B = {i}, one can assume by
exchangeability (as soon as n ≥ i) that B = {1}, and in this case, the reduced tree is TB

[n] = (∅,Dn
1 ),

while R(Tγ,ν , {1}) = (∅,D1) by Proposition 10. By the second part of Lemma 9, under (H’), it
holds that

Dn
1

an

(d)−→
n→∞

D1 .

This initializes the induction. Now, assume that Proposition 12 has been proved for every set B
with cardinality at most k − 1, for some k ≥ 2. We want to show that the same is true of any set
of cardinality [k], and by exchangeability, we may assume that B = [k].

We now recall, using Proposition 11, that conditionally on Dn
k = ℓ, [k] ∩ Πn(Dn

k ) = π′ having

b ≥ 2 blocks and on Πn
i (D

n
k ) = πi, 1 ≤ i ≤ b with respective cardinality #πi = ni, the tree T

[k]
[n] has

same distribution as
〈θ(i), 1 ≤ i ≤ b〉ℓ ,

where θ(i) has same distribution as T
π′
i

πi , and these trees are independent.
The joint distribution of Dn

k , [k]∩Πn(Dn
k ), (#Πn

(i)(D
n
k ), 1 ≤ i ≤ k) is specified by Lemma 8, and

its scaling limit by Lemma 10. We obtain by the induction hypothesis that jointly with the above
convergence, conditionally on [k] ∩Πn(Dn

k ) = π′,

1

an
θ(i) =

ani

an

1

ani

θ(i)

(d)−→
n→∞

|Πi(Dk)|γT (i) , 1 ≤ i ≤ b ,

where the T (i) are independent with same laws asR(Tγ,ν , π′i) respectively. Finally, a−1
n T

[k]
[n]

converges
to

〈|Πi(Dk)|γT (i), 1 ≤ i ≤ b〉Dk
,

and the R-tree associated with this tree has same distribution as R(Tγ,ν , [k]) by Proposition 10.
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4.3 Tightness in the Gromov-Hausdorff topology

We now want to improve the convergence of Proposition 12 into a convergence of non-reduced trees
for the Gromov-Hausdorff topology. Namely

Proposition 13. Under hypothesis (H’), we have the convergence in distribution

1

an
Tn

(d)−→
n→∞

Tγ,ν

in T , for the Gromov-Hausdorff topology.

This will be proved by first showing a couple of intermediate lemmas.

Lemma 11. Under assumption (H’), we have the convergence in distribution:

(Πn(⌊ant⌋), t ≥ 0)
(d)−→

n→∞
(Π(t), t ≥ 0)

jointly with
(#Πn

(i)(⌊ant⌋)
n

, t ≥ 0
)

(d)−→
n→∞

(|Π(i)(t)|, t ≥ 0)

for every i ≥ 1, all these convergences holding jointly.

Proof. The fact that ([k]∩Πn(⌊ant⌋), t ≥ 0) converges in the Skorokhod space to ([k]∩Π(t), t ≥ 0)
for every k ≥ 1 is obtained by using an inductive argument similar to that used in the proof of
Proposition 12. We only sketch the argument. The statement is trivial for k = 1, so we can assume
that k ≥ 2. The process [k]∩Πn(⌊an·⌋) remains constant equal to [k] up to time a−1

n Dn
k , and jumps

to the state π′ = [k] ∩ π, π = Πn(Dn
k ). By Lemma 10, a−1

n Dn
k → Dk as n→ ∞, and the latter has

a diffuse law by Proposition 6.
After time a−1

n Dn
k , given π, the restrictions π′i ∩ Πn(⌊an·⌋ + Dn

k ) have same distribution as
π′i ∩ Ππi(⌊an·⌋), and are independent. By the induction hypothesis and exchangeability, still con-
ditionally on π, this converges to π′i ∩ Π(i)(·), where Π(i), i ≥ 1 are i.i.d. copies of Π. Moreover,
since the jump times have diffuse laws, two such copies never jump at the same time, from which
one concludes that given π, the process (π′i ∩ Πn(⌊ant⌋ + Dn

k ), 1 ≤ i ≤ b(π′), t ≥ 0) converges in
the Skorokhod space to (π′i ∩ Π(i)(t), 1 ≤ i ≤ b(π′), t ≥ 0). This concludes the inductive step by
plugging the initial constancy interval of the process, with length a−1

n Dn
k .

The convergence of Πn(⌊an·⌋) in the Skorokhod space follows, because dP ([k] ∩ π, π) ≤ e−k for
every π ∈ PN. This shows that [k] ∩Πn(⌊an·⌋) remains uniformly close to Πn(⌊an·⌋).

Next, by Lemma 2, it follows that, jointly with this convergence, for every i ≥ 1, the finite-
dimensional marginals of (n−1#Πn

(i)(⌊ant⌋), t ≥ 0) converge in distribution to those of (|Π(i)(t)|, t ≥
0), at least for times which are not fixed discontinuity times of the limiting process — the set of
such points is always countable, and it turns out that there are none in the present case. Since
we also know that the laws of the processes (n−1#Πn

(i)(⌊ant⌋), t ≥ 0) are tight when n varies, by

Lemma 9 (these processes all have same distribution as (n−1Xn(⌊ant⌋), t ≥ 0) by exchangeability),
this allows to conclude.

For k + 1 ≤ i ≤ n, let
Sn
i = inf{r ≥ 0 : [k] ∩Πn

(i)(r) = ∅} ,
the first time when the ball indexed i is separated from the k first balls. The random variables
Sn
i , k + 1 ≤ i ≤ n have same distribution by exchangeability. The strong Markov property at the

stopping time Sn
i also shows that conditionally on Πn

(i)(S
n
i ) = B, the process (B∩Πn(Sn

i +r), r ≥ 0)

has same distribution as ΠB . The tree tB∩Πn(Sn
i +·) has thus same distribution as TB, and can be

32



seen as a subtree of T[n], characterized by the fact that this subtree contains the leaf labeled i, does
not contain any of the leaves labeled by an element of [k], and is the maximal subtree of T[n] with

this property. In particular, the Gromov-Hausdorff distance between T
[k]
[n] and T[n] is at most

dGH(T
[k]
[n] , T[n]) ≤ max

k+1≤i≤n
ht
(
tΠn

(i)
(Sn

i )∩Π
n(Sn

i +·)

)
,

where ht(t) is the maximal generation of a vertex in the tree t, called the height of t.
Note that if j ∈ Πn

(i)(S
n
i ), then S

n
j = Sn

i . Therefore, the blocks Π
n
(i)(S

n
i ), k+1 ≤ i ≤ n are either

disjoint or equal. Moreover, the partition π of [n] \ [k] with these blocks is clearly exchangeable.
By putting the previous observations together, we obtain by first conditioning on π, and for every
η > 0,

P

(
dGH(T

[k]
[n] , T[n]) ≥ ηan

)
≤ E

[∑

i≥1

P
q
#πi

(ht ≥ ηan)

]
, η > 0 . (15)

At this point, we need the following uniform estimate for the height of a Pn-distributed tree, which
is the key lemma of this section.

Lemma 12. Assume (H’). Then for all p > 0, there exists a finite constant Cp such that:

Pq
n

(
ht ≥ xan

)
≤ Cp

xp
, ∀x > 0,∀n ≥ 1.

Before giving the proof of this statement, we end the proof of Proposition 13. Using Lemma 12
for p = 2/γ and (15), we obtain

P

(
dGH(T

[k]
[n] , T[n]) ≥ ηan

)
≤ C2/γη

−2/γ
E

[∑

i≥1

a
2/γ
#πi

a
2/γ
n

]
.

By the exchangeability of the partition π of [n] \ [k], note that for every measurable function f ,

E[f(#π(k+1))] =
1

n− k
E

[ n∑

i=k+1

f(#π(i))

]
= E

[∑

i≥1

#πi
n− k

f(#πi)

]
.

This finally yields

P

(
dGH(T

[k]
[n] , T[n]) ≥ ηan

)
≤ C2/γη

−2/γ
E

[a2/γ#π(k+1)
(#π(k+1))

−1

a
2/γ
n n−1

]
.

Since the sequence (a
2/γ
n n−1, n ≥ 1) is strictly positive and regularly varying at ∞ with index 1,

we get from the Potter’s bounds ([11, Th.1.5.6.]) the existence of a finite constant C such that

(a
2/γ
k k−1)/(a

2/γ
n n−1) ≤ C

√
k/n for all 1 ≤ k ≤ n. Hence,

P

(
dGH(T

[k]
[n] , T[n]) ≥ ηan

)
≤ CC2/γη

−2/γ
E

[√
#π(k+1)

n

]
.

Note that the quantity in the expectation is bounded by 1. By Proposition 11, it holds that
Sn
k+1/an → Sk+1 in distribution as n → ∞, where Sk+1 = inf{t ≥ 0 : [k] ∩ Π(k+1)(t) = ∅} . This

convergence holds jointly with that of (n−1#Πn
(k+1)(⌊ant⌋), t ≥ 0) to (|Π(k+1)(t)|, t ≥ 0) in the

Skorokhod space, whence we deduce that

lim sup
n→∞

P

(
dGH(T

[k]
[n] , T[n]) ≥ ηan

)
≤ CC2/γη

−2/γ
E

[√
|Π(k+1)(Sk+1−)|

]
.
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Let S′
k+1 = inf{t ≥ 0 : {2, 3, . . . , k + 1} ∩Π(1)(t) = ∅}, then by exchangeability,

lim sup
n→∞

P

(
dGH(T

[k]
[n] , T[n]) ≥ ηan

)
≤ CC2/γη

−2/γ
E

[√
|Π(1)(S

′
k+1−)|

]
.

Since the quantity in the expectation goes to 0 a.s. as k → ∞ and is bounded (indeed S′
k ↑ D{1}

a.s. and Π(1)(D{1}−) = 0 by (2) and Proposition 7), we conclude that for every η > 0,

lim
k→∞

lim sup
n→∞

P

(
dGH(T

[k]
[n] , T[n]) ≥ ηan

)
= 0 . (16)

It is now easy to conclude from this, Proposition 4.2 and the fact that R(Tγ,ν , [k]) converges is
distribution in (T , dGH) to Tγ,ν as k → ∞ ([23]), using [10, Theorem 4.2]:

Lemma 13. Let Xn,X,X
k
n ,X

k be random variables in a metric space (M,d). We assume that for
every k, we have Xk

n → Xk in distribution as n → ∞, and Xk → X in distribution as k → ∞.
Finally, we assume that for every η > 0,

lim
k→∞

lim sup
n→∞

P(d(Xk
n,Xn) > η) = 0 .

Then Xn → X in distribution as n→ ∞.

Proof of Lemma 12. Note that if the statement holds for some p > 0, it then holds for all
q ∈ (0, p). We can therefore assume in the following that p > 1/γ and we let ε > 0 be so that
p(γ − ε) > 1. The main idea of the proof is to proceed by induction on n, using the Markov
branching property. We start with some technical preliminaries.

• First note that Eq
n[ht

r] < ∞ for all r > 0 and all n ≥ 1. This can easily be proved by induction
on n (r being fixed) using the Markov branching property, that qn((n)) < 1 and that H1 = 1 a.s.

• Second, we replace the sequence (an, n ≥ 1) by a nicer sequence (ãn, n ≥ 1) such that ãn ∼ an,
i.e. an/ãn → 1 as n → ∞ (this step is trivial when an = nγ ; we then take ãn = an). Since
(an, n ≥ 1) is regularly varying at ∞, it is well-known (see [11, Theorem 1.3.1]) that it can be
written in the form

an = c(n) exp

(∫ n

1
ε(u)du/u

)
, n ≥ 1,

where c(n) → c > 0 as n→ ∞ and ε is a measurable function that converges to 0 as ∞. Define

ãn = c exp

(∫ n

1
ε(u)du/u

)
, n ≥ 1.

We claim that there exists an integer nε ≥ 1 such that for n ≥ nε,

ãk
ãn

≤
(
k

n

)γ−ε

∀1 ≤ k ≤ n. (17)

Indeed, let uε be such that |ε(u)| ≤ ε for all u ≥ uε. For n ≥ k ≥ uε, we have

∣∣∣∣
∫ n

k
−ε(u)du/u

∣∣∣∣ ≤ ε

∫ n

k
du/u ≤ ε ln(n/k)

hence
ãk
ãn

=

(
k

n

)γ

exp

(
−
∫ n

k
ε(u)du/u

)
≤
(
k

n

)γ−ε

.
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Besides supk∈{1,...,⌊uε⌋} ãkk
ε−γ/(ãnn

ε−γ) ≤ 1 for all n large enough (say n ≥ n′ε). Hence ãk/ãn ≤
(k/n)γ−ε for all n ≥ nε = max(n′ε, uε) and all 1 ≤ k ≤ n.

• Since ãn > 0 for all n ≥ 1 and ãn ∼ an, there exists some c > 0 such that an ≥ cãn for all n ≥ 1.
It is therefore sufficient to prove the existence of a finite Cp (a priori different from the one in the
statement of the lemma) such that

Pq
n (ht ≥ xãn) ≤

Cp

xp
, ∀x > 0 and n ≥ 1, (18)

to finish the proof of the lemma. In order to prove (18), we will use the integer nε introduced around
(17) and we will further assume, taking nε larger if necessary, that ãn ≥ 1 ∀n ≥ nε. Introduce now
0 < C1

p < 1 such that

(1− u)−p ≤ 1 + 2pu, ∀0 ≤ u ≤ C1
p .

Using (H’) and the fact that qn((n)) < 1 for all n ≥ 1, there exists also C2
p > 0 such that

ãn
∑

λ∈Pn

qn(λ)


1−

p(λ)∑

i=1

(
λi
n

)(γ−ε)p

 ≥ C2

p , ∀n ≥ 1 (19)

(recall that (γ − ε)p > 1 and ãn > 0 for all n ≥ 1). Last we let

Cp(nε) := max
1≤n≤nε

(Eq
n[ht

p]/ãpn) <∞

and we set
Cp := max

(
Cp(nε),

(
1/C1

p , 2p/C
2
p

)p)
<∞.

Our goal is to prove by induction on n ≥ 1 that

Pq
n(ht < xãn) ≥ 1− Cp

xp
, for every x > 0, (An)

Clearly, (An) holds for all n ≤ nε since Cp ≥ Cp(nε) and P
q
n(ht ≥ xãn) ≤ E

q
n[ht

p]/(xãn)
p. Now

assume that (Ak) is satisfied for all k ≤ n− 1 for some n ≥ nε. For all 0 < x ≤ C
1/p
p , the expected

inequalities in (An) are obvious, so it remains to prove them for x > C
1/p
p . To get (An), we will

prove by induction on i ∈ N that

Pq
n(ht < xãn) ≥ 1− Cp

xp
, for every x ∈

(
0,

i

ãn

)
, (An,i)

which will obviously lead to (An). Note first that (An,1) holds since 1/ãn ≤ 1 ≤ C
1/p
p . Assume

next that (An,i) is true, and fix x ∈ (0, (i + 1)/ãn). Using the Markov branching property and the
fact that (Ak), holds for every k ≤ n− 1, as well as (An,i), we get

Pq
n(ht < xãn) =

∑

λ∈Pn

qn(λ)

p(λ)∏

i=1

P
q
λi
(ht < xãn − 1)

≥
∑

λ∈Pn

qn(λ)

p(λ)∏

i=1

(
1−

Cpã
p
λi

(xãn − 1)p

)+

≥
∑

λ∈Pn

qn(λ)


1−

p(λ)∑

i=1

Cpã
p
λi

(xãn − 1)p


 ,
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using the notation r+ = max(r, 0) and that for all sequences of non-negative terms bi, i ≥ 1,∏m
i=1(1 − bi)

+ ≥ 1 −∑m
i=1 bi, ∀m ≥ 1. We can assume that x > C

1/p
p since (An) holds otherwise.

In particular, xãn ≥ x > 1/C1
p > 1. Therefore,

1

(xãn − 1)p
=

1

(xãn)p(1− 1/(xãn))p
≤ 1 + 2p/(xãn)

(xãn)p
,

and then

Pq
n(ht < xãn)

≥
∑

λ∈Pn

qn(λ)−
Cp

xp

∑

λ∈Pn

qn(λ)

p(λ)∑

i=1

( ãλi

ãn

)p
− 2pCp

xp+1ãn

∑

λ∈Pn

qn(λ)

p(λ)∑

i=1

( ãλi

ãn

)p

≥
by (17)

1− Cp

xp

∑

λ∈Pn

qn(λ)

p(λ)∑

i=1

(λi
n

)(γ−ε)p
− 2pCp

xp+1ãn

∑

λ∈Pn

qn(λ)

p(λ)∑

i=1

(λi
n

)(γ−ε)p

≥ 1− Cp

xp
+
Cp

xp

∑

λ∈Pn

qn(λ)


1−

p(λ)∑

i=1

(λi
n

)(γ−ε)p


− 2pCp

xp+1ãn

∑

λ∈Pn

qn(λ)

p(λ)∑

i=1

(λi
n

)(γ−ε)p
.

We then use (19) and the fact that
∑p(λ)

i=1 (λi/n)
(γ−ε)p ≤ 1 (since (γ − ε)p > 1) to get

Pq
n(ht < xãn) ≥ 1− Cp

xp
+

Cp

xpãn

(
C2
p − 2p

x

)
.

By assumption, x > C
1/p
p ≥ 2p/C2

p , hence

Pq
n(ht < xãn) ≥ 1− Cp

xp
for every x ∈

(
0,
i+ 1

ãn

)
,

as wanted.

4.4 Incorporating the measure

We now finish the proof of Theorem 1, by improving the Gromov-Hausdorff convergence of Propo-
sition 13 to a Gromov-Hausdorff-Prokhorov convergence, when the uniform measure µn = µ∂Tn on
leaves is added to Tn in order to view it as an element of Tw rather than T .

We will use the fact [21, Lemma 2.3] that the convergence in distribution of a−1
n Tn as n → ∞

in T entails that the laws of the random variables a−1
n Tn, form a tight sequence of probability

measures on Tw. Therefore, it suffices to identify the limit as Tγ,ν.
So let us assume that a−1

n Tn converges to (T ′, d′, ρ′, µ′) ∈ Tw in distribution, when n → ∞
along some subsequence. Let Ln

1 , L
n
2 , . . . , L

n
k be k i.i.d. uniform leaves of Tn. Conditionally given

the event that these leaves are pairwise distinct, which occurs with probability going to 1 as
n → ∞ with k fixed, these leaves are just a uniform sample of k distinct leaves of Tn, so by
Lemma 6 and exchangeability, the subtree of Tn spanned by the root and the leaves Ln

1 , . . . , L
n
k has

same distribution as T
[k]
[n] . By Proposition 12, we know that a−1

n T
[k]
[n] converges in distribution to

R(Tγ,ν , [k]) in T .
Now, the fact that a−1

n Tn converges to (T ′, d′, ρ′, µ′) in Tw implies that the k+1-pointed space
(a−1

n Tn, ρ, L
n
1 , . . . , L

n
k) converges in distribution to (T ′, ρ′, L1, . . . , Lk), where L1, . . . , Lk are i.i.d.

with law µ′ conditionally on the latter, see [29, Proposition 10] for a proof and the definition of
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multi-pointed Gromov-Hausdorff topologies. This implies the joint convergence in distribution in

T of T[n], T
[k]
[n] to T ′,T ′

k , still along the appropriate subsequence, where

T ′
k =

k⋃

i=1

[[ρ′, Li]]

is the subtree of T ′ spanned by ρ′, L1, . . . , Lk. In particular, this identifies the law of T ′
k as that

of R(Tγ,ν , [k]). When k → ∞, we already stressed that the latter trees converge (in distribution
in Tw, with the uniform measure µk on the set of its k leaves) to Tγ,ν . On the other hand, T ′

k

converges a.s. to (T ′′, d′, ρ′, µ′) in Tw as k → ∞, where T ′′ is the closure in T ′ of

∞⋃

i=1

[[ρ′, Li]] .

But the joint convergence of T[n], T
[k]
[n] in T along some subsequence and (16) imply that for every

η > 0, limk→∞ P(dGH(T ′
k ,T ′) > η) = 0. So T ′′ = T ′ a.s., which entails that (T ′, d′, ρ′, µ′) has same

distribution as Tγ,ν. This identifies the limit of a−1
n Tn in Tw as Tγ,ν , and ends the proof of Theorem

1.

4.5 Proof of Theorem 2

To pass from trees with n vertices (with law Q
q
n) to trees with laws of the form P

q′
n , with n leaves,

we introduce a transformation on trees, in which every vertex which is not a leaf is attached to an
extra “ghost” neighbor, which is a leaf.

Precisely, if t is a plane tree, then the modification t◦ is defined ast◦ = t ∪ ⋃

u=(u1,...,uk)∈t\∂t{(u1, . . . , uk, cu(t) + 1)} .

If we are given a tree rather than a plane tree, then this construction performed on any plane
representative a the tree t will yield plane trees in the same equivalence class, which we call t◦.
Note that

#∂t◦ = #t .

We see t◦ as an element of Mw (endowed with graph distance and uniform distribution on ∂t◦),
and view t as an element of Mw, by endowing it also with the graph distance, but this time, with
the uniform distribution µt on t. It is easy to see, using the natural isometric embedding of t into
t◦, that for every a > 0,

dGHP(at, at
◦) ≤ a . (20)

Let (qn, n ≥ 1) be, as in Section 1.2.2, a family of probability distributions respectively on Pn, such
that q1((1)) = 1. We introduce the family q◦n, n ≥ 1 of probability measures respectively on Pn by
q◦1(∅) = 1, and

q◦n+1((λ, 1)) = qn(λ) , n ≥ 1, λ ∈ Pn ,

where (λ, 1) = (λ1, . . . , λp(λ), 1) ∈ Pn+1.

It is then immediate to show by induction that if Tn has law Q
q
n, then T ◦

n has law P
q◦
n , with the

notation of Section 1.2.1. We leave this verification to the reader. In view of this and (20), we see
that Theorem 2 is a straightforward consequence of the following statement.

Lemma 14. If (qn, n ≥ 1) satisfies (H) with either γ ∈ (0, 1), or γ = 1 and ℓ(n) → 0 as n → ∞,
then (q◦n, n ≥ 1) satisfies (H), with same fragmentation pair (−γ, ν) and function ℓ.
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Proof. Let f : S↓ → R be a Lipschitz function with uniform norm and Lipschitz constant
bounded by K. Let also g(s) = (1− s1)f(s). Then

∣∣∣∣f
((λ, 1)
n+ 1

)
− f

(λ
n

)∣∣∣∣ ≤ K

p(λ)∑

i=1

λi
n(n+ 1)

+
K

n+ 1
≤ 2K

n+ 1
,

so that

|q◦n+1(g)− qn(g)| ≤
∑

λ∈Pn

qn(λ)

∣∣∣∣
(
1− λ1

n+ 1

)
f
((λ, 1)
n+ 1

)
−
(
1− λ1

n

)
f
(λ
n

)∣∣∣∣

≤
∑

λ∈Pn

qn(λ)

(
λ1

n(n+ 1)
+

2K

n+ 1

)

≤ 1 + 2K

n+ 1

multiplying both sides by nγℓ(n), we see that the upper-bound converges to 0 as n→ ∞ under our
hypotheses. Since nγℓ(n)qn(g) converges to ν(g) by (H), we obtain the same convergence with q◦n
instead of qn. This yields the result.

4.6 Proof of Proposition 4

Recall the notation Λ(s)(n) for the decreasing sequence of sizes of blocks restricted to {1, . . . , n} of
a random variable with painbox distribution ρs(dπ), with s ∈ S↓,

∑
i≥1 si = 1. Recall also that

Λ(s)(n)/n → s in S↓ a.s.. Now set for λ ∈ Pn,

q̃n(λ) = n−γ

∫

S↓

P(Λ(s)(n) = λ)1{n−γ/2≤1−s1}
ν(ds), λ 6= (n),

q̃n((n)) = 1−
∑

λ∈Pn,λ6=(n)

q̃n(λ).

For n large enough, say n ≥ n0,

0 <
∑

λ∈Pn,λ6=(n)

q̃n(λ) ≤ n−γ/2

∫

S↓

(1− s1)ν(ds) ≤ 1,

hence q̃n defines a probability distribution on Pn such that q̃n((n)) < 1. Then set qn = q̃n for
n ≥ n0 and for n < n0 take any distribution qn on Pn such that qn((n)) < 1.

Next consider a continuous non-negative function f : S↓ → R. For n ≥ n0, we have

nγ
∑

λ∈Pn

qn(λ)

(
1− λ1

n

)
f

(
λ

n

)
=

∫

S↓

E

[(
1− Λ

(s)
1 (n)

n

)
f

(
Λ(s)(n)

n

)]
1{n−γ/2≤1−s1}

ν(ds),

which converges to
∫
S↓ f(s)(1− s1)ν(ds) as n→ ∞ by dominated convergence. This concludes the

proof.

5 Scaling limits of conditioned Galton-Watson trees

Recall the notations of Section 2.1. While the probability distribution GWξ enjoys the so-called

branching property, it holds that the conditioned versions GW
(n)
ξ are Markov branching trees.

38



Proposition 14. (i) One has GW
(n)
ξ = Q

q
n for every n ≥ 1, where the splitting probabilities

q = (qn, n ≥ 1) are defined by q1((1)) = 1 and for every n ≥ 2 and λ = (λ1, . . . , λp) ∈ Pn,

qn(λ) =
p!∏

j≥1mj(λ)!
ξ(p)

∏p
i=1 GWξ(#t = λi)

GWξ(#t = n+ 1)
. (21)

(ii) On some probability space (Ω,F ,P), let X1,X2, . . . be i.i.d. with distribution P(X1 = k) =
GWξ(#t = k), and set τp = X1 +X2 + . . . +Xp. Then

qn(p(λ) = p) = ξ(p)
P(τp = n)

P(τ1 = n+ 1)
,

and qn(· | {p(λ) = p}) is the law of the non-increasing rearrangement of (X1, . . . ,Xp) conditionally
on X1 + . . .+Xp = n.

Proof. (i) Under GWξ (viewed as a law on plane trees), conditionally on c∅ = p, the p (plane)
subtrees born from ∅ are independent with law GWξ. For integers a1, . . . , ap with sum n, the
probability that these trees have sizes equal to a1, . . . , ap is thus

∏p
i=1 GWξ(#t = ai). Hence,

GW
(n+1)
ξ (c∅ = p,#ti = ai, 1 ≤ i ≤ p) = ξ(p)

∏p
i=1GWξ(#t = ai)

GWξ(#t = n+ 1)
, (22)

and conditionally on the event on the left-hand side, the subtrees born from the root are indepen-

dent with respective laws GW
(ai)
ξ , 1 ≤ i ≤ p. Letting λ be the non-increasing rearrangement of

(a1, . . . , ap) and re-ordering the subtrees by non-increasing order of size (with some convention for
ties, e.g. taking them in order of appearance according to the plane structure), we see that these

subtrees are independent with laws GW
(λi)
ξ , 1 ≤ i ≤ p. Using the fact that there are p!/

∏
j≥1mj(λ)!

compositions (a1, . . . , ap) of the integer n corresponding to a partition λ ∈ Pn, and viewing GWξ

as a law on T instead of plane trees, the conclusion easily follows.

(ii) We have qn(p(λ) = p) = GW
(n+1)
ξ (c∅ = p), and the wanted result is just an interpretation

of (22).

On the same probability space (Ω,F ,P) as in the previous statement, we will also assume that
(Sr, r ≥ 0) is a random walk with i.i.d. steps, each having distribution ξ(i + 1), i ≥ −1. Then the
well-known Otter-Dwass formula (or cyclic lemma) [31, Chapter 6] allows to rewrite

qn(p(λ) = p) = ξ(p)
p
nP(Sn = −p)

1
n+1P(Sn+1 = −1)

=
n+ 1

n
ξ̂(p)

P(Sn = −p)
P(Sn+1 = −1)

, (23)

where ξ̂(p) = pξ(p) is the size-biased distribution associated with ξ.
It is often convenient to work with size-biased orderings of the sequence (X1, . . . ,Xp) rather

than with its non-increasing rearrangement. Recall that if (x1, x2, . . .) is a non-negative sequence
with

∑
i xi < ∞, we define its size-biased ordering in the following way. If all terms are zero then

we let x∗1 = 0, otherwise we let i∗ be a random variable with

P(i∗ = i) =
xi∑
j≥1 xj

,

and set x∗1 = xi∗ . We then remove the i∗-th term from the sequence (xi, i ≥ 1) and resume the
procedure, defining a random re-ordering (x∗1, x

∗
2, . . .) of the sequence (x1, x2, . . .). The size-biased

ordering (X∗
1 ,X

∗
2 , . . .) of a random sequence (X1,X2, . . .) is defined similarly, by first conditioning

on (X1,X2, . . .). If µ is the law of (X1,X2, . . .), we let µ∗ be the law of (X∗
1 ,X

∗
2 , . . .).

39



If µ is a probability distribution on S↓, then µ∗ is a probability distribution on the set S1 =
{x = (x1, x2 . . .) ∈ [0, 1]N :

∑
i≥1 xi ≤ 1} which is endowed with any metric inducing the product

topology — in particular, S1 is compact. Similarly, if µ is a non-negative measure on S↓, we
let µ∗(f) =

∫
S↓ µ(ds)E[f(s

∗)], for every non-negative measurable f : S1 → R+, where s∗ is the
size-biased reordering of s. The following statement is a simple variation of [9, Proposition 2.3],
replacing probability distributions with finite measures.

Lemma 15. Let µn, n ≥ 1 and µ be finite measures on S↓, and assume that µ is supported on
{s ∈ S↓ :

∑
i si = 1}. Then µn converges weakly to µ if and only if µ∗n converges weakly to µ∗.

5.1 Finite variance case

Here we assume that ξ has finite variance
∑

p≥1 p(p− 1)ξ(p) = σ2 < ∞. In the proofs to come, C
will denote a positive, finite constant with values that can differ from line to line.

Our goal is to check hypothesis (H) for the sequence q of (21), and for the measure ν = (σ/2)ν2.
Due to Lemma 15, it suffices to show that

n1/2((1− s1)qn(ds))
∗ (w)−→
n→∞

(σ/2)((1 − s1)ν2(ds))
∗ . (24)

Now, for any non-negative measure µ on S↓ and any non-negative continuous function f on S1, one
can check that

((1− s1)µ(ds))
∗(f) =

∫

S1

µ∗(dx)(1 −maxx)f(x) , (25)

where maxx = maxi≥1 xi. Applying (25) to µ = qn and ν2, we conclude that (24) is a consequence
of the following statement.

Proposition 15. Let f : S1 → R be a continuous function and let g(x) = (1−maxx)f(x). Then

√
nq∗n(g) −→

n→∞

σ√
2π

∫ 1

0

dx

x1/2(1− x)3/2
g(x, 1 − x, 0, . . .) . (26)

In summary, Theorem 3 in Case 1. is a consequence of this statement and Theorem 2.
Proposition 15 will be proved in a couple of steps. A difficulty that we will have to be careful

about is that x 7→ maxx is not continuous on S1. Fix f , as in the statement. Note that 0 ≤
1 − maxx ≤ 1 − x1 for every x ∈ S1, so that g(x) ≤ C(1 − x1) for every x ∈ S1 for some finite
C > 0, a fact that will be useful.

First, note that combining (ii) in Proposition 14 with a size-biased ordering, it holds that

q∗n(g) =
∑

p≥1

qn(p(λ) = p)E

[
g

(
(X∗

1 , . . . ,X
∗
p , 0, . . .)

n

) ∣∣∣ τp = n

]
. (27)

Lemma 16. For every ε > 0, √
nqn(p(λ) > ε

√
n) −→

n→∞
0 .

Proof. From (23), the local limit theorem in the finite-variance case

sup
p∈Z

∣∣∣∣
√
nP(Sn = −p)− 1√

2πσ2
exp

(
− p2

2nσ2

)∣∣∣∣ −→n→∞
0 , (28)

shows that qn(p(λ) = p) ≤ Cξ̂(p) for every n, p. Now
∑

k≥0

ξ̂((k,∞)) <∞ ,

because ξ̂ has finite mean. Since ξ̂((k,∞)) is non-increasing, this entails that ξ̂((k,∞)) = o(k−1).
Hence the result.

40



Lemma 17. One has

lim
η↓0

lim sup
n→∞

√
nq∗n(|g|1{x1>1−η}) = 0 , and lim

n→∞

√
nq∗n(1{x1<n−7/8}) = 0 .

Proof. Let ε, η > 0. Since |f(x)| ≤ (1 − x1), we get using (27), that
√
nq∗n(|f |1{x1>1−η}) is

bounded from above by

n1/2
∑

1≤p≤εn1/2

qn(p(λ) = p)
∑

m1≥(1−η)n

(
1− m1

n

) pm1

n

P(X1 = m1)P(τp−1 = n−m1)

P(τp = n)
+ o(1) ,

because

P(X∗
1 = m |X1 + . . .+Xp = n) =

pm

n

P(X1 = m)P(X2 + . . .+Xp = n−m)

P(X1 + . . .+Xp = n)
.

The o(1) term accounts for the fact that we restricted the sum to 1 ≤ p ≤ εn1/2, which costs at most
o(n−1/2) by Lemma 16. We now use the cyclic lemma again, entailing that P(τp = n) = (p/n)P(Sn =
−p). Using this for p = 1, and with the help of (28), we obtain that P(τ1 = n) ∼ (σ

√
2π)−1n−3/2

as n→ ∞. This yields the upper-bound

√
nq∗n(|g|1{x1>1−η}) ≤ C

∑

1≤p≤εn1/2

p2ξ(p)
1

n

∑

(1−η)n≤m1≤n

√
n√
m1

P(Sn−m1 = −p+ 1)

P(Sn = −p) + o(1) ,

and since 1 ≤ p ≤ εn1/2, (28) implies that
√
nP(Sn = −p) and

√
n−m1P(Sn−m1 = −p + 1) are

respectively bounded from below and above, by constants that are independent on n,m1, p (but
might depend on ε). Consequently, the bound is

Cε

∑

p≥1

p2ξ(p)
1

n

∑

(1−η)n<m1≤n

1√
m1
n

(
1− m1

n

) + o(1) ,

and this converges to Cε

∫ 1
1−η(x(1 − x))−1/2dx. In turn, this goes to 0 as η → 0, for fixed ε. The

second limit is obtained in a similar way, writing
√
nq∗n(1{x1<n−7/8}) as

n1/2
∑

1≤p≤εn1/2

qn(p(λ) = p)
∑

1≤m1≤n1/8

pm1

n

P(X1 = m1)P(τp−1 = n−m1)

P(τp = n)
+ o(1)

≤ n−3/8
∑

1≤p≤εn1/2

p(p− 1)ξ(p)
∑

1≤m1≤n1/8

P(Sn−m1 = −p+ 1)

P(Sn+1 = −1)
+ o(1)

≤ Cεn
−1/4

∑

p≥1

p(p− 1)ξ(p) + o(1) ,

for some constant Cε, where we used the local limit theorem at the last step.

Lemma 18. For every η > 0, it holds that

lim
n→∞

√
nq∗n(1{x1+x2<1−η}) = 0 .

Proof. Fix ε > 0. An upper-bound for the quantity appearing in the statement is given by (up to
an additional o(1) quantity depending on ε)

√
n

∑

1≤p≤εn1/2

pξ(p)
∑

m1+m2≤(1−η)n

pm1

n

(p− 1)m2

n−m1

P(X1 = m1)P(X2 = m2)P(τp−2 = n−m1 −m2)

P(τp = n)
.
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If m1 +m2 < n(1− η) then n−m1 −m2 ≥ ηn. In this case, we obtain, using the cyclic lemma and
(28),

P(τp−2 = n−m1 −m2)

P(τp = n)
=

p−2
n−m1−m2

P(Sn−m1−m2 = −p+ 2)
p
nP(Sn = −p) ≤ C

η3/2
.

Note that the constant C here does not depend on p, ε. Consequently, we obtain the bound

√
nq∗n(1{x1+x2<(1−η)n}) ≤ C

η3/2
√
n

∑

1≤p≤εn1/2

p3ξ(p)
1

n2

∑

m1+m2<(1−η)n

√
n

m1

n

m2
+ o(1)

≤ Cε

η3/2

∑

p≥1

p2ξ(p)

∫

x1+x2≤1

dx1dx2√
x1x2

+ o(1) ,

where C is still independent of p, ε. The first term on the right-hand side does not depend on n
anymore and goes to 0 as ε→ 0, entailing the result.

Lemma 19. There exists a function βη = o(η) as η ↓ 0, so that

lim
η↓0

lim inf
n→∞

√
nq∗n(g1{x1<1−η,x1+x2>1−βη}) = lim

η↓0
lim sup
n→∞

√
nq∗n(g1{x1<1−η,x1+x2>1−βη})

=
σ√
2π

∫ 1

0

g((x, 1 − x, 0, . . .))

x1/2(1− x)3/2
dx ,

Proof. The proof is similar to the previous ones, but technically more tedious, so we will only
sketch the details. Fix η > 0, and consider η′ ∈ (0, η) and ε > 0. Then, by decomposing with
respect to the events {p(λ) > ε

√
n} and {x : x1 ≤ n−7/8}, we obtain, using Lemma 16 and the

second limit of Lemma 17,

√
nq∗n(g1{x1<1−η,x1+x2>1−η′}) = o(1) +

√
n

∑

1≤p≤εn1/2

qn(p(λ) = p)

×
∑

n1/8≤m1≤(1−η)n
(1−η′)n≤m1+m2≤n

E[g((m1,m2,X
∗
3 , . . . ,X

∗
p )/n) | τp = n,X∗

1 = m1,X
∗
2 = m2]

× pm1

n

(p− 1)m2/n

1−m1/n
P(X1 = m1)P(X2 = m2)

P(τp−2 = n−m1 −m2)

P(τp = n)
.

We now give a lower bound of the lim inf of this as n→ ∞. Showing that the same quantity is an
upper-bound of the lim sup being similar and easier.

Note that if x1+x2 ≥ 1−η′ and x1 ≤ 1−η, we have that (1−x1−x2)/(1−x1) ≤ η′/η and then
x2/(1− x1) ≥ 1− η′/η. Next, by the local limit theorem, we can always choose η′ small enough so
that P(X1 = m2)/P(X1 = n−m1) ≥ 1− η for every n large enough.

Also, still by the local limit theorem, we can choose ε small enough so that for every 1 ≤ p ≤
εn1/2 and every n large, we have

qn(p(λ) = p)/ξ̂(p) ≥ (1− η) and p−1n3/2P(τp = n) ≥ (1− η)σ
√
2π .

A third use of the local limit theorem entails that for every n large, we have

m
3/2
1 P(X1 = m1) ∧m3/2

2 P(X2 = m2) ≥ (1− η)σ
√
2π ,

for every n large and m1 ≥ n1/8, m2 ≥ (η − η′)n.
Finally, we use the fact that f is uniformly continuous on S1, while maxx = x1 ∨ x2 on the

set {x ∈ S1 : x1 + x2 > 3/4}. Consequently, the function g(x) = (1 − maxx)f(x) is uniformly
continuous on the latter set. Therefore, we can choose η′ < 1/4 small enough so that

|g((m1,m2,m3, . . .)/n)− g((m1, n −m1, 0, . . .)/n)| ≤ η
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for every (m1,m2, . . .) with sum n, such thatm1+m2 ≥ (1−η′)n. Putting things together, for every
η > 0, we can choose η′ =: βη, ε small so that for every n large enough,

√
nq∗n(g1{x1<1−η,x1+x2>1−η′})

is greater than or equal to

(1− η)5(1− η′/η)
∑

1≤p≤εn1/2

(p− 1)ξ̂(p)
1

n

∑

n1/8≤m1≤(1−η)n

(g((m1, n−m1, 0, . . .)/n)− η)
m1

n

× 1

σ
√
2π((m1/n)(1−m1/n))3/2

∑

(1−η′)n−m1≤m2≤n−m1

P(τp−2 = n−m1 −m2).

Finally, the last sum is
∑η′n

m=0 P(τp−2 = m), and this can be made arbitrarily close to 1, uniformly
in 1 ≤ p ≤ εn1/2, as soon as n is large enough, by our usual use of the local limit theorem. Taking
the lim inf in n and using a convergence of Riemann sums, yields

lim inf
n→∞

√
nq∗n(g1{x1<1−η,x1+x2>1−η′})

≥ (1− η)5(1− η′/η)
∑

p≥1

(p− 1)ξ̂(p)

∫ 1−η

0

dx

σ
√
2πx1/2(1− x)3/2

(g(x, 1 − x, 0, . . .)− η).

One concludes using the fact that
∑

p≥1(p− 1)ξ̂(p) = σ2.

We can now finish the proof of Proposition 15. Simply write

|q∗n(g) − q∗n(g1{x1<1−η,x1+x2>1−η′})| ≤ q∗n(|g|1{x1≥1−η})) + q∗n(|g|1{x1+x2≤1−η′}) .

Now fix ε > 0, and using Lemmas 17 and 19, choose η, η′ in such a way that
√
nq∗n(|g|1{x1≥1−η}) ≤

ε/2 and ∣∣∣∣
√
nq∗n(g1{x1<1−η,x1+x2>1−η′})−

σ√
2π

∫ 1

0

g((x, 1 − x, 0, . . .))

x1/2(1− x)3/2
dx

∣∣∣∣ ≤ ε/2

for every n large. For this choice of η, η′, we then have for every n large enough,
∣∣∣∣q

∗
n(g) −

σ√
2π

∫ 1

0

g((x, 1 − x, 0, . . .))

x1/2(1− x)3/2
dx

∣∣∣∣ ≤ ε+ q∗n(|g|1{x1+x2≤1−η′}) ,

and the upper-bound converges to ε as n → ∞ by Lemma 18. Since ε was arbitrary, this proves
Proposition 15, hence implying Theorem 3 in Case 1.

5.2 Stable case

Assume that ξ(p) ∼ cp−α−1 for some α ∈ (1, 2) and c > 0. Theorem 3 in Case 2. will follow if

we can show that hypothesis (H) holds for γ = 1 − 1/α, ℓ ≡ (α(α − 1)/(cΓ(2 − α)))1/α, and the
dislocation measure να. A similar reasoning as in the beginning of the previous section shows that
it suffices to prove the following statement.

Proposition 16. If f : S1 → R is a continuous function and g(x) = (1−maxx)f(x), then

n1−1/αq∗n(g) −→
n→∞

(
c
Γ(2− α)

α(α − 1)

)1/α
ν∗α(g) .

One will note that the function g of the statement is continuous ν∗α-a.e., since x 7→ maxx is
continuous at every point x with sum 1. Now,

q∗n(g) =
∑

p≥1

qn(p(λ) = p)E

[
g

(
(X∗

1 , . . . ,X
∗
p , 0, . . .)

n

) ∣∣∣ τp = n

]

= n1/α
∫ ∞

0
dx qn(p(λ) = ⌈n1/αx⌉)E

[
g

(
(X∗

1 , . . . ,X
∗
⌈n1/αx⌉

, 0, . . .)

n

) ∣∣∣ τ⌈n1/αx⌉ = n

]
(29)
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Recall the notation around (23). The random walk Sn is now such that (S⌊nt⌋/n
1/α, t ≥ 0) converges

in distribution in the Skorokhod space to a spectrally positive stable Lévy process (Yt, t ≥ 0) with
index α and Lévy measure cdx/x1+α1{x>0}. Its Laplace transform is given by E[exp(−λYt)] =
exp(tc′λα), where c′ = cΓ(2−α)

α(α−1) . The Gnedenko-Kolmogorov local limit theorem also yields

n1/αP(Sn = k) = p1(k/n
1/α) + ε(n, k)

where supk |ε(n, k)| → 0 as n → ∞, and pt is the density of Yt. This, together with (23) and our
hypothesis on the asymptotic behavior of ξ, entail that

qn(p(λ) = ⌈n1/αx⌉) ∼ cn−1x−α p1(−x)
p1(0)

.

Let us now focus on the random variables X1,X2, . . . and τp = X1 + . . . +Xp. We have P(X1 =
n) = n−1

P(Sn = −1) ∼ n−1−1/αp1(0), which gives that X1 is in the domain of attraction of a stable
random variable with index 1/α. More specifically, one has that (τ⌊nx⌋/n

α, x ≥ 0) converges in the
Skorokhod space to a stable subordinator (Ty, y ≥ 0) with index 1/α, and Lévy measure

p1(0)
dx

x1+1/α
1{x>0} . (30)

Its Laplace transform is given by

E[exp(−λTx)] = exp(−xp1(0)αΓ(1 − 1/α)λ1/α) .

On the other hand, Tx has same distribution as the first hitting time of −x by (Yt, t ≥ 0) (because
a similar statement is true of τp and Sn), which identifies the Laplace exponent of T1 as (λ/c′)1/α,
see [7, Chapter VII]. This yields

p1(0) =
1

αΓ(1− 1/α)(c′)1/α
=

1

αΓ(1− 1/α)

(α(α − 1))

cΓ(2− α)

)1/α
. (31)

Let Qy be the probability density function of Ty. The cyclic lemma [7, Corollary VII.3] gives
tQx(t) = xpt(−x), while the Gnedenko-Kolmogorov local limit theorem states that

pαP(τp = n) = Q1(n/p
α) + ε′(p, n) ,

where supn |ε′(p, n)| → 0 as p→ ∞.

Lemma 20. The sequence (X∗
1 , . . . ,X

∗
⌈n1/αx⌉

)/n conditioned on τ⌈n1/αx⌉ = n converges in distribu-

tion to a random sequence (∆∗
1,∆

∗
2, . . .), defined inductively by

P

(
∆∗

i+1 ∈ dz
∣∣∣∆∗

1, . . . ,∆
∗
i ,

i∑

j=1

∆∗
j = y

)
=
p1(0)x

z1/α
Qx(1− y − z)

Qx(1− y)
dz , 0 ≤ z ≤ 1− y .

Proof. The case i = 1 is obtained by using the local limit theorem in

nP(X∗
1 = ⌊nz⌋ | τ⌈n1/αx⌉ = n) = ⌈n1/αx⌉ ⌊nz⌋P(X1 = ⌊nz⌋)

P(τ⌈n1/αx⌉−1 = n− ⌊nz⌋)
P(τ⌈n1/αx⌉ = n)

.

One then reasons inductively, in an elementary way. Details are left to the reader.

The limiting sequence (∆∗
i , i ≥ 1) has same distribution as the sequence of jumps of the sub-

ordinator (Ty, 0 ≤ y ≤ x), conditionally given Tx = 1, and arranged in size-biased order, see [31,
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Chapter 4] or [9]. We will denote by ∆T ∗
[0,x] this randomly ordered sequence of jumps. Hence, pro-

vided we have the right to apply dominated convergence in (29), we obtain, using xp1(−x) = Qx(1),

n1−1/αq∗n(g) −→
n→∞

c

p1(0)

∫ ∞

0

dx

xα+1
Qx(1)E[g(∆T

∗
[0,x]) |Tx = 1] . (32)

Using scaling for the subordinator (Ty, y ≥ 0), the previous integral can be rewritten as

c

p1(0)

∫ ∞

0

dx

x2α+1
Q1(x

−α)E[g(xα∆T ∗
[0,1]) |T1 = x−α] ,

and changing variables u = x−α shows that this is equal to

c

αp1(0)

∫ ∞

0
Q1(u)duE[ug(∆T

∗
[0,1]/u) |T1 = u] =

c

αp1(0)
E[T1g(∆T

∗
[0,1]/T1)] .

Finally, the sequence ∆T[0,1] of jumps of T before time 1 is the sequence of atoms of a Poisson
measure with intensity given by (30). Using (31), it thus has same distribution as α(α−1)c−1Γ(2−
α)−1(∆1,∆2, . . .), as defined in Section 2.1. Using the notations therein and (31), we get after
rearrangements

c

αp1(0)
E[T1g(∆T

∗
[0,1]/T1)] =

(
c
Γ(2− α)

α(α − 1)

)1/αα2Γ(2− 1/α)

Γ(2− α)
E

[
Tg
(∆∗

i

T
, i ≥ 1

)]

=
(
c
Γ(2− α)

α(α − 1)

)1/α
ν∗α(g) ,

as wanted. It remains to justify that the convergence (32) is indeed dominated. To this end, using
(29) and the fact that qn(p(λ) = ⌈n1/αx⌉) ≤ C⌈n1/αx⌉−α, it suffices to show that the expectation
term in this equation is bounded by C⌈n1/αx⌉/n1/α for some C independent of n, and for x ∈ [0, 1].
In turn, since g(x) ≤ C(1− x1) for some finite C > 0, it suffices to substitute this upper-bound to
g. Now, we have P(X1 = m) ≤ Cm−1−1/α for every m, so that

E

[(
1− X∗

1

n

) ∣∣∣ τ⌈n1/αx⌉ = n

]

=
n∑

m=1

(
1− m

n

)
⌈n1/αx⌉m

n
P(X1 = m)

P(τ⌈n1/αx⌉−1 = n−m)

P(τ⌈n1/αx⌉ = n)

≤
n∑

m=1

(
1− m

n

)
⌈n1/αx⌉m

n
P(X1 = m)

⌈n1/αx⌉−1
n−m P(Sn−m = −⌈n1/αx⌉+ 1)

⌈n1/αx⌉
n P(Sn = −⌈n1/αx⌉)

≤ C
⌈n1/αx⌉
n1/α

1

n

n∑

m=1

1
(
m
n

)1/α (
1− m

n

)1/α

≤ C
⌈n1/αx⌉
n1/α

,

where we have used that (n−m)1/αP(Sn−m = −⌈n1/αx⌉+1) is uniformly bounded (in n,m, x) and
that n1/αP(Sn = −⌈n1/αx⌉) is uniformly bounded away from 0 for x ∈ [0, 1]. This is the wanted
bound, concluding the proof of Proposition 16, hence of Theorem 3.

6 Scaling limits of uniform unordered trees

In this section, we fix once and for all an integer m ∈ {2, . . . ,∞} and consider trees in which
every vertex has at most m children. We use the notations of Section 2.2 and let Tn be uniformly

distributed in T
(m)
n , for n ≥ 1.
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The first difficulty we have to overcome is that the sequence (Tn, n ≥ 1) is not Markov branching
as defined in Section 1.2.2. We will therefore start in Section 6.1 by coupling this sequence with
a family of Markov branching trees that are asymptotically close to Tn, n ≥ 1, and then check in
Section 6.2 that the coupled trees satisfy (H).

Let us fix some notation. For t ∈ T
(m)
n , we can write t = 〈t(1), . . . , t(k)〉 with∑k

i=1#t(i) = n−1,
and we let λ(t) ∈ Pn−1 be the partition obtained by arranging in decreasing order the sequence
(#t(1), . . . ,#t(k)) (of course, this does not depend on the labeling of the trees t(1), . . . , t(k)). Let

Fj(k) be the set of of multisets3 with k elements in T
(m)
j . By convention, we set Fj(0) = {∅}.

Then, for λ ∈ Pn−1 with p(λ) ≤ m, we have a bijection

{t ∈ T(m)
n : λ(t) = λ} ≡

n−1∏

j=1

Fj(mj(λ)) , (33)

obtained by grouping the subtrees of t born from the root with size j into a multiset, denoted by
fj(t), of mj(λ) trees. From this, we deduce that fj(Tn), 1 ≤ j ≤ n − 1 are independent uniform
random elements in Fj(mj(λ)) conditionally given λ(Tn). However, the uniform random element

in Fj(k) has a different distribution from the multiset induced by k i.i.d. uniform element in T
(m)
j ,

as soon as k ≥ 2. This is what prevents Tn from enjoying the Markov branching property, i.e. from
having law Q

q
n, where for n ≥ 1, qn is the law of λ(Tn+1).

Letting Fj(k) = #Fj(k), the previous bijection yields

S(λ)
n := #{t ∈ T(m)

n : λ(t) = λ} =
n−1∏

j=1

Fj(mj(λ)) .

When p(λ) ≥ m, we set S
(λ)
n = 0. Of course, letting T

(m)
n = #T

(m)
n , we also have

T(m)
n =

∑

λ∈Pn−1

S(λ)
n .

Using the obvious fact that Fj(k) ≤ T
(m)
j Fj(k − 1), we obtain the rough but useful bound

S(λ)
n ≤ T

(m)
λ1

S
(λ2,λ3,...,λp(λ))

n−λ1
. (34)

We recall the key result (5) of Otter [30], which is used throughout the proofs below:

T(m)
n ∼

n→∞
κm

ρn

n3/2
.

Setting T
(m)
0 = 1 by convention, we obtain that for ρ = ρm > 1, and two constants K ≥ 1 ≥ k > 0,

T(m)
n ≤ K

ρn

n3/2
, n ≥ 0 T(m)

n ≥ k
ρn

n3/2
, n ≥ 1 . (35)

Note that we also have T
(m)
n ≤ Kρn for all n ≥ 0. Last, we let κ = κm.

3Recall that a multiset with k elements in some set A is an element of the quotient set Ak/Sk, where Sk acts in
the natural way by permutation of components.
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6.1 Coupling

Let µn be the uniform probability distribution over T
(m)
n , and let qn = λ∗µn+1 be the law of the

partition of n induced by the subtrees born from the root of a µn+1-distributed tree. For every
n ≥ 1, we want to construct a pair of random variables (Tn, T

′
n) on some probability space (Ω,F ,P),

such that

• Tn has law µn

• T ′
n has law Q

q
n

• for every ε > 0, limn→∞ E [dGHP(n
−εTn, n

−εT ′
n)] = 0.

Recall that if Tn has distribution µn, and conditionally on λ(Tn) = λ, then fj(Tn), 1 ≤ j ≤ n−1
are independent, respectively uniform in Fj(mj(λ)). We are going to need the following fact.

Lemma 21. For every j, k ≥ 1, let Fj be uniform in Fj(k) and F j be the multiset induced by
an i.i.d. sequence of k random variables with law µj. Let Aj be the set of elements in Fj(k) with
components that are pairwise distinct. Then
(i) One has P(Fj ∈ Aj) ≤ P(F j ∈ Aj).
(ii) The conditional distributions of Fj and F j given Aj are equal.

Proof. For a finite set A, the number of multisets with k elements is #(Ak/Sk) ≥ #Ak/k!. Then

P(Fj ∈ Aj) =
#T

(m)
j (#T

(m)
j − 1) . . . (#T

(m)
j − k + 1)

k!#Fj(k)

≤
#T

(m)
j (#T

(m)
j − 1) . . . (#T

(m)
j − k + 1)

(#T
(m)
j )k

= P(F j ∈ Aj) .

This gives (i). Property (ii) is also obtained by counting: on the event Aj. The probability that Fj

equals some given (multi)set S ∈ Fj(k) with all distinct elements is #Fj(k)
−1, while the probability

that F ′
j equals the same set S is k!(#T

(m)
j )−k. Dividing by P(Fj ∈ Aj) and P(F ′

j ∈ Aj) respectively
gives the same result.

The previous statement allows to construct a coupling between Fj and F j , in the following way.
Let f ∈ Fj(k). Consider three independent random variables f ′′, f ′′′, B, such that the law of f ′′ is the
law of F j conditionally given Aj , the law of f ′′′ is the law of F j conditionally given Ac

j and B is an

independent Bernoulli random variable with P(B = 1) = P(F j ∈ Ac
j)/P(Fj ∈ Ac

j), which is indeed
in [0, 1] by (i) in Lemma 21. Set

f ′ =





f if f ∈ Aj

f ′′ if f /∈ Aj and B = 0
f ′′′ if f /∈ Aj and B = 1.

We let Kj(f, ·) be the law of the multiset f ′ thus obtained, hence defining a Markov kernel on Fj(k).
We say that two random variables (F,F ′) are naturally coupled if it has law µ(df)Kj(f,df

′), where
µ is the law of F on Fj(k). Using (ii) in Lemma 21, it is then easy to obtain the next result.

Lemma 22. If Fj is uniform in Fj(k) and (Fj , F
′
j) are naturally coupled, then the law of F ′

j is that
of the multiset induced by k i.i.d. uniform elements in Tj.
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Next, we define a Markov kernel K(t, ·) on T(m), in an inductive way. Let K(•, {•}) = 1.

Assume that the measure K(t, ·) on T
(m)
#t

has been defined for every t ∈ T(m) with #t ≤ n − 1.

Take t ∈ T
(m)
n , and let λ = λ(t), p = p(λ). Let fj(t) ∈ Fj(mj(λ)), 1 ≤ j ≤ n− 1 be the multisets of

trees born from the root of t, respectively with size j. Let f ′j(t) be independent random multisets,
respectively with law Kj(fj(t), ·). We relabel the p elements of the multisets f ′j(t), 1 ≤ j ≤ n− 1 as
t(1), . . . , t(p), in non-increasing order of size, so that #t(i) = λi — if there is some j with mj(λ) ≥ 2,

we arrange the trees with same size in exchangeable random order. All these trees are in T(m)

and have at most n− 1 vertices. By the induction hypothesis, conditionally on this family, we can
consider another family t′(1), . . . , t

′
(p) of independent trees with respective laws K(t(i), ·). Let K(t, ·)

be the law of the tree 〈t′(i), 1 ≤ i ≤ p〉. This procedure allows to define the Markov kernel K(t, ·)
for every tree in T(m).

We say that the random trees (T, T ′), defined on a common probability space, are naturally
coupled if the law of (T, T ′) is µ(dt)K(t,dt′), where µ is the law of T . Is is easy to see that for
every random variable T on T(m) with law µ, then, possibly to the cost of enlarging the probability
space supporting T , one can construct a random variable T ′ so that (T, T ′) is naturally coupled.

Proposition 17. Let Tn have law µn and (Tn, T
′
n) be naturally coupled. Endow these trees respec-

tively with the measures µTn and µT ′
n
. Then,

(i) the tree T ′
n has distribution Q

q
n, for every n ≥ 1,

(ii) for all a > 0, the Gromov-Hausdorff-Prokhorov distance between aTn and aT ′
n is at most 2aj∗

where j∗ is the supremum integer j ≥ 1 so that there exist two subtrees of Tn with size j, born from
the same vertex and which are equal (with the convention sup∅ = 0),

(iii) for all ε > 0, E [dGHP(n
−εTn, n

−εT ′
n)] → 0 as n→ ∞.

Proof. We prove (i) by induction. For n = 1 the property is obvious. Assume the property holds
for every index up to n−1, and condition on λ(Tn) = λ, which by definition has probability qn−1(λ).
As noticed before Lemma 21, the multisets Fj = fj(Tn), 1 ≤ j ≤ n−1 are independent, respectively
uniform in Fj(mj(λ)). Conditionally on Fj , 1 ≤ j ≤ n − 1, let F ′

j , 1 ≤ j ≤ n − 1 be independent
with respective laws Kj(Fj , ·). By Lemma 22, we obtain that F ′

j is the multiset induced by a
sequence of mj(λ) i.i.d. random variables, with law µj. Consequently, if we relabel the elements
of F ′

j , 1 ≤ j ≤ n − 1 as T(1), . . . , T(p) in non-increasing order of size (and exchangeable random
order for trees with same size), then we obtain that these trees are independent, respectively with
distribution µλj

. Since, by definition of K, the natural coupling (Tn, T
′
n) is obtained by letting

T ′
n = 〈T ′

(i), 1 ≤ i ≤ p〉 where (T(i), T
′
(i)) are naturally coupled, we readily obtain the Markov

branching property, with branching laws (qn, n ≥ 1).
For (ii), we again apply an induction argument. The statement is trivial for n = 1. Now, in the

first step of the natural coupling, the action of the Markov kernel Kj on fj(Tn) leaves it unchanged
if fj(Tn) ∈ Aj , i.e. if there are no ties in the multiset fj(Tn). Consequently, with same notations as
in the previous paragraph, a subtree of Tn born from the root that appears with multiplicity 1 will
also appear among T(1), . . . , T(p).

Moreover, subtrees that are replaced are always replaced by trees with the same number of
vertices and a tree with j vertices and edge-lengths a has height at most aj. So the Gromov-
Hausdorff-Prokhorov distance between two trees with edge-lengths a that both decompose above
the root in subtrees of same size j is at most 2aj (it is implicit in this proof that all trees are
endowed with the uniform measure on their vertices). We now appeal to the following elementary
Fact. Let t, t′ be such that k = p(λ(t)) = p(λ(t′)), and let t = 〈t(1), . . . , t(k)〉 and t′ = 〈t′(1), . . . , t′(k)〉
with #t(i) = #t′(i) for 1 ≤ i ≤ k. Then for every a > 0,

dGHP(at, at
′) ≤ max

1≤i≤k
dGHP(at(i), at

′
(i)) .
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From this we deduce that the Gromov-Hausdorff-Prokhorov distance between aTn and aT ′
n is

at most (
2a sup{1 ≤ j ≤ n− 1 : Fj ∈ Ac

j}
)
∨ sup

1≤j≤n−1
Fj∈Aj

sup
i:#T(i)=j

dGHP(aT(i), aT
′
(i)) ,

where (T(i), T
′
(i)) is the natural coupling. The induction hypothesis allows to conclude.

Last, for (iii), fix ε ∈ (0, 1). The Gromov-Hausdorff-Prokhorov distance between n−εTn and
n−εT ′

n is bounded from above by 2n1−ε for all n ≥ 1. Next, for γ ∈ (0, 1), let Aγ
n be the subset

of trees of T
(m)
n that have at least two subtrees born from the same vertex that are identical, and

with size larger than nγ . By (ii), when Tn /∈ Aγ
n, dGHP(n

−εTn, n
−εT ′

n) ≤ 2nγ−ε. Hence,

E
[
dGHP(n

−εTn, n
−εT ′

n)
]

= E
[
dGHP(n

−εTn, n
−εT ′

n)1{Tn∈A
γ
n}

]
+ E

[
dGHP(n

−εTn, n
−εT ′

n)1{Tn /∈Aγ
n}

]

≤ 2n1−ε
P(Tn ∈ Aγ

n) + 2nγ−ε.

Taking γ < ε and using Lemma 23 following right below, we get the result.

Lemma 23. For γ ∈ (0, 1), let Aγ
n be the subset of T

(m)
n of trees t that have at least one vertex v

such that at least two subtrees born from v are equal and have at least nγ vertices. Then,

P(Tn ∈ Aγ
n) = O(ρ−nγ

n5/2) as n→ ∞.

This lemma will be an easy consequence of the following result. For every tree t and any vertex
v of t, we let t(v) denote the subtree of t rooted at v. When v∗ is taken uniformly at random among
the vertices of t, we set t(∗) := t(v

∗).

Lemma 24. The distribution of T
(∗)
n conditionally on #T

(∗)
n = k is uniform on T

(m)
k , ∀1 ≤ k ≤ n.

Note that the event {#T (∗)
n = k} has a strictly positive probability for all 1 ≤ k ≤ n.

Proof. Let k ∈ {1, . . . , n}. For all t0 ∈ T
(m)
k , using that P(Tn = t) = 1/T

(m)
n for t ∈ T

(m)
n ,

P
(
T (∗)
n = t0

)
=

∑

t∈T
(m)
n

P
(
T (∗)
n = t0|Tn = t

)
P(Tn = t)

=
1

T
(m)
n

∑

t∈T
(m)
n

P(t(∗) = t0)

=
1

nT
(m)
n

∑

t∈T
(m)
n ,v∈t

1{t(v)=t0}
.

This quantity is independent of t0 ∈ T
(m)
k , because there is an obvious bijection between the sets

{(t, v) : t ∈ T
(m)
n , v ∈ t, t(v) = t0} and {(t, v) : t ∈ T

(m)
n , v ∈ t, t(v) = t1} for t1 ∈ T

(m)
k . Hence the

result. �

Proof of Lemma 23. Let Aγ
n(k) be the subset of trees of T

(m)
k whose decomposition above the

root gives birth to at least two identical subtrees with size greater than nγ , k ≤ n. We first give
an upper bound for the probability P(Tk ∈ Aγ

n(k)). To do so, we bound from above the number of

trees of T
(m)
k that decompose in at least two identical subtrees of size i (i ≤ (k − 1)/2): there are

T
(m)
i choices for the tree with size i appearing twice. Then, there are T

(m)
k−2i forests with k− 1− 2i

vertices. Gluing the twins trees and a forest with k− 1− 2i vertices to a common root gives a tree

with k vertices (and a root branching in possibly more than m subtrees) and all trees in T
(m)
k with

49



at least two subtrees with size i can be obtained like this. From this we deduce that the cardinal
of Aγ

n(k) is at most
∑(k−1)/2

i=nγ T
(m)
i T

(m)
k−2i. In particular, using (35) and the fact that ρ > 1,

P (Tk ∈ Aγ
n(k)) ≤

1

T
(m)
k

(k−1)/2∑

i=nγ

T
(m)
i T

(m)
k−2i ≤ C

k3/2

ρk

(k−1)/2∑

i=nγ

ρiρk−2i

i3/2
≤ Cn3/2ρ−nγ

,

where C is a generic constant independent of n and k ≤ n. Now, in the following lines, given Tn,
we let v1, v2, . . . , vn denote its vertices labeled uniformly at random,

P (Tn ∈ Aγ
n) ≤ E

[
∑

v∈Tn

1
{T

(v)
n ∈Aγ

n(#T
(v)
n )}

]
= E

[
n∑

i=1

1
{T

(vi)
n ∈Aγ

n(#T
(vi)
n )}

]

= nP
(
T (∗)
n ∈ Aγ

n(#T
(∗)
n )
)

=
by Lemma 24

n

n∑

k=1

P (Tk ∈ Aγ
n(k)) P

(
#T (∗)

n = k
)

≤ Cn5/2ρ−nγ
n∑

k=1

P
(
#T (∗)

n = k
)
= Cn5/2ρ−nγ

.

�

6.2 Hypothesis (H) and conclusion

It remains to check that the family of probability distributions on Pn, n ≥ 1 defined by

qn(λ) = P (λ(Tn+1) = λ) = P
(
λ(T ′

n+1) = λ
)
=

S
(λ)
n+1

T
(m)
n+1

, ∀λ ∈ Pn,

satisfies the assumption (H) with γ = 1/2, ℓ ≡ 1 and ν proportional to the Brownian dislocation
measure ν2. For this we recall and fix some more notations:

∗ T̃
(m)
n is the subset of T

(m)
n of trees with root degree less or equal to m− 2

∗ T̃
(m)
n is the cardinal of T̃

(m)
n , and ψ(m)(x) =

∑
n≥1 T

(m)
n xn, ψ̃(m)(x) =

∑
n≥1 T̃

(m)
n xn

∗ for λ = (λ1, λ2, . . .) ∈ Pn, set λr :=
∑∞

i=3 λi = n− λ1 − λ2

The main result of this section then reads

Proposition 18. For all 2 ≤ m ≤ ∞, and all continuous functions f : S↓ → R such that
|f(s)| ≤ 1− s1 for s ∈ S↓,

√
n
∑

λ∈Pn

f

(
λ

n

)
S
(λ)
n+1

T
(m)
n+1

−→
n→∞

κψ̃(m)(1/ρ)

∫ 1

1/2

f(x, 1− x, 0, . . .)

x3/2(1− x)3/2
dx.

Note that the sum in the limit above is finite, since T̃
(m)
k ≤ T

(m)
k ≤ Kρk/k3/2. This sum is

explicit in terms of κ and ρ when m = 2 or m = ∞. See Section 2.2 for details.

With this proposition, it is easy to conclude the proof of Theorem 4. Indeed, together with
Theorem 2 and Proposition 17 (i), it leads to the convergence

1√
n
T ′
n

(d)−→
n→∞

cmT1/2,ν2
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for the Gromov-Hausdorff-Prokhorov topology, where cm =
√
2/(

√
πκψ̃(1/ρ)). Then, by Propo-

sition 17 (iii) and since (Mw, dGH) is a complete separable space, we can apply a Slutsky-type
theorem to get

1√
n
Tn

(d)−→
n→∞

cmT1/2,ν2 .

The rest of this section is devoted to the proof of Proposition 18.

6.2.1 Negligible terms

We show in this section that the set of partitions λ ∈ Pn where either λ1 ≥ n(1 − ε) or λr ≥ nε
plays a negligible role in the limit of Proposition 18 when we first let n→ ∞ and then ε→ 0.

Lemma 25. There exists C ∈ (0,∞) such that, for all 0 < ε < 1,

lim sup
n→∞

√
n

T
(m)
n+1

∑

λ∈Pn

1{λ1≥n(1−ε)}

(
1− λ1

n

)
S
(λ)
n+1 ≤

C
√
ε

(1− ε)3/2
.

Proof. Using (34) and then (35), we get

∑

λ∈Pn,λ1≥n(1−ε)

(
1− λ1

n

)
S
(λ)
n+1 ≤

n∑

λ1=⌈n(1−ε)⌉

(
1− λ1

n

)
T

(m)
λ1

∑

µ∈Pn−λ1

S
(µ)
n+1−λ1

≤
n∑

λ1=⌈n(1−ε)⌉

(
1− λ1

n

)
T

(m)
λ1

T
(m)
n+1−λ1

≤ K2ρn+1
n−1∑

λ1=⌈n(1−ε)⌉

1− λ1
n

λ
3/2
1 (n+ 1− λ1)3/2

≤ K2ρn+1

(n(1− ε))3/2
× 1

n3/2
×

n−1∑

λ1=⌈n(1−ε)⌉

1

(1− λ1/n)1/2
.

We conclude with the fact that the sum
∑n−1

λ1=⌈n(1−ε)⌉(1 − λ1/n)
−1/2 is smaller than the integral

∫ n
n(1−ε)(1− x/n)−1/2dx = 2n

√
ε, and then use the lower bound of (35) for T

(m)
n+1. �

To deal with the partitions where λr ≥ nε, we need the following lemma when m = ∞. We

denote by T
(∞,a−)
n the number of trees of T

(∞)
n whose subtrees born from the root have sizes at

most a, a ≥ 1.

Lemma 26. Let m = ∞. There exists A,B > 0 such that

T
(∞,a−)
k+1 ≤ Aρk exp(−Bk/a), ∀k ∈ N and a ≥ 1.

Proof. Recall that T denotes the set of all (rooted, unordered) trees and rewrite the power series
ψ = ψ(∞) as ψ(x) =

∑
t∈T x

#t. According to [22, Section VII.5] its radius of convergence is 1/ρ < 1
and ψ(1/ρ) = 1. Note also that ψ(0) = 0. Now, we consider a random tree T in T with distribution
defined by

P(T = t) = ρ−#t.

If c∅(t) denotes the degree of the root of t, we just have to show that

P(c∅(T ) = r) ≤ A′ exp(−B′r), for some A′, B′ > 0 and all r ≥ 1. (36)
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Indeed, each tree with k + 1 vertices and a decomposition in subtrees with sizes at most a has a
root degree larger or equal to k/a. So, if the above inequality holds, we will have

T
(∞,a−)
k+1 ≤ ρk+1

P
(
c∅(T ) ≥ k/a, T ∈ T

(∞)
k+1

)
≤ ρk+1A′B′−1 exp(−B′(k/a− 1)),

as required. To get (36), note that

P(c∅(T ) = r) =
∑

t∈T,c∅(t)=r

ρ−#t =

r∑

k=1

1

k!

∑

t1,...,tk∈T
pairwise distinct

∑

m1+...+mk=r
mi≥1

ρ−1−
∑

1≤i≤k mi#ti

which is obtained by considering the multiset of r subtrees of a tree t, made of k distinct trees with
multiplicities m1, . . . ,mk. Hence,

P(c∅(T ) = r) ≤ ρ−1
r∑

k=1

1

k!

∑

m1+...+mk=r
mi≥1

k∏

i=1

ψ(ρ−mi)

= ρ−1

⌊cr⌋∑

k=1

1

k!

∑

m1+...+mk=r
mi≥1

k∏

i=1

ψ(ρ−mi) + ρ−1
r∑

k=⌊cr⌋+1

1

k!

∑

m1+...+mk=r
mi≥1

k∏

i=1

ψ(ρ−mi)

where the c ∈]0, 1[ chosen for this split will be specified below.
We first bound from above the second term. Using that ψ(ρ−mi) ≤ ψ(ρ−1) = 1 for mi ≥ 1 and

that
∑

m1+...+mk=r,mi≥1 =
(r−1
k−1

)
, we obtain

r∑

k=⌊cr⌋+1

1

k!

∑

m1+...+mk=r
mi≥1

k∏

i=1

ψ(ρ−mi) ≤ 1

⌊cr⌋!
r∑

k=1

(
r − 1

k − 1

)
≤ 2r−1

⌊cr⌋! ,

which decays exponentially fast as r → ∞, ∀c ∈]0, 1[.
Now we will check that the sum

∑⌊cr⌋
k=1

1
k!

∑
m1+...+mk=r,mi≥1

∏k
i=1 ψ(ρ

−mi) also decays expo-
nentially in r, provided that c ∈]0, 1[ is chosen sufficiently small. Since ψ(0) = 0, we have that
ψ(x) ≤ Cx for some C <∞ and all x ∈ [0, ρ−1]. Hence

⌊cr⌋∑

k=1

1

k!

∑

m1+...+mk=r
mi≥1

k∏

i=1

ψ(ρ−mi) ≤
⌊cr⌋∑

k=1

Ck

k!

∑

m1+...+mk=r
mi≥1

k∏

i=1

ρ−mi

≤ exp(C)

⌊cr⌋∑

k=1

ρ−r

(
r − 1

k − 1

)

≤
for all λ>0

exp(C)ρ−r
r−1∑

k=r−⌊cr⌋

(
r − 1

k

)
exp (λk − λ(r − ⌊cr⌋))

≤ exp(C)
(
ρ−1 exp(−λ(1− c))(exp(λ) + 1)

)r
.

When c → 0, ρ−1 exp(−λ(1 − c))(exp(λ) + 1) → ρ−1(1 + exp(−λ)), which is strictly smaller than
1 for λ large enough. Hence, fix such a large λ and then take c > 0 sufficiently small so that
ρ−1 exp(−λ(1− c))(exp(λ) + 1) < 1. This ends the proof. �

Lemma 27. For all ε > 0, √
n

T
(m)
n+1

∑

λ∈Pn

1{λr≥nε}S
(λ)
n+1 −→

n→∞
0.
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Proof. • If m = 2, λr = 0 for all λ ∈ Pn and the assertion is obvious.

• Assume now that 3 ≤ m < ∞ and note that when λ ∈ Pn with p(λ) ≤ m, one has that λr ≥ nε
implies (m− 2)λ3 ≥ nε, in particular λ1 ≥ λ2 ≥ nε/(m− 2). Hence,

∑

λ∈Pn

1{λr≥nε}S
(λ)
n+1 ≤

n−2∑

λr=⌈nε⌉

⌊n−λr−nε/(m−2)⌋+∑

λ1=⌈nε/(m−2⌉)

T
(m)
λ1

T
(m)
n−λr−λ1

T
(m)
λr+1.

Then for C a generic constant, using (35), the latter term multiplied by
√
n/T

(m)
n+1 is bounded from

above by

Cn1/2(n+ 1)3/2
n−2∑

λr=⌈nε⌉

⌊n−λr−nε/(m−2)⌋+∑

λ1=⌈nε/(m−2)⌉

1

λ
3/2
1 (n− λr − λ1)3/2(λr + 1)3/2

≤ C
n2(n − 2)(⌊n − nε/(m− 2)⌋+)

n3∗3/2
= O

(
1√
n

)
.

• Next we turn to the case where m = ∞. Let γ ∈ (5/6, 1). On the one hand, by the same token
as for the m <∞ cases,

√
n

T
(∞)
n+1

∑

λ∈Pn

1{λr≥nε}1{λ2≥nγ}S
(λ)
n+1 ≤ Cn2

n−2∑

λr=⌈nε⌉

⌊n−λr−nγ⌋+∑

λ1=⌈nγ⌉

1

λ
3/2
1 (n− λr − λ1)3/2(λr + 1)3/2

≤ C
n4

n3γ+3/2
= O

(
n5/2−3γ

)
= o(1),

since 5/2− 3γ < 0 when γ > 5/6. On the other hand, we use Lemma 26 to get

√
n

T
(∞)
n+1

∑

λ∈Pn

1{λr≥nε}1{λ2<nγ}S
(λ)
n+1 ≤

√
n

T
(∞)
n+1

n−2∑

λr=⌈nε⌉

n−λr−1∑

λ1=1

T
(∞)
λ1

T
(∞)
n−λr−λ1

T
(∞,nγ−)
λr+1

≤ Cn4 exp(−Bn1−γε) = o
(
1
)
.

�

6.2.2 Proof of Proposition 18

We rely on the following lemma. Let Pbin
n be the subset of Pn of partitions of n with exactly two

parts.

Lemma 28. Let f : S↓ → R be continuous.
(i) For all a ∈ Z+ and all ε ∈ (0, 1), as n→ ∞,

√
n

T
(m)
n+1

∑

λ∈Pbin
n−a

λ1≤n(1−ε)

f

(
λ1
n
,
λ2 + a

n
, 0, . . .

)
S
(λ)
n+1−a −→ κ

ρ1+a

∫ 1−ε

1/2

f(x, 1− x, 0, . . .)

x3/2(1− x)3/2
dx.

(ii) Moreover, there exists Cε ∈ (0,∞) such that, for all n ≥ 1, all 0 ≤ a ≤ nε/2 and all non-
increasing non-negative sequences (ai, i ≥ 1) with

∑
i≥1 ai ≤ a/n,

∣∣∣∣∣∣∣∣∣

√
n

T
(m)
n+1

∑

λ∈Pbin
n−a

λ1≤n(1−ε)

f

(
λ1
n
,
λ2
n

+ a1, a2, a3, . . .

)
S
(λ)
n+1−aT

(m)
a+1

∣∣∣∣∣∣∣∣∣

≤ Cε

(a+ 1)3/2
.
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Proof. (i) For large enough n,

∑

λ∈Pbin
n−a

λ1≤n(1−ε)

f

(
λ1
n
,
λ2 + a

n
, 0, . . .

)
S
(λ)
n+1−a = f

(
1

2
− a

2n
,
1

2
+

a

2n
, 0, . . .

)
F(n−a)/2(2)1{n−a is even}

+

⌊n(1−ε)⌋∑

λ1=⌊(n−a)/2⌋+1

f

(
λ1
n
, 1− λ1

n
, 0, . . .

)
T

(m)
λ1

T
(m)
n−a−λ1

.

On the one hand, by Otter’s approximation result for T
(m)
(n−a)/2

F(n−a)/2(2) = T
(m)
(n−a)/2

(
T

(m)
(n−a)/2 + 1

)
/2 ∼ κ2ρn−a((n− a)/2)−3/2 = o(T

(m)
n+1/

√
n).

On the other hand, still using Otter’s result, we get that for all η > 0, provided that n is large
enough,

√
n

T
(m)
n+1

⌊n(1−ε)⌋∑

λ1=⌊(n−a)/2⌋+1

f

(
λ1
n
, 1− λ1

n
, 0, . . .

)
T

(m)
λ1

T
(m)
n−a−λ1

≤ (κ+ η)2

(κ− η)ρ1+a

1

n

⌊n(1−ε)⌋∑

λ1=⌊(n−a)/2⌋+1

f

(
λ1
n
, 1− λ1

n
, 0, . . .

)
(n+ 1)3/2

λ
3/2
1

× n3/2

(n− a− λ1)3/2

−→
n→∞

(κ+ η)2

(κ− η)ρ1+a

∫ 1−ε

1/2

f(x, 1− x, 0, . . .)

x3/2(1− x)3/2
dx.

Letting η → 0, this gives

lim sup
n→∞

√
n

T
(m)
n+1

⌊n(1−ε)⌋∑

λ1=⌊(n−a)/2⌋+1

f

(
λ1
n
, 1 − λ1

n
, 0, . . .

)
T

(m)
λ1

T
(m)
n−a−λ1

≤ κ

ρ1+a

∫ 1−ε

1/2

f(x, 1− x, 0, . . .)

x3/2(1− x)3/2
dx.

We obtain the liminf similarly, hence (i).

(ii) We will use that S
(λ)
n+1−a ≤ T

(m)
λ1

T
(m)
n−a−λ1

for all λ ∈ Pbin
n−a. Recall that f is bounded on S↓.

There exits then a generic constant C independent of n and a ≤ nε/2 such that
∣∣∣∣∣

√
n

T
(m)
n+1

∑

λ∈Pbin
n−a,λ1≤n(1−ε)

f

(
λ1
n
,
λ2
n

+ a1, a2, a3, . . .

)
S
(λ)
n+1−aT

(m)
a+1

∣∣∣∣∣

≤ C
√
n

T
(m)
n+1

⌊n(1−ε)⌋∑

λ1=⌈(n−a)/2⌉

T
(m)
λ1

T
(m)
n−a−λ1

T
(m)
a+1

≤ C

(a+ 1)3/2
1

n

⌊n(1−ε)⌋∑

λ1=⌈(n−a)/2⌉

(n+ 1)3/2

λ
3/2
1

× n3/2

(n − a− λ1)3/2

≤ C

(a+ 1)3/2
1

n

⌊n(1−ε)⌋∑

λ1=⌈n(1−ε/2)/2⌉

n3/2

λ
3/2
1

× n3/2

(n− λ1)3/2

where we have used for the last inequality that n − a ≥ n(1 − ε/2) since a ≤ nε/2 and that
n − a − λ1 ≥ (n − λ1)/2 since a ≤ nε/2 and λ1 ≤ n(1 − ε). This upper bound is of the form
Cun/(a + 1)3/2 where (un, n ≥ 1) is a sequence independent of a converging to a finite limit as
n→ ∞. Hence the result. �
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Proof of Proposition 18. By Lemmas 25 and 27, the set of partitions where either λ1 ≥ n(1− ε)
or λr ≥ nε/3 will play a negligible role in the limit when we first let n → ∞ and then ε → 0.
Hence we concentrate first on the following sums (for ε ∈ (0, 1)), where we use that for all λ ∈ Pn,
λ1 ≤ n(1− ε) and λr ≤ nε/3 implies λ2 > λ3:

∑

λ∈Pn
λ1≤n(1−ε),λr≤nε/3

f

(
λ

n

)
S
(λ)
n+1 =

⌊nε/3⌋∑

k=0

∑

µ∈Pk
p(µ)≤m−2

∑

λ∈Pbin
n−k

λ1≤n(1−ε)

f

(
λ1
n
,
λ2 + k

n
, 0, . . .

)
S
(λ)
n−k+1S

(µ)
k+1 (37)

+

⌊nε/3⌋∑

k=0

∑

µ∈Pk
p(µ)≤m−2

∑

λ∈Pbin
n−k

λ1≤n(1−ε)

(
f

(
λ1
n
,
λ2
n
,
µ1
n
, . . .

)
− f

(
λ1
n
,
λ2 + k

n
, 0, . . .

))
S
(λ)
n−k+1S

(µ)
k+1.

The first sum in the right-hand side of (37) is equal to

⌊nε/3⌋∑

k=0

∑

λ∈Pbin
n−k ,λ1≤n(1−ε)

f

(
λ1
n
,
λ2 + k

n
, 0, . . .

)
S
(λ)
n−k+1T̃

(m)
k+1, (38)

which, multiplied by
√
n/T

(m)
n+1, according to Lemma 28 (i) and (ii) ((ii) implies dominated conver-

gence), converges to
∞∑

k=0

T̃
(m)
k+1

κ

ρ1+k

∫ 1−ε

1/2

f(x, 1− x, 0, . . .)

x3/2(1− x)3/2
dx. (39)

Next, let δ > 0. Since f is continuous (hence uniformly continuous) on the compact set S↓, we can
choose ε small enough so that the absolute value of the second sum in the right-hand side of (37)
is bounded from above by

2

⌊nε/3⌋∑

k=0

∑

λ∈Pbin
n−k ,λ1≤n(1−ε)

(
δ ∧

(
1− λ1

n

))
S
(λ)
n−k+1T̃

(m)
k+1 . (40)

Similarly as above, when multiplied by
√
n/T

(m)
n+1, this quantity converges to

2

∞∑

k=0

T̃
(m)
k+1

κ

ρ1+k

∫ 1−ε

1/2

δ ∧ (1− x)

x3/2(1− x)3/2
dx ≤ 2

∞∑

k=0

T̃
(m)
k+1

κ

ρ1+k

∫ 1

1/2

δ ∧ (1− x)

x3/2(1− x)3/2
dx (41)

by Lemma 28 (i) and (ii).
Now let η > 0 be fixed. For δ and ε sufficiently small, the terms (41) and the limsup of Lemma

25 are smaller than η, and the term (39) is in a neighborhood of radius η of the intended limit

κ

∞∑

k=0

T̃
(m)
k+1

ρk+1

∫ 1

1/2

f(x, 1− x, 0, . . .)

x3/2(1− x)3/2
dx. (42)

Next, such small δ and ε being fixed, letting n→ ∞, and using Lemma 27 and the convergences of

(38) to (39) and of (40) to (41), we get that
√
n
∑

λ∈Pn
f
(
λ
n

)
S
(λ)
n+1/T

(m)
n+1 is indeed in a neighborhood

of radius 7η of (42) for all n large enough. �
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