Sangho Yi 
email: sangho.yi@inrialpes.fr
  
Derrick Kondo 
email: derrick.kondo@inrialpes.fr
  
Artur Andrzejak 
email: andrzejak@zib.de
  
Reducing Costs of Spot Instances via Checkpointing in the Amazon Elastic Compute Cloud

Recently introduced spot instances in the Amazon Elastic Compute Cloud (EC2) offer lower resource costs in exchange for reduced reliability; these instances can be revoked abruptly due to price and demand fluctuations. Mechanisms and tools that deal with the cost-reliability trade-offs under this schema are of great value for users seeking to lessen their costs while maintaining high reliability. We study how one such a mechanism, namely checkpointing, can be used to minimize the cost and volatility of resource provisioning. Based on the real price history of EC2 spot instances, we compare several adaptive checkpointing schemes in terms of monetary costs and improvement of job completion times. Trace-based simulations show that our approach can reduce significantly both price and the task completion times.

I. INTRODUCTION

The vision of computing as a utility has reached new heights with the recent advent of Cloud Computing. Compute and storage resources can be allocated and deallocated almost instantaneously and transparently on an as-need basis.

Pricing of these resources also resembles a utility, and resources prices can differ in at least two ways. First prices can differ by vendor. The growing number of Cloud Computing vendors has created a diverse market with different pricing models for cost-cutting, resource-hungry users.

Second, prices can differ dynamically (as frequently as an hourly basis) based on current demand and supply. In December 2009, Amazon released spot instances, which sell the spare capacity of their data centers. Their dynamic pricing model is based on bids by users. If the users' bid price is above the current spot instance price, their resource request is allocated. If at any time the current price is above the bid price, the request is terminated. Clearly, there is a trade-off between the cost of the instance and its reliability.

The current middleware run on top of these infrastructures cannot cope or leverage changes in pricing or reliability. Ideally, the middleware would have mechanisms to seek by itself the cheapest source of computing power given the demands of the application and current pricing.

In this paper, we investigate one mechanism, namely checkpointing, that can be used to achieve the goal of minimizing monetary costs while maximizing reliability. Using real price traces of Amazon's spot instances, we study various dynamic checkpointing strategies that can adapt to the current instance price and show their benefit compared to static, cost-ignorant strategies. Our key result is that the dynamic checkpointing strategies significantly reduce the monetary cost, while improving reliability.

The remainder of this paper is organized as follows. Section II presents checkpointing strategies on spot instances in the Amazon Elastic Compute Cloud (EC2). Section III evaluates performance of several checkpointing strategies based on the previous price history of the spot instances. Section IV describes related work. Finally, Section V presents conclusions and possible extensions of this work.

II. SPOT INSTANCES ON AMAZON EC2

In this section we describe the system model used in this paper and introduce the considered checkpointing schemes. Amazon allows users to bid on unused EC2 capacity provided as 42 types of spot instances that differ by computing / memory capacity, OS type and geographical location [START_REF]Amazon EC2 Spot Instances[END_REF]. Their prices called spot prices change dynamically based on supply and demand. Figure 1 shows examples of spot price fluctuations for three eu-west-1.linux instance types during 8 days in January 2010. Customers whose bids meet or exceed the current spot price gain access to the requested resources. Figure 2 shows how Amazon EC2 charges per-hour price Figure 2. Examples of pricing for Amazon EC2's spot instance for using a spot instance. The following system model was made according to the characteristics of Amazon EC2's spot instances.

A. System Model

⋄ Amazon provides a spot instance when a user's bid is greater than the current price. ⋄ Amazon stops immediately without any notice when a user's bid is less than or equal to the current price. We call this an out-of-bid event or a failure. ⋄ Amazon does not charge the latest partial hour when Amazon stops an instance. ⋄ Amazon charges the last partial hour when a user terminates an instance. ⋄ The price of a partial-hour is considered the same as a full-hour. ⋄ Amazon charges each hour by the last price. ⋄ Amazon freely provides the spot price history. ⋄ The price of Amazon's storage service is negligible1 .

B. Definitions

Let t r denote the remaining computing time of a task to finish (for a fixed instance type), and T (t) the expected execution time of a task without taking checkpoints. By t c we denote the time for taking a checkpoint. For a given bid price u b on an instance type, we are interested in the probability of a failure (i.e. out-of-bid situation). For this purpose we introduce a probability density function f (t, u b ) of failure occurrences where t is the time since the last checkpoint. This function can be approximated from the history of price fluctuations. Let t a be the time needed for analyzing this history in order to approximate f (t, u b ) (for a bid u b ). Figure 3 shows an example of f (t, u b ) for the eu-west-1.linux-c1.medium instance type. It shows that the probability density function is a function of both the time and the user's bid. With the term rising edge, we refer to the event (and its time) where the spot price for a 

C. Expected recovery time

In this section, we derive analytical formulas for H take (t), H skip (t), E take (t) and E skip (t) describing the expected recovery time in various situations. They are used in Section Figure 4. Effects of skipping and taking a checkpoint on the recovery time II-D3 for adaptive checkpointing schemes. To this aim, we modify the determination functions and notations from [START_REF] Yi | Taking point decision mechanism for page-level incremental checkpointing based on cost analysis of process execution time[END_REF], [START_REF]Adaptive page-level incremental checkpointing based on expected recovery time[END_REF] 2 . This yields the following Theorem 1 on the expected execution time of a process without checkpointing.

Theorem 1: The expected execution time T (t) of a process without checkpointing when executing t time units is

T (t) = t + t-1 k=0 (k + r -t)f (k, u b ) 1 - t-1 k=0 f (k, u b ) . (1) 
Proof: The conditional expected execution time is written as [START_REF] Yi | Taking point decision mechanism for page-level incremental checkpointing based on cost analysis of process execution time[END_REF]:

T (t) = t if k≥t k + r + T (t) otherwise.
By the law of total expectation

T (t) = ∞ k=t tf (k, u b ) + t-1 k=0 (k + r + T (t))f (k, u b ).
Rearranging with respect to T (t), we obtain

T (t) = ∞ k=0 tf (k, u b ) + t-1 k=0 (k + r -t)f (k, u b ) 1 -t-1 k=0 f (k, u b ) . Since ∞ k=0 tf (k, u b ) = t, we have T (t) = t + t-1 k=0 (k + r -t)f (k, u b ) 1 -t-1 k=0 f (k, u b )
.

In Eq. ( 1) f (k, u b ) significantly affects the T (t). For example, without failures

t-1 k=0 f (k, u b ) goes to 0, and thus T (t) = t. Otherwise, T (t) is larger because t-1 k=0 f (k, u b ) > 0.
Based on Eq. ( 1) we can calculate the expected recovery time for both cases of skipping and taking a checkpoint, which is illustrated in Fig. 4.

Theorem 2: The expected recovery time when skipping an hour-boundary checkpoint at t time units after taking checkpoint, H skip (t) is given by

H skip (t) = tr-1 k=0 (k + r + T (t))f (k, u b ).
(2)

Proof: When a failure occurs within t r time units, the task should be re-executed from the last checkpoint, and thus,

H skip (t) = k + r + T (t) if k < t 0 otherwise.
By integrating above, we obtain Eq. ( 2). Theorem 3: The expected recovery time when taking an hour-boundary checkpoint at t time units after taking checkpoint, H take (t) is given by

H take (t) = tr-1 k=0 (k + r)f (k, u b ) + tc-1 k=0 T (t)f (k, u b ) + T (t c ).
(3)

Proof: When a failure occurs within t c time units, the task should be re-executed from the last checkpoint, and when a failure occurs in t c ≤ k < t r the task can be recovered from the new checkpoint. In addition, H take (t) has overhead T (t c ) of taking a checkpoint, and thus,

H take (t) = T (t c ) +      k + r + T (t) if k < t c k + r else if t c ≤ k < t r 0 otherwise.
By the law of total expectation

H take (t) = tc-1 k=0 (k + r + T (t))f (k, u b ) + tr-1 k=tc (k + r)f (k, u b ) + T (t c ).
Simplifying above with k + r, we obtain Eq. (3). To derive formulas for E take (t) and E skip (t) we use the mean rising edge m e (u b ), the number of arrived rising edges in the current duration n e , and the probability density function of rising edge occurrence e(k, u b ). We obtain E skip (t) and E take (t) by substituting nee(k,u b ) me(u b ) for f (k, u b ) in Eq. ( 2) and Eq. (3), respectively.

E skip (t): The expected recovery time when skipping a rising edge-driven checkpoint is given by

E skip (t) = tr -1 k=0 (k + r + T (t))n e e(k, u b ) m e (u b ) (4) 
E take (t): The expected recovery time when taking a rising edge-driven checkpoint is given by 

E take (t) = tr -1 k=0 (k + r)n e e(k, u b ) m e (u b ) + tc-1 k=0 T (t)n e e(k, u b ) m e (u b ) + T (t c ) (5) 
In Eq. ( 4) and Eq. ( 5), the combined density factor nee(k,u b )

me(u b )
denotes how the current point of time is close to (or far from) the expected failure occurrence from the current time. For example, when a system has a significantly large number of rising edges for each availability duration, and a few rising edges have arrived, then the density factor

tc-1 k=0 nee(k,u b ) me(u b )
goes to 0. In this case, E skip (t) goes to 0, while E take (t) = T (t c ). On the other hand, when the n e approaches to m e (u b ), the factor goes to e(k, u b ). In this case, E skip (t) may be greater than E take (t).

D. Checkpointing Schemes

In the following we describe the proposed checkpointing schemes in the considered scenario.

1) Hour-boundary Checkpointing: Figure 5 illustrates the hour-boundary checkpointing method. Here checkpoints are taken periodically at hour boundaries. It is the most intuitive one for the spot instances, because an hour is the lowest granularity of spot instance pricing. It also provides a guarantee of paying for the actual progress of computation.

A variation of this policy is the fine-grained checkpointing which evaluates whether to take a checkpoint periodically every 10 or 30 minutes. See [START_REF] Yi | Taking point decision mechanism for page-level incremental checkpointing based on cost analysis of process execution time[END_REF] for details.

2) Rising edge-driven Checkpointing: Figure 6 presents the rising edge-driven checkpointing which is novel compared to previous checkpoint methods. In the world of the spot instances, rising (and falling) edges occur according to the number of available resources, the bids from users, and the number of bidders. A rising edge is likely to indicate that the system has less available resources, more bidding users, or higher bids from users, and so an out-of-bid event (for a constant bid) is more likely. However, taking checkpoints at [START_REF]CloudStatus[END_REF] adaptive fine-grained checkpointing [START_REF] Yi | Taking point decision mechanism for page-level incremental checkpointing based on cost analysis of process execution time[END_REF] (decides every 10 minutes whether to take or skip) AF(30) adaptive fine-grained checkpointing [START_REF] Yi | Taking point decision mechanism for page-level incremental checkpointing based on cost analysis of process execution time[END_REF] (decides every 30 minutes whether to take or skip) all rising edges does not guarantee checkpointing at hourly boundaries, and in some cases, rising edges may not occur during an availability period. Consequently, the rising edgedriven checkpointing might fail to reduce the execution time if a sudden increase of the spot price occurs.

3) Checkpointing with Adaptive Decision: Figure 4 compares effects of taking or skipping a checkpoint at the current time. This decision significantly affects the recovery time if a failure occurs, and thus the execution time of the running task. By using the formulas derived in Section II-C we can compare whether it is more useful to take or to skip a checkpoint. In more detail, our policy takes a checkpoint at an hour boundary if H skip (t) > H take (t) and skips it otherwise. Analogously, by comparing E take (t) against E skip (t), we learn whether to take (E skip (t) > E take (t)) or to skip (E skip (t) < E take (t)) a checkpoint at a rising edge. In those notations, t is a relative time since the last checkpoint (or, when the task does not have checkpoint, it is the time since the starting time of its execution.)

4) Checkpointing Combinations: The above checkpointing schemes are orthogonal to each other. We obtain 12 different types of checkpointing policies by combining them. The detailed information is given in Table II.

E. Partial Improvement based on the Delayed Termination

Amazon EC2's pricing rules allow the following method to reduce the computation costs. As shown in Fig. 1, Amazon does not charge the last partial-hour when EC2 terminates the running instance (the last partial hour is charged if termination is due to the user). Based on that fact, each user can delay termination of the running instance up to the hour-boundary, and Amazon may terminate the running task with probability p t , then the users may have p t ×price_per_hour reduction from the total price.

III. EVALUATION OF THE CHECKPOINTING POLICIES

In this section, we analyze the impact of checkpointing policies on all 42 spot instance types in Amazon EC2. We simulated the checkpointing schemes based on the real price traces in terms of the task completion time, total price, and the price×time product.

A. Simulation Setup

Table III shows our simulation setup in detail. We assume that the checkpointing cost of running programs is known. We used the constant value for the t c , but using a variable checkpointing cost is also possible in our system model. We assume that the total work of each program is 500 minutes, and we used the latest 10-days (14, 400 minutes) of price history to get the probability density function of the availability durations.

We implemented a simulator which reads the past history of spot price, calculates the probability density function of availability durations and rising edges, and simulates the 12 types of checkpointing policies (see Table II) on the 42 types of spot instances. For each data point, we simulated 100 experiments to ensure confidence of our results.

B. Simulation Results and Evaluation

In the following, the policy OPT serves as a comparison baseline and is optimal in the sense that checkpoints are taken immediately before failures known in advance. 

1) eu-west-1.linux.m1.large instance type:

We have picked the eu-west-1.linux.m1.large as a representative instance type to evaluate the total price of a task, its completion time, and a product of both as a combined metric.

Total price. Figure 7 shows the total price for the investigated instance type. Obviously the edge-driven checkpointing policies perform poorly. Policy AF(30) has lower cost compared with the other combinations of hour-boundary and edge-driven checkpointing policies. This result shows that the edge-driven checkpointing is not effective in reducing price compared with other checkpointing policies. Furthermore, we have a 10 ∼ 30 percent difference between OPT and the other policies.

Task completion time. Figure 8 shows the task completion time for the eu-west-1.linux.m1.large instance type. The adaptive fine-grained checkpointing performs more poorly than the other combinations. The adaptive hour-boundary checkpointing shows slightly lower task completion times than the normal hour-boundary policy. The difference between OPT and the other policies is about 10 ∼ 15 percent.

Combined metrics. Figure 9 shows the performance metrics combined, i.e., the product of total price and task completion time on our instance type. Policy AF(30) is better (lower product) than the others when the user's bid is less than 0.159, but this metric is slightly higher for other bid ranges. We also observe that the performance gap between OPT and the other policies is about 20 ∼ 30 percent.

2) Evaluation on two us-east-1.windows instance types: We have investigated two us-east-1.windows instance types as an alternative to the above eu-west-1.linux.m1.large study. Figures 10 and11 show the corresponding results. The rising edgedriven checkpointing shows better performance than others while AF [START_REF]CloudStatus[END_REF] and AF(30) show worse results in most of the range of user's bids. This can happen when the movement of Product of total price and task completion time on eu-west-1.linux.m1.large instance type spot price has a weaker relationship with the previous price changes. In other words, the adaptive decision mechanism may not perform well when the probability density function of failures significantly (and, unexpectedly) changes over time.

3) Mean price bidding: Table IV shows the normalized product of the total price and the task completion time when a user bids the mean price based on the past price history. In this result, we observe that checkpointing policies affect the real price significantly. In particular, using the hour-boundary checkpointing can reduce significantly the cost compared with the edge-driven policies or without checkpointing policies on this instance type. Also, the cost of the adaptive fine-grained checkpointing depends on its sampling (decision) rate. Using a higher rate provides more available places to checkpoint, but it may not be efficient because the decision is not the optimal, and the decision requires overhead. This result shows that the checkpointing policies give results 30 ∼ 45 percent higher than the optimal case. This means that finding a better strategy to take a checkpoint is still required to save more monetary costs. The detailed explanation of possible future approaches are discussed in Section V.

4) Delayed termination: Table V shows the price reduction when using delayed termination introduced in Section II-E. This technique does not affect the task completion time but may reduce cost of the last partial-hour. For the long-term tasks the savings may be trivial; however shorter tasks (of a few hours or less) might benefit from it. The results shows that we can save almost 0.01 ∼ 0.20 USD, depending on the size of the instance types.

5) Policy comparison and result summary:

Table VI shows the best checkpointing policies for all 42 types of spot instances. We observe that the hour-boundary checkpointing performs best for most cases, while AF(30) and the rising-Figure 10. Total execution price on us-east-1.windows instance types edge driven checkpointing perform well in a small fraction of the spot instance types. The policy combinations using rising edge-driven checkpointing (E, AE, and AH+AE) perform well only on Microsoft Windows-based spot instances while not performing so well on the Linux-based spot instances.

Summarizing, we observe that checkpointing can significantly affect both the task completion time and the total price. We found that using hour-boundary checkpointing can reduce costs significantly in the presence of failures. But, we also found that the rising edge-driven checkpointing is better for some set of instance types. The results also show that delayed termination can reduce a small amount of monetary costs given our task's size (which is 500 minutes), but this scheme may reduce significantly costs when running relatively short-term tasks. We also found that finding better placements of checkpoints is required to minimize the performance gap between the optimal and the other checkpointing policies.

IV. RELATED WORK

We start with work related to Cloud Computing, including economics, management services, and fault-tolerant middleware. Several previous works focus on the economics of Cloud Computing [START_REF] Kondo | Cost-benefit analysis of cloud computing versus desktop grids[END_REF], [START_REF] Andrzejak | Exploiting non-dedicated resources for cloud computing[END_REF], [START_REF] Palankar | Amazon S3 for Science Grids: a Viable Solution?[END_REF], [START_REF] Garfinkel | Commodity grid computing with amazons s3 and ec2[END_REF], [START_REF] Deelman | The Cost of Doing Science in the Cloud: The Montage Example[END_REF]. However, these works assume a static pricing model for EC2's dedicated on-demand Several services for monitoring and managing cloud applications exist [START_REF]CloudStatus[END_REF], [START_REF]CloudKick: Simple, powerful tools to manage and monitor cloud servers[END_REF], [START_REF] Rightscale | Cloud Computing Management Platform[END_REF], but these services currently do not consider cloud costs that vary dynamically over time. For instance, RightScale [START_REF] Rightscale | Cloud Computing Management Platform[END_REF] is a third party cloud computing broker that provides management services for clouds, such as EC2. They provide several software tools that reduce the complexity of managing and monitoring cloud computing resources. However, they still do not have any service for efficiently utilizing the spot instances on the Amazon EC2. Instead, the users of spot instances have to manage spot instance costs and reliability manually and individually.

Several middleware currently deployed over Clouds have fault-tolerance mechanisms [START_REF] Dean | Mapreduce: Simplified data processing on large clusters[END_REF], [START_REF] Litzkow | Condor -A Hunter of Idle Workstations[END_REF], [START_REF] Bosilca | MPICH-V: Toward a Scalable Fault Tolerant MPI for Volatile Nodes[END_REF], but these mechanisms currently are not cost-aware. For instance, Map-Reduce [START_REF] Dean | Mapreduce: Simplified data processing on large clusters[END_REF] and Condor [START_REF] Litzkow | Condor -A Hunter of Idle Workstations[END_REF] are intrinsically fault-tolerant, but how to conduct fault-tolerance in a cost-effective way has not been addressed. In particular, checkpointing has been well-studied, but previous studies have not taken into account variable resource costs. In [START_REF] Duda | The effects of checkpointing on program execution time[END_REF], A. Duda studied the optimal placement of a checkpoint if the performance overhead is constant. In [START_REF] Yi | Taking point decision mechanism for page-level incremental checkpointing based on cost analysis of process execution time[END_REF], Yi et al. proposed an adaptive checkpointing scheme which provides adaptive taking point decision function when the cost of checkpointing changes over time. Their results apply under the assumption that failures occur according to the Poisson process. In contrast, we use the probability density function which is calculated from the previous traces of spot instances.

There are several challenges related to checkpointing in context of unreliable resources such as spot instances. The first one is finding the relationship between past and future failures or availability for proactive checkpointing. Much work exists on finding correlations and dependence between failure events [START_REF] Fu | Exploring event correlation for failure prediction in coalitions of clusters[END_REF], [START_REF] Javadi | Mining for availability models in large-scale distributed systems: A case study of seti@home[END_REF], [START_REF] Kondo | On correlated availability in internet distributed systems[END_REF], [START_REF] Andrzejak | Predicting machine availabilities in desktop pools[END_REF]. Another challenge is using an efficient checkpointing method for minimizing the expected execution time in the presence of failures. This also has been the subject of previous work described in [START_REF] Duda | The effects of checkpointing on program execution time[END_REF], [START_REF] Yi | Taking point decision mechanism for page-level incremental checkpointing based on cost analysis of process execution time[END_REF], [START_REF] Plank | Diskless checkpointing[END_REF], [START_REF]Adaptive page-level incremental checkpointing based on expected recovery time[END_REF], [START_REF] Domingues | Using checkpointing to enhance turnaround time on institutional desktop grids[END_REF]. A new aspect is understanding the impact of checkpointing methods on the spot instances for reducing both the monetary costs and the task's total execution time. This is the focus of this work.

V. CONCLUSIONS AND FUTURE WORK

We proposed an approach to reduce monetary costs of computations using Amazon EC2's spot instances for resource provisioning. Based on the price history given by Amazon, we simulated and compared several checkpointing schemes in terms of both price and task completion time. Our simulation Figure 11. Task completion time on us-east-1.windows instance types results show that using an appropriate checkpointing scheme can reduce significantly both the price and task completion time.

Our future work will include identifying correlation between past and current prices, between instance types, and between rising edges. We are also interested in developing robust prediction methods to minimize monetary costs and completion times under this schema. We will also investigate how to gather "hidden information" such as the amount of bids, the number of available resources, and the number of bidders in order to improve predictions.

Figure 1 .

 1 Figure 1. Spot price fluctuations of eu-west-1.linux instance types

Figure 3 .

 3 Figure 3. Examples of probability density function of failure (out-of-bid) occurrence, f (t, u b ) on eu-west-1.linux-c1.medium instance type

Figure 5 .Figure 6 .

 56 Figure 5. Hour-boundary checkpointing

Figure 8 .

 8 Figure 8. Task completion time on eu-west-1.linux.m1.large instance type

Figure 9 .

 9 Figure 9.

Table IV NORMALIZED

 IV PRICE×TIME PRODUCT FOR EXECUTION ON THE MEAN PRICE BIDDING (NORMALIZED BY OPT)

	eu-west-1.linux type	NONE	H	E	AH		AE	H+E	H+AE	AH+E	AH+AE	AF(10)	AF(30)
	c1.medium		2.659	1.298	3.841	1.296	2.660	1.307	1.300	1.307	1.300	2.865	1.405
	c1.xlarge		19.34	1.454	18.11	1.450	32.77	1.460	1.456	1.460	1.456	3.444	1.558
	m1.large		6.826	1.408	4.261	1.405	5.147	1.420	1.417	1.420	1.417	3.275	1.428
	m1.small		16.18	1.505	15.11	1.508	16.18	1.543	1.543	1.543	1.543	2.848	1.496
	m1.xlarge		13.75	1.445	11.50	1.449	16.86	1.448	1.447	1.448	1.447	2.655	1.456
	m2.2xlarge		2.894	1.462	2.900	1.462	2.897	1.465	1.464	1.459	1.464	2.690	1.428
	m2.4xlarge		3.458	1.354	2.758	1.355	2.972	1.360	1.358	1.360	1.358	2.843	1.411
						Table V				
	THE AMOUNT OF PRICE REDUCTION (IN USD) WHEN USING DELAYED TERMINATION (ON THE MEAN PRICE BIDDING)
	eu-west-1.linux type	OPT	H	E	AH		AE	H+E	H+AE	AH+E	AH+AE	AF(10)	AF(30)
	c1.medium		0.021	0.006	0.001	0.006	0.014	0.007	0.006	0.007	0.006	0.003	0.002
	c1.xlarge		0.101	0.109	0.067	0.109	0.067	0.105	0.109	0.105	0.109	0.074	0.015
	m1.large		0.019	0.029	0.032	0.029	0.043	0.025	0.025	0.025	0.025	0.028	0.008
	m1.small		0.004	0.015	0.000	0.015	0.000	0.012	0.012	0.012	0.012	0.008	0.004
	m1.xlarge		0.034	0.065	0.275	0.065	0.000	0.065	0.065	0.065	0.065	0.039	0.015
	m2.2xlarge		0.033	0.093	0.006	0.093	0.006	0.093	0.093	0.093	0.093	0.049	0.049
	m2.4xlarge		0.110	0.257	0.175	0.257	0.175	0.257	0.257	0.268	0.257	0.130	0.022
						Table VI				
	BEST CHECKPOINTING POLICY FOR EACH SPOT INSTANCE TYPE IN AMAZON EC2 (ON THE MEAN PRICE BIDDING, IN TERMS OF PRICE×TIME PRODUCT,
						EXCEPT FOR OPT)				
	Instance types	c1.medium type	c1.xlarge type	m1.large type	m1.small type	m1.xlarge type	m2.2xlarge type	m2.4xlarge type
	eu-west-1.linux		AH	AH		AH		AF(30)	H		AF(30)	H
	eu-west-1.windows		AF(30)	AF(30)	AH		AH	H, AH	H, AH	AH+AE
	us-east-1.linux		H, AH	H, AH	AF(30)		H	H, AH	H, AH	AH
	us-east-1.windows		AE	H, AH	H, AH		AF(30)	H		AE	E, AE
	us-west-1.linux		H, AH	H, AH	AF(30)		AH	H, AH	H, AH	AH
	us-west-1.windows		H, AH	AF(30)	AH		H, AH	E		E	AH
	instances. They evaluate the cost-benefit of Cloud Computing						
	compared to self-built, dedicated infrastructures such as tra-						
	ditional Grids or ISP's. The authors focus on different types						
	of applications including task parallel, message passing, and						
	data-intensive applications.									

Amazon provides free storage service up to June 30th

2010, and after July 1st, the price will be 0.15 USD for 1 GB-month. This is much lower than the price of computation[START_REF]Amazon Simple Storage Service FAQs[END_REF].

We modified Theorem 1 in[START_REF] Yi | Taking point decision mechanism for page-level incremental checkpointing based on cost analysis of process execution time[END_REF] because we use discrete time series and the measured probability density function of failure occurrence based on the real traces. For more information, please see Fig.1and Theorem 1 in[START_REF] Yi | Taking point decision mechanism for page-level incremental checkpointing based on cost analysis of process execution time[END_REF].

ACKNOWLEDGMENTS

This work is carried out in part under the EC project eX-treemOS (FP6-033576) and the ANR project Clouds@home (ANR-09-JCJC-0056-01).

REPRODUCIBILITY OF RESULTS

All data used in this study, the full source code of the simulator and additional results are available under the following URL: http://spotckpt.sourceforge.net