
HAL Id: hal-00464219
https://hal.science/hal-00464219v1

Submitted on 16 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quality of Service Scheduling in Real-Time Systems
Audrey Marchand, Maryline Chetto

To cite this version:
Audrey Marchand, Maryline Chetto. Quality of Service Scheduling in Real-Time Systems. Interna-
tional Journal of Computers, Communications and Control, 2008, 3 (4), pp.354-366. �hal-00464219�

https://hal.science/hal-00464219v1
https://hal.archives-ouvertes.fr


Quality of Service Scheduling in Real-Time Systems

A. Marchand M. Chetto

Abstract

In this paper, we deal with dynamic scheduling components integrating new Quality of
Service (QoS) functionalities into a Linux-based real-time operating system. In our approach,
periodic tasks allow occasional deadline violations within given bounds specified according
to the Skip-Over task model. Hence, every task has a minimal QoS guarantee which is
expressed by the ratio of periodic task instances which must complete before their deadline.
The work stated here provides two on-line scheduling algorithms, namely RLP and RLP/T,
which enhance the existing Skip-Over algorithms. More specifically, the proposed algorithms
aim at improving the actual QoS observed for periodic tasks (which is always greater or equal
to the QoS guarantee). These novel scheduling techniques rely on the EDL (Earliest Deadline
as Late as possible) scheduling strategy. Simulation results show the performance of RLP
and RLP/T with respect to basic Skip-Over algorithms. Finally, we present the integration
of these QoS scheduling services into CLEOPATRE open-source component library, a patch
to Linux/RTAI.

Keywords: real-time, dynamic scheduling, quality of service, periodic tasks, component-
based systems, Linux-based systems

1 Introduction

Software environments, and more precisely operating systems have still difficulties to meet the
special demands of multimedia applications. In particular, multimedia applications have real-
time constraints which are not handled properly by general-purpose operating systems. In order
to meet the requirements imposed by multimedia applications on processor scheduling, we have
to turn to the temporal stringency of real-time systems. Real-time systems are those in which
the time at which the results are produced is important. The correctness of the result of a task
is not only related to its logic correctness, but also to when the results occur.

Traditional classification of real-time systems stands for three classes to characterize the real-
time requirement of such systems : hard, soft and firm. In hard real-time systems, all instances
must be guaranteed to complete within their deadlines. In those critical control applications,
missing a deadline may cause catastrophic consequences on the controlled system. For soft
systems, it is acceptable to miss some of the deadlines occasionally. It is still valuable for the
system to finish the task, even if it is late. In firm systems, tasks are also allowed to miss some
of their deadlines, but, there is no associated value if they finish after the deadline. Typical
illustrating examples of systems with firm real-time requirements are multimedia systems in
which it is not necessary to meet all the task deadlines as long as the deadline violations are
adequately spaced.

A prominent strategy for performing resource management for multimedia systems is QoS-
driven management, in which quality requirements such as resolution and frame rate are trans-
lated into resource requirements such as computation burst frequencies and durations. This
resource information is then used for admission testing and resource reservation. The moti-
vation for this translation from application level requirements to resource requirements is to
guarantee a given QoS. The complexity of both the QoS space and the resource space suggests



International Journal of Computers, Communication and Control

that perfect characterization is hard to achieve, so it would be desirable to have a scheduling
policy that would adapt to changes in user QoS requirements. Such policy should strive to
achieve the desired QoS, in an environment with variable resources, as well as complex and
variable application demands.

In this paper, we address the problem of the dynamic scheduling of periodic tasks with
firm constraints. The scope of the paper is to maximize the actual QoS of periodic tasks by
maximizing the number of instances which complete before their deadline. The remainder of
this paper is organized in the following manner. Next section introduces existing approaches
for scheduling firm real-time systems. Then we present relevant background material about
both the Skip-Over model and the EDL scheduling algorithm. More particularly, we give the
definition of RTO and BWP scheduling algorithms, which are based on the Skip-Over model.
The functioning and optimality of the EDL algorithm is also outlined. Further, we describe
the proposed algorithms, namely RLP and RLP/T, as an enhancement of the BWP algorithm,
based on the EDL scheduling mechanism. Moreover, we present a model of a real-world problem
to show the practical interest of our work. The performance analysis of both RLP and RLP/T,
in terms of task completions, is reported after. Then, we describe the integration of these QoS
components into Linux/RTAI. Finally, in section 8, we summarize our contribution.

2 Related work

There have been some previous approaches to the specification and design of real-time systems
that tolerate occasional losses of deadlines. Hamdaoui and Ramanathan in [7] introduced the
concept of (m,k)-firm deadlines to model tasks that have to meet m deadlines every k consecutive
invocations. Their algorithm uses a distance-based priority (DBP) scheme to increase the priority
of a job in danger of missing more than m deadlines over a sliding window of k requests for
service. Moreover, algorithms such as VDS [17] and DWCS [19] are provably superior to DBP
in meeting (m,k) service requirements for a number of specific and non-trivial situations.

Similar to (m,k)-firm scheduling is the work introduced by Koren and Shasha [8] with the
notion of skip factor. If a task has a skip factor of s, it will have one invocation skipped out of
s. It is a particular case of the (m,k)-firm model where m = k−1. They reduce the overload by
skipping some task invocations, thus exploiting skips to increase the feasible periodic load. This
approach gives a solution to the scheduling problem of overloaded systems, while representing
a system Quality of Service requirement for real-time applications. Broadly speaking, the Skip-
Over scheduling algorithms guarantee the timing correctness of the real-time application. One
interesting result is that making optimal use of skips is a NP-hard problem. There are also
examples of (m,k)-hard schedulers [1], but most such approaches require off-line feasibility tests,
to ensure predictable service.

In [3, 4], Caccamo and Buttazzo follow this work by scheduling hybrid task sets consisting
of skippable periodic and soft aperiodic tasks. They propose and analyze an algorithm, based
on a variant of Earliest Deadline First (EDF) scheduling, in order to exploit skips under the
Total Bandwith Server (TBS). In previous works [10, 12], we have considered the same approach
but using the Earliest Deadline as Late as possible server (EDL). These results have led us to
propose a raw version of the RLP algorithm (idle time schedule based on red tasks only) [11].

West and Poellabauer in [16] proposed a windowed lost rate, that specifies a task can tolerate
x deadlines missed over a finite range or window, among consecutive y instances. In [2], Bernat
et al. introduce a general framework for specifying tolerance of missed deadlines under the
definition of weakly hard constraints.



Task T0 T1 T2 T3 T4

ci 3 4 1 7 2

pi 30 20 15 12 10

Table 1: A basic periodic task set

-

-

-

-

-6 6 6

6 6 6 6

6 6 6 6 6

6 6 6 6 6 6

6 6 6 6 6 6 6

0 30 60

0 20 40 60

0 15 30 45 60

0 12 24 36 48 60

0 10 20 30 40 50 60

T0

T1

T2

T3

T4

: processing red task

6 : release time

Figure 1: RTO scheduling algorithm (si = 2)

3 Theoretical Background

3.1 The Skip-Over model

We are here interested in the problem of scheduling periodic tasks which allow occasional deadline
violations (i.e., skippable periodic tasks), on a uniprocessor system. We assume that tasks can
be preempted and that they do not have precedence constraints. A task Ti is characterized
by a worst-case computation time ci, a period pi, a relative deadline equal to its period, and
a skip parameter si, which gives the tolerance of this task to missing deadlines. The distance
between two consecutive skips must be at least si periods. When si equals to infinity, no skips
are allowed and Ti is equivalent to a hard periodic task. One can view the skip parameter as a
QoS metric (the higher si, the better the quality of service).

A task Ti is divided into instances where each instance occurs during a single period of
the task. Every instance of a task can be red or blue [8]. A red task instance must complete
before its deadline; a blue task instance can be aborted at any time. However, if a blue instance
completes successfully, the next task instance is still blue.

3.1.1 Red Tasks Only (RTO) algorithm

The first algorithm proposed by Koren and Shasha is the Red Tasks Only (RTO) algorithm.
Red instances are scheduled as soon as possible according to Earliest Deadline First (EDF)
algorithm, while blue ones are always rejected. Deadline ties are broken in favor of the task with
the earliest release time. In the deeply red model where all tasks are synchronously activated
and the first si−1 instances of every task Ti are red, this algorithm is optimal. RTO is illustrated
in Figure 1 using the task set T = {T0, T1, T2, T3, T4} of five periodic tasks whose parameters
are described in Table 1. Tasks have uniform skip parameter si = 2 and the total processor
utilization factor Up =

∑
ci

pi
is equal to 1.15.

As we can see, the distance between every two skips is exactly si periods, thus offering only
the minimal guaranteed QoS level for periodic tasks.



International Journal of Computers, Communication and Control

-

-

-

-

-6 6 6

6 6 6 6

6 6 6 6 6

6 6 6 6 6 6

6 6 6 6 6 6 6

0 30 60

0 20 40 60

0 15 30 45 60

0 12 24 36 48 60

0 10 20 30 40 50 60

T0

T1

T2

T3

T4

: processing red task

: processing blue task

6 : release time

Figure 2: BWP scheduling algorithm (si = 2)

3.1.2 Blue When Possible (BWP) algorithm

The second algorithm studied is the Blue When Possible (BWP) algorithm which is an improve-
ment of the first one. Indeed, BWP schedules blue instances whenever their execution does not
prevent the red ones from completing within their deadlines. In that sense, it operates in a
more flexible way. Deadline ties are still broken in favor of the task with the earliest release
time. Figure 2 shows an illustrative example of BWP scheduling using the task set previously
described in Table 1.

Compared with RTO, more task instances complete successfully with BWP. We observe that
five violations of deadline relative to blue task instances occur at time instants t = 24 (task T3),
t = 30 (tasks T2 and T4) and t = 60 (tasks T3 and T4), thus reducing the QoS.

3.2 The EDL algorithm

The definition of the Earliest Deadline as Late as possible (EDL) algorithm makes use of some
results presented by Chetto and Chetto in [5]. Under EDL, periodic tasks are scheduled as late
as possible. An accurate characterization of the idle times during which the processor is not
occupied is necessary. The authors introduced an availability function fX

Y defined with respect
to a task set Y and a scheduling algorithm X. fX

Y (t) = 1 if the processor is idle at t, 0 otherwise.

So, for any instants t1 and t2, value of ∫ t2
t1

fX
Y (t)dt denoted by ΩX

Y (t1, t2) gives the total idle
time in [t1, t2]. fEDL

Y can be described by means of the following two vectors:

• K, called static deadline vector, represents the times at which idle times occur and is
constructed from the distinct deadlines of periodic tasks.

• D, called static idle time vector, represents the lengths of the idle times relating to time
instants of vector K.

The complexity of the EDL algorithm is O(Kn) where n is the number of periodic tasks,
and K is equal to ⌊R

p
⌋, where R is the longest deadline, and p is the shortest period [13]. We

also recall the fundamental property relative to the optimality of EDL [5]:

Theorem 1. Let X be any preemptive scheduling algorithm and A a set of independent aperiodic
tasks. For any instant t,

ΩX
A (0, t) ≤ ΩEDL

A (0, t) (1)



-

-

-6 6 6 6

6 6 6 6 6 6
0 10 20 30

0 6 12 18 24 30

k0 k1 k2 k3 k4 k5 k6

T1

T2

fEDL

T

: processing periodic task

: processing idle time

6 : release time

Figure 3: fEDL

T
computation produced at time zero

We give now an illustrative example of the computation of the idle times performed by
EDL. Consider the periodic task set T = {T1, T2} consisting of two periodic tasks T1(3, 10) and
T2(3, 6). The fEDL

T
computation produced at time zero is described in Figure 3.

The authors in [5] described how the EDL algorithm can be applied, first to the decision
problem that arises when a sporadic time critical task occurs and requires to be run at an
unpredictable time and secondly, to the scheduling problem that arises in a fault tolerant system
using the Deadline Mechanism [?] for which each task implements primary and backup copies
(the processor time reserved for the execution of the backup copies is realized with EDL and is
reclaimed as soon as the primary task executes successfully).

In next sections, we are interested in using EDL first to simulate a schedule (RLP implemen-
tation) and then to derive a measure required for deciding whether a blue task can be accepted
(RLP/T implementation).

4 The Proposed Algorithms

4.1 Red tasks as Late as Possible (RLP)

The main drawback of BWP relies on the fact that blue task instances are executed as back-
ground tasks. This leads to abort partially or almost completely executed blue task instances,
thus wasting processor time.

4.1.1 Algorithm outline

The objective of RLP algorithm is to bring forward the execution of blue task instances so as
to minimize the ratio of aborted blue instances, thus enhancing the actual QoS (i.e., the total
number of task completions) of periodic tasks. From this perspective, RLP scheduling algorithm,
which is a dynamic scheduling algorithm, is specified by the following behaviour:

1. if there are no blue task instances in the system, red task instances are scheduled as soon
as possible according to the EDF (Earliest Deadline First) algorithm.

2. if blue task instances are present in the system, these ones are scheduled as soon as possible
according to the EDF algorithm (note that it could be according to any other heuristic),
while red task instances are processed as late as possible according to the EDL algorithm.

Deadline ties are always broken in favor of the task with the earliest release time. The
main idea of this approach is to take advantage of the slack of red periodic task instances.
Determination of the latest start time for every red request of the periodic task set requires
preliminary construction of the schedule by a variant of the EDL algorithm taking skips into



International Journal of Computers, Communication and Control

-

-

-

-

-6 6 6

6 6 6 6

6 6 6 6 6

6 6 6 6 6 6

6 6 6 6 6 6 6

0 30 60

0 20 40 60

0 15 30 45 60

0 12 24 36 48 60

0 10 20 30 40 50 60

T0

T1

T2

T3

T4

: processing red task

: processing blue task

6 : release time

Figure 4: RLP scheduling algorithm (si = 2)

account [12]. In the EDL schedule established at time τ , we assume that the instance following
immediately a blue instance which is part of the current periodic instance set at time τ , is red.
Indeed, none of the blue task instances is guaranteed to complete within its deadline. Moreover,
Silly-Chetto in [13] proved that the online computation of the slack time is required only at
time instants corresponding to the arrival of a request while no other is already present on the
machine. In our case, the EDL sequence is constructed not only when a blue task is released
(and no other was already present) but also after a blue task completion if blue tasks remain
in the system (the next task instance of the completed blue task has then to be considered as
a blue one). Note that blue tasks are executed in the idle times computed by EDL and are of
same importance beside red tasks (contrary to BWP which always assigns higher priority to red
tasks).

4.1.2 Illustrative example

Consider once again the periodic task set T defined in Table 1. The relating RLP scheduling is
illustrated in Figure 4. In this example, we can see that, thanks to RLP scheduling, the number
of violations of deadline relative to blue task instances has been reduced to three. They occur
at time instants t = 40 (task T4), and t = 60 (tasks T3 and T4). Observe that T3 first blue
task instance which failed to complete within its deadline in the BWP case (see Figure 2), has
enough time to succeed in the RLP case, since the execution of T1 and T0 first red task instances
is postponed. Until time t = 10, red task instances are scheduled as soon as possible. From time
t = 10 to the end of the hyperperiod (defined as the least common multiple of task periods),
red task instances do execute as late as possible in the presence of blue task instances, thus
enhancing the actual QoS of periodic tasks.

4.2 Red tasks as Late as Possible with blue acceptance test (RLP/T)

The main drawback of RLP relies on the fact that this algorithm attempts to execute blue
task instances as soon as possible, at the risk of aborting them before their completion, thus
generating a processor time wasting. This assessment led us to propose a novel algorithm named
RLP/T (Red tasks as Late as Possible with blue acceptance Test).

4.2.1 Algorithm outline

Red tasks as Late as Possible with blue acceptance test (RLP/T) algorithm is designed to
maximize the actual QoS of periodic task sets defined under skip constraints.



It acts as follows: red tasks enter straight the system at their arrival time whereas blue tasks
integrate the system upon acceptance. Once they have been accepted, blue tasks are scheduled
as soon as possible together with red tasks. Upon acceptance, blue tasks are again of same
importance beside red tasks. Deadline ties are always broken in favor of the task with the
earliest release time.

Whenever a new blue task enters the system, the idle times are computed using the EDL
scheduler. In the EDL schedule established at time τ , we assume that the instance following
immediately a blue instance which is part of the current periodic instance set at time τ , is also
blue. Indeed, all blue task instances previously accepted at τ are guaranteed by the schedu-
lability test they passed successfully. This one checks whether there are enough idle times to
accommodate the new blue task within its deadline, as described in the following section.

4.2.2 Acceptance test of blue tasks under RLP/T

Now, we are ready to present the new feasibility test algorithm for the RLP scheduling scheme
which, given any occurring blue task B is capable of answering the question ”Can B be accepted
?”. Notice that B will be accepted if and only if there exists a valid schedule, i.e., a schedule in
which B will execute by its deadline while red periodic tasks and blue tasks previously accepted,
will still meet their deadlines. Let τ be the current time which coincides with the arrival of a
blue task B. Upon arrival, task B(r, c, d) is characterized by its release time r, its execution
time c, and its deadline d, with r + c ≤ d. We assume that the system supports several blue
tasks at time τ . Each of them has been accepted before τ and has not completed its execution
at time τ . Let denote by B(τ) = {Bi(ci(τ), di), i=1 to blue(τ)} the blue task set supported by
the machine at τ . Value ci(τ) is called dynamic execution time and represents the remaining
execution time of Bi at τ . A deadline occurs at di. We assume that B(τ) is ordered such that
i < j implies di ≤ dj .

The acceptance test of blue tasks within a system involving RLP skippable tasks presented
below in Theorem 2, is based on the one established by Silly-Chetto and al. [14] for the accep-
tance of sporadic requests occurring in a system consisting of basic periodic tasks (i.e., without
skips).

Theorem 2. Task B is accepted if and only if, for every task Bi ∈ B(τ)∪{B} such that di ≥ d,
we have δi(τ) ≥ 0, with δi(τ) defined as:

δi(τ) = ΩEDL
T (τ) (τ, di) −

i∑

j=1

cj(τ) (2)

δi(τ) is called slack of task Bi at time τ which represents the maximum units of time during
which the task could not be served by the processor without missing its deadline. ΩEDL

T (τ) (τ, di)

denotes the total units of time that the processor is idle in the time interval [τ, di]. The total
computation time required by blue tasks within [τ, di] is given by

∑i
j=1 cj(τ)

The procedure that implements the acceptance test calls for the EDL algorithm for the
computation of the total idle times which will be used to compute the slack of blue tasks.
Then, this slack is compared to zero. Thus, the acceptance test proposed in this paper runs
in O(⌊R

p
⌋n + blue(τ)) in the worst-case, where n is the number of periodic tasks, R is the

longest deadline, p is the shortest period, and blue(τ) denotes the number of active blue tasks
at time τ , whose deadline is greater or equal to the deadline of the occurring task. Note that
this acceptance test could be implemented in O(n + blue(τ)) by considering and maintaining to
update additional data structures using slack tables, as proved in [15].



International Journal of Computers, Communication and Control

-

-

-

-

-6 6 6

6 6 6 6

6 6 6 6 6

6 6 6 6 6 6

6 6 6 6 6 6 6

0 30 60

0 20 40 60

0 15 30 45 60

0 12 24 36 48 60

0 10 20 30 40 50 60

T0

T1

T2

T3

T4

: processing red task

: processing blue task

6 : release time

Figure 5: RLP/T scheduling algorithm (si = 2)

4.2.3 Illustrative example

RLP/T scheduling is illustrated in Figure 5 with the periodic task set T defined in Table 1. It
is easy to see that RLP/T improves on both RLP and BWP. Only two violations of deadline
relative to blue task instances are observed: at time instants t = 40 (task T4) and t = 60 (task
T3). The acceptance test contributes to compensate for the time wasted in starting the execution
of blue tasks which are not able to complete within their deadline. As we can observe, in the
RLP case (see Figure 4), T3 blue instance released at time t = 48 is aborted at time t = 60 (2
units of time were indeed wasted). Note that the rejection of this blue task instance, performed
with RLP/T, contributes to save time used for the successful completion of T4 blue instance
released at time t = 50.

In section 6, we quantify more precisely the gain of performance of RLP/T upon RLP, BWP
and RTO.

5 Applying theory to real-world problems

5.1 Multimedia applications

In order to understand the importance of CPU scheduling in multimedia real-time applications,
it is useful to place the issue in context. Multimedia implies a certain amount of data to
be handled within a specified time frame and requires a tremendous amount of resources to
accommodate. For multimedia applications to function correctly, there must be a steady stream
of data for the output devices to process. For the viewer to perceive continuous media such as
movies or music, the output devices have to output new media within strict time constraints
(e.g. 30 frames per second for video applications). Given this observation, one gets a better
understanding of the crucial role of CPU scheduling in such applications.

Consider a simplified model of a real-time telesurveillance application, as represented in
Figure 6. The relevant tasks are the acquiring tasks and the display task. Video data are
first captured and digitized through video capture devices such as video cameras. Then, each
video capture task “Acqi” reads the input video buffer relative to its camera, thus periodically
acquiring incoming frames. Downstream from the chain, another task named “Display” is in
charge of continuously consuming frames from an output frame buffer and sending the acquired
video frames to a final display device composed of various telesurveillance screens.

One important problem part of the management of telesurveillance systems is the data
refreshing rate on the display device. Indeed, by definition, such a system must provide pictures
as recent as possible to be useful. If there is no data for the output devices to process, there



Figure 6: Simplified architecture of a real-time telesurveillance application

is buffer underflow. The media application will stall and wait for new data to be provided.
Naturally, buffer underflow should be avoided whenever possible.

Scheduling implies multiplexing a resource among several tasks to ensure all throughput
requirements are met. In the present case, the problem consists in ensuring an acceptable
refreshing rate (i.e. a guaranteed QoS level).

5.2 Dynamic QoS scheduling

For multimedia applications, the CPU scheduler determines the resulting quality of service. The
more CPU cycles allocated to a task, the more data can be produced, thus providing a better
quality output. In the previous example, more CPU cycles produce more frames, thus allowing
more frames per second to be displayed on the workstation monitor. However, if several videos
are executing at the same time there may not be enough CPU cycles available to produce all the
video frames requested. In this overloaded situation, the quality of service (i.e. frame rate) is
reduced to a lower acceptable level, which results for instance to display an image at 15 frames
per second instead of 30 frames per second. The resulting video just appears less smooth during
the transient overload period.

Now, let us consider RLP or RLP/T algorithms for scheduling the application described in
Figure 6. At initialization time, the application specifies a desired average rate of execution by
appropriately setting the skip parameter si of each “Acqi” task. RLP (or RLP/T) scheduler
can be viewed as an EDF priority-based scheduler coupled with a skip-over rate regulator. That
ensures every task not to be executed below a specified rate, whatever is the CPU workload.
RLP and RLP/T superiority over RTO and BWP effectively results in a higher and guaranteed
frame rate on the workstation monitors.

6 Simulation Study

In this section, we summarize the results of a simulation study which compares the performance
of the different QoS scheduling algorithms. The objective is to maximize the actual QoS level
of periodic tasks, i.e., the ratio of periodic tasks which complete before their deadline.

Experiments also evaluate the impact of the skip value for each algorithm, namely RTO,
BWP, RLP and RLP/T.

6.1 Simulation context

The simulation context includes 50 periodic task sets, each consisting of 10 tasks with a least
common multiple equal to 3360. Tasks are defined under QoS guarantees specified by uniform
si. Their worst-case execution time is randomly generated and depends on the input setting



International Journal of Computers, Communication and Control

Figure 7: QoS of periodic tasks with low and high skip parameters (si = 2 and si = 6)

of the periodic load Up. Deadlines are equal to the periods and greater than or equal to the
computation times. Simulations have been processed over 10 hyperperiods.

6.2 Varying the periodic load

Measurements rely on the ratio of periodic tasks which complete before their deadline. The
evaluation is done varying the periodic load Up. The results obtained for si = 2 (one instance
every two can be aborted) and si = 6 (one instance every six can be aborted) are described on
Figure 7.

From the graphs, we can say that BWP, RLP and RLP/T outperform the RTO model in
which the QoS level is still constant whatever is the periodic load applied. For si = 6, the actual
QoS (which corresponds to the QoS guarantee) remains constant at a rate of 5/6=83%. The
advantage of RLP over BWP is slight for low skip parameters, and more significant for high skip
parameters. We note that the performance of BWP and RLP is dramatically worse than the one
achieved by RLP/T. This result was expected because both BWP and RLP attempt to schedule
blue instances that have not enough time for completing within their deadlines. This wasted
time is not saved for executing other blue instances with closer deadline. In contrast, RLP/T
finds a way of saving this CPU time by implementing an acceptance test for blue instances. We
can observe that this gain of performance is all the more significant as the periodic load Up is
higher. For instance, in Figure 7, for Up ≥ 120%, RLP/T enjoys more than factor 1

4 success
rate advantage over BWP. Moreover, we observe a very low gradient for the RLP/T curve which
is not the case for other models. For Up = 150% and si = 2, actual QoS levels for RTO and
RLP/T are respectively equal to 50% and 84%, which figures the great predominance of RLP/T
over RTO.

The variation of the skip parameter value shows that, for wide loads, the actual QoS of
periodic tasks is all the more improved with RLP/T that the QoS constraint is smaller. For
instance, for Up = 110%, RLP/T applied to periodic tasks with si = 2 will successfully process
twice as many periodic instances over BWP, as with periodic tasks with si = 6. As we can see,
the major difference in the performance between RLP/T and BWP appears not only for heavy
loads but also for small value of si.



Figure 8: The CLEOPATRE framework

7 Integration into a Linux-based system

7.1 CLEOPATRE library

RTO, BWP, RLP and RLP/T algorithms have been integrated into a library of free software
components called CLEOPATRE (Software Open Components on the Shelf for Embedded Real-
Time Applications) [6]. This library, part of a French National Project 1, was designed to
provide more efficient and better service to real-time applications. The purpose was to enrich
the real-time facilities of real-time Linux versions, such as RTLinux [18] or RTAI [9]. RTAI was
the solution adopted for this project because we wanted the CLEOPATRE components to be
distributed under the LGPL2 license which is also the one used in the RTAI project.

The CLEOPATRE library whose framework is shown in Figure 8 offers selectable COTS
(Commercial-Off-The-Shelf) components dedicated to dynamic scheduling, aperiodic task ser-
vice, resource control access and fault-tolerance. Components are totally independent from the
kernel and the hardware. Reusability of the components with another hardware and OS is made
possible by just adapting the OS abstraction layer in the TCL component. This component hides
the specific features of each platform, so that the run-time components can be implemented in
a portable fashion and adapted to the target’s processor architecture and board.

RTO, BWP, RLP and RLP/T can be found in a new shelf called “Quality of Service”’.
Final users can then build their own customized applications through the flexible and easy-to-
use interface provided by the CLEOPATRE framework.

8 Conclusions

This paper pointed out the need of more flexible scheduling solutions for real-time applications
dealing with multimedia and active monitoring systems. Our main contribution was actually to
propose and validate new scheduling algorithms, namely RLP and RLP/T. Their purpose is to
enhance the QoS of periodic tasks that allow skips (i.e the ratio of task instances that do execute
within their deadline) while providing a QoS guarantee (i.e the ratio of task instances that
must complete within their deadline). We considered a real-world problem (i.e. a multimedia
application) to bring to light how these algorithms can be implemented in practice in order
to provide a better QoS. Simulation results show that the improvements with both RLP and
RLP/T are quite significant compared with basic algorithms. These new QoS functionalities
are available under Linux/RTAI. Our future work includes extending these QoS scheduling
algorithms to multiprocessor systems.

1work supported by the French research office, grant number 01 K 0742
2Lesser General Public License



International Journal of Computers, Communication and Control

References

[1] G. Bernat, A. Burns, Combining (n/m)-hard feadlines and dual priority schaduling, 18th
IEEE Real-Time Systems Symposium, pp 46-57, 1997.

[2] G. Bernat, A. Burns, A. Llamosi, Weakly-hard real-time systems, In IEEE Transactions on
Computers, Vol. 50, No. 4, pp 308-321, 2001.

[3] G.-C. Buttazzo, M. Caccamo, Minimizing Aperiodic Response Times in a Firm Real-Time
Environment, IEEE Trans. Software Eng., Vol. 25, No. 1, pp 22-32, 1999.

[4] M. Caccamo, G.-C. Buttazzo, Exploiting skips in periodic tasks for enhancing aperiodic
responsivess, 18th IEEE Real-Time Systems Symposium, 1997.

[5] H. Chetto, M. Chetto, Some Results of the Earliest Deadline Scheduling Algorithm. In
Proceedings of the IEEE Transactions on Software Engineering, Vol. 15, No. 10, pp 1261-
1269, 1989.

[6] T. Garcia, A. Marchand, M. Silly-Chetto, Cleopatre: a R&D project for providing new
real-time functionalities to Linux/RTAI. 5th Real-Time Linux Workshop, 2003.

[7] M. Hamdaoui, P. Ramanathan, A Dynamic Priority Assignment Technique for Streams with
(m,k)-firm deadlines. IEEE Transactions on Computers, Vol. 44, No. 4, pp 1443-1451, 1995.

[8] G. Koren, D. Shasha, Skip-Over Algorithms and Complexity for Overloaded Systems that
Allow Skips. 16th IEEE Real-Time Systems Symposium (RTSS’95), Pisa, Italy, 1995.

[9] P. Mantegazza, E. Bianchi, L. Dozio, M. Angelo, D. Beal, DIAPM. RTAI Programming
Guide 1.0, Lineo Inc., 2000.

[10] A. Marchand, M. Silly-Chetto, QoS Scheduling Components based on Firm Real-Time
Requirements, ACS/IEEE International Conference on Computer Systems and Applications
(AICCSA’05), Le Caire (Egypt), 2005.

[11] A. Marchand and M. Silly-Chetto, RLP: Enhanced QoS Support for Real-Time Applica-
tions, 11th IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA’05), Hong-Kong, 2005.

[12] A. Marchand, M. Silly-Chetto, Dynamic Real-Time Scheduling of Firm Periodic Tasks with
Hard and Soft Aperiodic Tasks. Journal of Real-Time Systems, Vol. 32, No. 1-2, pp 21-47,
2006.

[13] M. Silly-Chetto, The EDL Server for Scheduling Periodic and Soft Aperiodic Tasks with
Resource Constraints, Journal of Real-Time Systems, Vol. 17, pp 1-25, 1999.

[14] M. Silly-Chetto, H. Chetto, N. Elyounsi, An Optimal Algorithm for Guranteeing Sporadic
Tasks in Hard Real-Time Systems. IEEE Symposium on Parallel and Distributed Processing,
pp 578-585, 1990.

[15] T. Tia, J. Liu, J. Sun, R. Ha, A Linear-Time Optimal Acceptance Test for Scheduling
of Hard Real-Time Tasks, Technical report, Department of Computer Science, University of
Illinois at Urbana-Champaign, IL, 1994.

[16] R. West, C. Poellabauer, Analysis of a Window-constrained scheduler for real-time and
best-effort packet streams, 21st IEEE Real-Time Systems Symposium, Orlando, USA, 2000.



[17] R. West, Y. Zhang, K. Schwan, C. Poellabauer, Dynamic window-constrained scheduling
of real-time streams in media servers, IEEE Trans. on Computers, Vol. 53, pp. 744-759, 2004.

[18] V. Yodaiken, The RTLinux Approach to Real-Time, FSMLabs Inc., 2004.

[19] Y. Zhang, R. West, X. Qi, Avirtual deadline scheduler for window-constrained service
guarantees, Tech. Rep. 2004-013, Boston University, 2004.

Audrey Marchand
University of Nantes

Laboratoire d’Informatique de Nantes Atlantique
2, rue de la Houssinière - BP 92208

44322 Nantes Cedex 03,
FRANCE

E-mail: audrey.marchand@univ-nantes.fr

Maryline Chetto
University of Nantes

Institut de Recherche en Communications et Cybernétique de Nantes
1, rue de la Noe

44321 Nantes Cedex 03
FRANCE

E-mail: maryline.chetto@univ-nantes.fr

Received: May 22, 2008



International Journal of Computers, Communication and Control

Audrey Marchand graduated in Computer Engineering
at the Ecole polytechnique of the University of Nantes
(France), in 2002. After getting a Master Degree in Applied
Computer Science at Ecole Centrale de Nantes in 2003, she
received the PhD degree in October 2006 from the Univer-
sity of Nantes. From October 2006 to August 2007, she hold
a Post-Doc researcher position at the Polytechnic University
of Valencia, Spain. She is currently an Associate Professor
at the University of Nantes, France. Her research inter-
ests include real-time scheduling theory, OS service mech-
anisms, quality of service guarantees in real-time systems,
and Linux-based real-time OSes and applications.

Maryline Chetto received the degree of Docteur de 3ème cy-
cle in control engineering and the degree of Habilitée Diriger
des Recherches in Computer Science from the University
of Nantes, France, in 1984 and 1993, respectively. From
1984 to 1985, she held the position of Assistant professor of
Computer Science at the University of Rennes, while her re-
search was with the Institut de Recherche en Informatique
et Systèmes Aléatoires, Rennes. In 1986, she returned to
Nantes and is currently a professor with the Institute of
Technology of the University of Nantes. She is conduct-
ing her research at IRCCyN. Her main research interests
include scheduling and fault-tolerance technologies for real-
time applications. She has published more than 60 journal
articles and conference papers in the area of real-time oper-
ating systems. She is the leader of a French national R&D
project, namely Cleopatre, supported by the French gov-
ernment, which aims to provide free open source real-time
solutions.


